
Problem Analysis and Structure

Michael JACKSON
101 Hamilton Terrace, London NW8 9QY, England

and
AT&T Research, 180 Park Avenue, Florham Park NJ 07932, USA

Abstract. An approach to problem analysis is presented in which problems are decomposed
into subproblems of recognised classes. These classes can be captured by problem frames,
which identify domain structures and interfaces in the problem world; domains themselves can
be classified into lexical, causal and biddable domains. Each problem frame has a basic
associated frame concern that must be addressed in analysing the problem. Additional concerns
arise from more general considerations, including the characteristics of the problem domains
and the composition relationships among the subproblems.

1.  Introduction

Traditionally, thinking and research in software development has focused on solutions: on
programs and on various abstractions that may be useful in designing and writing program
texts. We have paid little or no attention to the problems that those programs are intended to
solve. Even methods and approaches that claim the title of ‘problem analysis’ usually prove,
on closer inspection, to deal entirely with putative or outline solutions. The problem to be
solved is neither stated in full detail nor explicitly analysed; the reader must infer the
problem from its solution.

This solution-oriented approach may work well in a field where the problems are all
well known and have been thoroughly described, classified and investigated  where
innovation lies chiefly in devising new solutions to old problems. But software development
is not such a field. The versatility of computers and their rapid pace of evolution present us
with a constantly changing repertoire of problems in whose solution software has a central
role. As a result, our field is underdeveloped in crucial respects. In particular, the repeated
calls for professionalisation and for the establishment of a corpus of core software
engineering knowledge are symptoms of a broad failure to identify what practising software
developers should know if they are to be competent to tackle the problems of the many
different application areas.

The central part of this paper sketches an approach to problem analysis and structuring
that aims to avoid the magnetic attraction of solution-orientation. The approach is based on
the idea of a problem frame [1-3]. A problem frame characterises a class of elementary
simplified problems that commonly occur as subproblems of larger, realistic, problems. The
intention is to analyse realistic problems by decomposing them into constituent subproblems
that correspond to known problem frames. This analysis guides the decomposition, gives
warning of the concerns and difficulties that are likely to arise, and provides a context in
which previously captured experience can be effectively exploited.

Engineering Theories of Software Construction, Tony Hoare, Manfred Broy and Ralf Steinbruggen eds;
Proceedings of NATO Summer School, Marktoberdorf; IOS Press, Amsterdam, August 2000, pp3-20.



2. The Problem and Its World

Some problems, including most of the standard examples found in computer science texts,
are abstract in a mathematical sense: they do not partake of the physical nature of the world.
Factorising large integers, finding strongly connected components of graphs, and playing
chess are examples of such problems. But most problems are located in the physical world.
Such problems include controlling lifts, switching telephone calls, controlling the brakes of
a car, bank accounting, managing theatre seat reservations, controlling a VCR and
administering a library. In all these cases the effectiveness of a solution is to be evaluated in
the physical world outside the computer. The problem is located in the world; the computer,
executing our program text, is the core of the solution.

2.1 Phenomena
Because problems are located in the world, problem analysis must be concerned with the
world and its phenomena. We need a phenomenology that has nothing to do with
programming languages or object interaction, but everything to do with the physical world.
An appropriate phenomenology may include:

• entities, which are mutable individuals such as cars and people;
• events, which are recognised as individuals;
• values, which are immutable individuals such as integers and strings;
• states, which are time-changing relations over non-event individuals;
• truths, which are unchanging relations over non-event individuals; and
• roles, which are the participation of individuals in events.

In particular, it is useful to treat roles as distinct phenomena. One reason is that the
alternative  encoding roles as positional arguments of event expressions  leads to
difficult and premature choices. In a DepositCash event, the account credited and the
amount of cash deposited are obviously necessary arguments. But it’s hard to say whether
the person making the deposit and the ATM at which the deposit is made are also necessary.
Roles allow these choices to be deferred, and to be made incrementally and independently.

Among the six kinds of phenomena it is useful to distinguish the class of controllable
phenomena  events, state changes and roles  that occur on the initiative of one part of
the world rather than another. For example, a keystroke is an event in which the user and the
keyboard both participate, but it is controlled by the user: the user controls both the event
and the role that is the participation of a particular key. In a disk read operation, the reader
controls the event occurrence and the participation of an individual input buffer; but the disk
controls the participation of the particular record value that is returned. This separation of
the control of events and their roles is another reason for recognising roles as distinct
phenomena.

Values and truths form the class of symbolic phenomena. Symbolic phenomena are
carried by controllable phenomena. For example, the data content of a disk file is carried by
magnetic encoding on sectors of the disk, and accessed by read and write events in which
the data values play roles.

2.2 Domains
For purposes of problem analysis it is natural to recognise distinct parts of the world; we
will call them domains. A domain can be thought of as a collection of related phenomena;
the kinds of phenomena in a domain and the relationships among them constitute the
domain properties. Domains may share phenomena: indeed, the only way two domains can
interact is by an interface of shared phenomena. For example, a lift and its passengers
interact because both the entry of a passenger into the lift car and the pressing of a floor
request button are events shared by the lift domain and the passenger domain. The control



computer interacts with the lift because switching on the lift motor is an event shared by the
computer and the lift domain (and controlled by the computer). If interaction between two
domains is mediated by a channel, and the channel introduces delays or errors or noise that
preclude the interaction from being treated as one of shared phenomena, then the channel
itself must be treated as another domain, interacting by shared phenomena with each of the
original two domains.

The most fundamental distinction for problem analysis is between the machine domain
 the computer and its software  and the problem domain  the world where the
problem is located and the quality of its solution will be evaluated. These two domains must
share phenomena if the problem is to be soluble.

2.3 Descriptions
In very general terms, the process of problem analysis is concerned with these descriptions
of relationships among the phenomena of the problem domain:

• The requirement. This is a description of properties that the domain does not possess
intrinsically but are desired by the sponsor of the development. It will be the machine's
task to endow the problem domain with those properties. For example: the property that
the lift comes when a button is pressed; that the lift does not stop at a floor for which no
request is outstanding; that the lift doors never open except when the lift car is stationary
at a floor; and so on.

• The domain properties. This is a description of the properties that the domain
possesses intrinsically, regardless of the behaviour of the machine. For example: the
property that from floor n the lift can go only to floor n+1 or n-1; that the sensor at floor
n is on when the lift car is within 6 inches of the home position at that floor; that if the
motor is set on and up the lift will start to rise; and so on.

• The machine specification. This is a description of the desired behaviour of the
machine at its interface with the problem domain. For example: when button n is pressed
in certain circumstances, the machine must set the lift motor polarity to up and set motor
power to on. Although this is a description of machine behaviour, it is expressed entirely
in terms of problem domain phenomena: the shared phenomena at its interface with the
machine belong, of course, both to the problem domain and to the machine domain.

The formal criterion for success in a development is the demonstration of an implication
among these descriptions:

machine specification ∧ domain properties ⇒ requirement

If the machine behaves as specified and the domain has the described intrinsic properties,
then the requirement will be satisfied. (A more rigorous account of the relationship among
the three descriptions is given in [4].)

In the lift control problem this means: if the machine detects button presses and sensor
states and operates the lift and door motors, all in accordance with the specification, and if
the lift position and behaviour are related to the sensor states and motor settings as described
in the domain properties description, then the lift will come when the button is pressed.
Essentially, the intrinsic domain properties bridge the gap between the requirement
phenomena  those mentioned in the requirement  and the specification phenomena 
those directly accessible to the machine at its external interface to the world. This gap exists
in almost every realistic problem: the desired behaviour in the problem domain is not  or
not solely  about phenomena shared by the machine; only indirectly, by exploiting the
domain properties, can the machine ensure satisfaction of the requirement.



3. Domain Types

It is useful to distinguish some broad types of domain. Machines; other causal domains;
lexical domains; and biddable domains. All are physical domains, but demand different
kinds of description and raise different development concerns. The distinctions we make
among the domain types are subjective: the view we take of a domain, and often the
boundary by which we circumscribe it, depend on our purpose in the context of the problem
in hand.

3.1 Machines
The machine in a problem is a specialisation of a general-purpose computer, the
specialisation being achieved by programming. The general-purpose computer is
programmable because it is a Universal Turing Machine: it reads a description of the
particular specialised machine needed for the problem in hand, and behaves as that machine.
The end-product of the software development task is that description.

The machine domain has familiar characteristics. It is a complex electro-mechanical
product: the arithmetic and logical unit and the cache and first level of main storage are
purely electronic; disk storage and some input-output devices such as floppy disk and CD
and DVD drives, keyboard, screen and mouse, are partly mechanical. These electronic and
mechanical components constitute a causal domain. The event and state phenomena of the
domain are connected by causal chains: the mechanical event of a keystroke causes an
electronic signal; depending on the program, this in turn may cause further signals leading
to alteration of the screen state, to movement of a disk head, and to alteration of the state of
some main storage cells to reflect the state of a sector of the disk.

A crucial characteristic of the machine domain is its very high reliability. In most
applications the correct functioning of the machine is taken for granted. This reliability is
closely associated with the engineered formality of the machine. Formal discrete phenomena
 typically, binary states  are constructed on the basis of continuous and imperfect
physical phenomena such as magnetisation, charge and voltage. The machine is designed to
ensure that the continuous voltage representing a binary state is examined only when it is at
a level that can be unambiguously interpreted as 0 or 1.

3.2 Causal Domains
Causal domains other than the machine are common in many applications. The lift
equipment  the buttons and lights, the doors, sensors, motors and winding gear 
constitutes one or more causal domains. An ATM and the cards that it reads are interacting
causal domains. The wheels and brakes of a car, and the road surface it runs on, are causal
domains.

The domain properties of a causal domain are, essentially, causal relationships. Setting
the lift motor to on and up causes it to turn; the turning winds the lift cable on a drum;
winding the cable causes to lift car to rise; reaching a floor sets the sensor to on. These
causal chains allow the machine to cause and constrain events and state changes far from its
interface with the domain. Descriptions of the domain properties are descriptions of the
physical world of these causal chains. For example, a state machine description may assert
that the event motor-on when motor-stopped holds causes a transition to a state in which
motor-running holds.

However, causal domains in general are often much less reliable than the machine.
Brakes fail, magnetic stripes on cards become unreadable, motors burn out. The motor-on
event may, after all, fail to produce its expected change of state. Depending on the nature
and setting of the problem it may be necessary to deal explicitly with this unreliability in a
separate subproblem.



3.3 Lexical Domains
A lexical domain is, physically, a causal domain. For example, it may be a database held on
one or more disk drives, or an object structure inside a machine, or a file held on a tape or
CD. The physical causal domain provides the infrastructure, but the significance of the
lexical domain is in its data. That is, in the values represented by the physical state
phenomena, and the truths and other relationships among them.

There is therefore a kind of duality in a lexical domain. At the physical level we can
not avoid being concerned with states and events. Data is written and read by executing
physical operations whose effects are state changes in the lexical domain or in the machine
that causes the operation events. State machines may provide appropriate descriptive
techniques here. But at the lexical level we are concerned with the more abstract data
structures; descriptions are more appropriately expressed in grammars, functions and other
recursive structures. The relationships here are not causal but definitional. It is not
appropriate to say “this integer pair is broken because it has only one integer” in the way we
might say “this bicycle is broken because it has only one wheel”. We must rather say that it
is not an integer pair.

3.4 Biddable Domains
Many problems involve human beings as users or operators, or as originators or recipients
of information. Human beings are subject to physical laws that limit their behaviour in a
negative sense, by making certain behaviours impossible. The operator of the sheet steel
pressing tool in the production cell can not insert his hand between the hammer and the
anvil and simultaneously hold his finger on the motor-on button located six feet away.
Development of a safe production-cell controller can rely on this domain property.

There are also some physical laws compelling behaviour in the positive sense of
reaction to stimulus. In a healthy human being, the doctor’s tap on the knee results in an
involuntary jerk. But these reactions are useful only in rare and very specialised
applications. More commonly, if positive behaviour is required of a system operator or user
the correct behaviour is described in online or offline instructions and the operator or user is
bidden, or enjoined, to follow the instructions. For this reason we classify the operator or
user as a biddable domain.

The extent to which correct behaviour, in this sense, can be relied on varies over a wide
spectrum. The pilot of a plane or the driver of a train can be relied on to behave correctly
almost always. Failure to follow instructions, especially if it leads to an accident, will be
intensively investigated and may even be regarded as criminally culpable. As a result, it is
useful in development to treat correct behaviour in a biddable domain in much the same way
as in a causal domain: in one subproblem correct behaviour is described and assumed; the
possibility of incorrect behaviour is dealt with explicitly in another subproblem. By contrast,
the user of an ATM can not be expected to adhere to an instruction manual. The appropriate
domain properties description must accommodate every behaviour that is physically
possible.

4. Elementary Problem Frames

The account given earlier of problem analysis in terms of requirement, domain properties
and machine specification, is too general. Real problems are more specific. A problem
frame captures the characteristics of a specific tightly constrained class of idealised
problems. These problem classes correspond to intuitive notions of different kinds of
problem, but make the intuition more precise. They stipulate the structure and characteristics
of the requirement, of the problem domain  possibly structuring it as two or more domains



 and of the interfaces among domains. To illustrate the idea, we will look briefly at four
elementary problem frames.

4.1 Simple Behaviour
The first is the Simple Behaviour Frame. The problem frame diagram is shown in Figure 1.

Figure 1. Problem Frame Diagram: Simple Behaviour

The rectangle with two stripes represents the machine; the plain rectangle represents the
problem domain; and the dashed oval represents the requirement. This is an idealised form
of a simple control problem. The requirement (Required Behaviour) is to impose a certain
behaviour on the problem domain (Controlled Domain). The requirement is expressed in
terms of controllable phenomena C3. The interface between the machine (Control Machine)
and the controlled domain consists of shared controllable phenomena C1 and C2. The
exclamation marks indicate that the C1 phenomena are controlled by the machine, and C2
by the controlled domain. The controlled domain is always causal; typically, it is partly
autonomous and partly responsive to the phenomena C1. The C in the corner of the box
indicates that this is a causal domain.

The basic frame concern in a simple behaviour problem is to devise a control law by
which the machine can satisfy the requirement in terms of the phenomena C3. Directly, it
must do so by controlling the phenomena C1 and using the feedback information conveyed
by the phenomena C2. An automatic braking system for a car is an example of a simple
behaviour problem.

4.2 Simple Information Answers
The second problem frame is Simple Information Answers. Figure 2 shows its problem
frame diagram.

Figure 2. Problem Frame Diagram: Simple Information Answers

The arrowhead on the dashed line indicates that the requirement constrains the Responses;
the absence of arrowheads on the other dashed lines indicates that does not constrain either
the Real World or the Enquirer. The problem is to construct a simple information system
(Response Machine) that answers enquiries. Enquiries in the form of an unstructured stream
of events E4 come from an autonomous Enquirer; the Enquirer is a biddable domain, as

CM!C1
CD!C2 C3Controlled

Domain
Required
Behaviour C

Control
Machine

RM!C3

C3Responses

Enquirer

Real
World

E4

P2

ENQ!E4

RW!P1

Response
Machine

Information
Relation

 C

 C

 B



indicated by the B in the corner of the box. The machine creates its answers in the causal
domain Responses by causing phenomena C3. The subject of the enquiries is the Real
World. The Real World is shown as a causal domain, and is autonomous: none of its
phenomena are controlled by the Response Machine. In a variant of this frame, the Real
World may be static, having no controllable phenomena. In either case, it controls or
determines all the phenomena P1 at its interface with the machine. The requirement
(Information Relation) stipulates a relationship between the answers C3, the enquiry events
E4, and the phenomena P2 of the real world.

The basic frame concern is the use of the specification phenomena P1 to make
inferences about the requirement phenomena P2. Answering questions about the weather is
an example of a simple enquiry problem.

4.3 Simple Information Displa y
The third problem frame is Simple Information Display. Its problem frame diagram is shown
in Figure 3.

Figure 3. Problem Frame Diagram: Simple Information Display

This is an idealised form of a simple information system (Display Machine) that maintains a
continuous display of information (Information Display) about an autonomous causal Real
World. The requirement (Display Rules) stipulates the state S4 of the display for each state
S2 of the real world. The display is a reactive causal domain, changing its states S4 in
response to the machine-controlled phenomena C3.

The basic frame concern is the use of the interface phenomena C1 to provide inferences
about the phenomena S2 that are the subject of the requirement. Controlling the display in a
hotel lobby that shows the current positions of the lifts is an example of a simple
information display problem.

4.4 Simple Workpieces
Finally, Figure 4 shows the problem frame diagram for the Simple Workpieces frame.

Figure 4. Problem Frame Diagram: Simple Workpieces

This is an idealised form of a problem in which the machine (Tool) acts as a simple tool for
the creation and manipulation of text or graphic objects in the Workpieces domain.

Display
Rules

S2

S4

 C

 C

Information
Display

Real
World

DM!C1

RW!C3

Display
Machine

TL!E2
WP!S3

Operation
Effects

Work-
Pieces

Operation
Requests

S3

E1OR!E1

Tool

 B

 X



Workpieces is a lexical domain, as indicated by the X in the corner of the box. The user of
the tool autonomously issues an unstructured stream of commands Operation Requests E1,
that constitute a biddable domain. The machine may sometimes ignore a command: for
example, if it makes no sense in the current context. The workpieces are regarded as given
 that is, although they are designed software artifacts, their design is not considered to be
a part of the workpieces problem itself. They are state-reactive: that is, their behaviour
consists only of changing their states S3 in response to events E2 caused by the machine.

The basic frame concern is that the machine must ignore senseless operation requests
E1 (such as a deletion request for a non-existent workpiece), and must convert valid
requests E1 into appropriate combinations of invocations E2 at the interface with the
workpieces. The control of setting a VCR memo to record a TV program is an example of a
simple workpieces problem.

5. Problem Decomposition

The elementary problem frames deal only with simplified idealised problems. Even when
extended by a number of common variants and composites, the corpus of frames does not
encompass many  perhaps any  problems of realistic size and complexity. Dealing with
a realistic problem means decomposition into subproblems. A sufficient corpus of frames is
one in which we can always find a set of subproblems to give an appropriate decomposition
of any realistic problem. There are several possible approaches to the decomposition task. In
this section we mention three of them.

5.1 Outside-In Decomposition
Sometimes the problem in hand seems to fit no known frame even approximately. It may
then be helpful to decompose the problem by working from the outside towards the inside,
as it were. The approach here is to try to find recognisable parts or aspects of the problem
that correspond to known frames, and analyse them in the context of those frames. Then
they may be regarded as solved problems, and the parts and aspects of the original problem
that remain to be solved can be considered without the added complication of the already
solved subproblems.

This approach is essentially an iterative application of the often-quoted heuristic “find a
piece of the problem that you can solve”. If the approach succeeds, the original problem is
eventually whittled down to a simple nucleus that can now be recognised as fitting a known
frame.

5.2 Inside-Out Decomposition
Sometimes the problem in hand seems to fit a known frame approximately, but exhibits
difficulties that frustrate the pure application of the frame. These difficulties themselves
give rise to subproblems that may be recognisable as fitting other frames in their own right.
For example, one form of difficulty is a connection difficulty: it may be that some
information needed by the machine in a behaviour problem is not available directly when it
is needed. It may then be possible to cast the difficulty as an information answers
subproblem in which the original machine plays the part of the enquirer. Another kind of
difficulty is an identities difficulty, in which the machine shares a set of event or state
phenomena with the problem domain but does not share the associated roles that identify the
participating domain entities.

This approach can be thought of as working from the inside towards the outside, where
the inside is the frame that seems to fit approximately and the outside is the surrounding set
of difficulties. The core problem can be analysed on the assumption that the difficulties will
be overcome in the solutions to the subproblems that capture them. This approach, too, is an



application of a well-known heuristic: “ignore complications and solve the simpler
problem”.

5.3 Decomposition by Subprob lem Tempo
Each elementary problem frame captures a very simple problem class. It demands only a
simple view of each domain and interface. The requirement is conceptually simple enough
to be expressible as a single responsibility: “Make the Controlled Domain behave in such-
and-such a way;” “Answer the Enquirer’s questions about the Real World;” “Maintain a
continuous Display of information about the Real World;” “Perform Requested Operations
on the Workpieces;” and so on.

Another dimension of the frames’ simplicity is a consistent temporal granularity. The
Workpiece operations proceed at the tempo of the Operation Requests; the Display changes
at the tempo of Real World changes. When a problem exhibits two or more clearly different
tempi, that is a strong indication of a contour along which distinct subproblems can be
recognised. For example, in a system to administer a lending library we may recognise at
least two tempi. At the slower tempo the subscribing members join, pay their subscriptions,
renew membership and resign; the tempo here may be linked to annual cycles of
membership validity. At the faster tempo, measured in days, books are borrowed, renewed
and returned. The different tempi characterise two distinct subproblems.

5.4 Recognising a Standard Composite Frame
Although the elementary frames form the basis of the technique of problem analysis and
structuring advocated here, a developed form of the technique will have a rich set of
composite frames. It may be expected that a substantial part of a realistic problem, or even,
occasionally, the whole of it, will fit a known composite frame. To recognise and exploit
this fit is to apply the heuristic “reduce to a previously solved problem”, or “the best method
is to have solved the same problem before”.

One example of a composite frame is the Interactive Workpieces frame which, unlike
the Simple Workpieces frame, includes an Interactive Screen domain at which the user can
interact with the Tool by viewing the workpiece states and entering operation requests by a
mouse or similar device. This composite frame, of course, has a solution in the form of the
MVC (Model-View-Controller) [5] framework, well-known in object-oriented design.

Another example of a composite frame is an Information System with a Model
Domain. Where the shared phenomena are inadequate or untimely in an information
problem, the difficulty can often be overcome by introducing a model domain and
decomposing into two subproblems. In one subproblem the machine builds the model from
the real world; in the other it uses the model to maintain the display or to answer the
enquiries. Here, the world ‘model’ is used in a quite specific sense. The model domain is an
analogic model [6] of the real world. The phenomena of the model domain are regarded as
surrogates for the phenomena of the real world. Because they satisfy analogous
relationships, they can be used to provide information about the real world.

5.5 Standardisation by Compo site Frames
The recognition of composite frames is closely analogous to the universal practice in
established branches of engineering, where standardised products  such as cars and
television sets and bridges  are elaborate composites of standardised components. The
value of a repertoire of well-understood composite frames is, of course, that understanding a
composite frame means a lot more than understanding its component subproblems. It means
also understanding how the subproblems fit together, being aware of the concerns and
difficulties that arise from the composition itself, and knowing how to fit the subproblem
solutions together into a satisfactory solution to the original composite problem.



6. A More Realistic Problem

To illustrate the problem frame technique we take the problem of controlling a package
router. Here is the problem statement, adapted from [7]:

“Packages with bar-coded destination labels move along a conveyor to a reading
station where their package-ids and destinations are read. They then slide by
gravity down pipes fitted with sensors at top and bottom.

“The pipes are connected by two-position switches that the computer can flip
(when no package is present between the incoming and outgoing pipes). The
configuration of pipes therefore forms a tree.

“At the leaves of the tree are destination bins corresponding to the bar-coded
destinations. A package can not overtake another either in a pipe or in a switch.
However, because the packages are of varying shapes and sizes, they slide at
unpredictable speeds and may therefore get too close together to allow a switch
to be set correctly. A misrouted package may be routed to any bin, an
appropriate message being displayed.

“The system must route packages to their destination bins by setting the switches
appropriately for each package as it slides down the pipes of the tree.”

6.1 Inside-Out Approach
At first sight, this appears to be a simple behaviour problem. Figure 5 shows the problem
diagram with the part names of the simple behaviour frame superimposed.

Figure 5. Problem Diagram: Package Router Control
                as a Simple Behaviour Problem

The interface between the Router Controller machine and the Router & Packages domain,
shown in the left callout, consists of these phenomena:
• read: Read events in which the barcode of a package entity is read, and the participating

barcoded string is transmitted to the Router Controller. These events are controlled by
the Router & Packages domain.

• hit: Hit events in which a package hits a sensor. The Router & Packages domain
controls hit events.

• posn: These states are the physical positions  left or right  of the router switches.
They are controlled by the Router & Packages domain.

• flip: These are the flip events, in which a switch is flipped, changing its position. They
are controlled by the Router Controller machine.

The requirement (Correct Routing) is concerned with the following phenomena, indicated in
the right callout:
• arrive, package, bin: arrive events in which a package arrives at a bin at a leaf of the

tree, and the associated roles which are the participation of the package and the bin.

Control
Machine

Controlled
Domain

Required
Behaviour

Router &
Packages

Correct
Routing

RP! read, hit,
      posn; [C2]
RC! flip    [C1]

arrive, package,
bin, destination [C3]

Router
Controller



• package, destination: destination states relating a package to its barcoded package-id
and destination strings.

• bin, destination: states relating the barcoded destination strings to the corresponding
router bins.

6.2 A Connection Difficulty
The briefest attempt at describing domain properties that can close the gap between the
requirement and the machine  if carried out with a properly meticulous attitude to the
phenomena  shows at once that there is a connection difficulty. The essence of the
difficulty is that the requirement is concerned with roles and truths involving package
entities, but packages appear in none of the roles shared by the Router Controller. For
example, the Router Controller can detect that a sensor has been hit, but can not detect
which package is responsible. The package information  its barcoded package-id and its
destination string  were transmitted to the machine when the package first entered the
router at the reading station. But the machine has no direct way of determining associating
this information with the anonymous package that has just hit the sensor.

The difficulty can be dealt with by a standard composite frame: an information
problem with a model domain. This composite frame decomposes an information problem
into two subproblems. The machine in the first subproblem has a direct interface with the
Real World domain, and builds an analogic model domain that can act as a surrogate for the
Real World. The machine in the second subproblem uses the analogic model domain to
produce the required information without direct reference to the Real World.

Figure 6. Building a Model Domain for the Packages and Sensors

Figure 6 shows the problem diagram for the first subproblem, in which the model is
built. Because packages do not overtake each other in the pipes and switches, it is possible
to regard the packages in the router as forming a set of queues: on each read event at the
reading station a new package enters the tail of the queue in the topmost pipe, and on hitting
a sensor at the bottom of a pipe it moves from the head of one queue to the tail of another.
The model domain (Packages & Sensors Model) is a lexical domain containing a
representation of these queues and package-id and destination attributes for each queue
element. These model attributes are assigned when the barcoded label of the package is read
at the reading station. The model domain is maintained by the Router Controller 2 machine:
as each sensor hit event occurs, the appropriate model queue element moves from the head
of one queue to the tail of another.

The model domain can then be interrogated by the Router Controller in the behaviour
problem to answer the question: “what is the barcoded destination of the package that
participated in the most recent hit event in which this particular sensor participated?” The
answer to this question solves the connection difficulty: when a package arrives at the
sensor guarding a switch or a bin its destination is known.

Router &
Packages

Model
Correspondence

Router
Controller

2

Packages
& Sensors

Model



6.3 A Digression on Model Domains
Model domains play a central part in many computer-based systems. Strictly, they arise only
in information problems; but information problems appear as subproblems in many
contexts. In particular, a behaviour problem often involves one or more information
subproblems to deal with the correct interpretation of the feedback phenomena C2 in the
Simple Behaviour frame of Figure 1.

One way of thinking about analogic model domains is to see them as an elaboration of
local variables in the machine behaviour specification of the undecomposed problem. In
order to respond appropriately to sensor hit events, the Router Controller must maintain an
internal data structure from whose current values it can identify which package has hit the
sensor and retrieve its bar-coded label information. This internal data structure, along with
the regime by which it is to be created, updated, and accessed, is far too elaborate to be
treated merely as an aspect of the machine behaviour specification. It must be separated out
as an explicit lexical domain in the problem decomposition. Timely execution of its
constructor operations then form one subproblem, and of its accessor operations form
another.

Ideally, the model domain is a perfect analogue of the real world phenomena and
properties that are of interest for the original information problem. But perfection is rarely
attainable. Instead, the model is likely to exhibit imperfections arising from many sources.
For example:
• Model updating must necessarily lag behind events and state changes of the Real World.

Sometimes this lag may be highly variable, leading to different orderings of model and
real world events.

• Model updating often depends on inferences which in turn depend on assumed domain
properties of a causal or biddable real world domain. If in some case the assumed
properties do not hold, the inference will be invalid and the resulting model not
correspond correctly to the Real World. If in fact one package does overtake another in a
router pipe, the resulting queue model will no longer correctly reflect the contents of the
pipes and switches.

• A model domain must inevitably possess phenomena and properties that are not shared
by the Real World. For example, tuples in a relational database must be ordered; space
must be conserved by deleting records; in the absence of information null values may be
stored where the Real World value is certainly not null.

When a model domain is introduced into an problem analysis, it must never be forgotten
that the model and the Real World are completely distinct domains. They share no
phenomena at all, and in principle they demand completely distinct descriptions.

6.4 Two Identities Difficulties
The problem offers two clear examples of the identities difficulty. The first concerns the
sensors and switches. Each sensor and switch is connected to a particular port  a register
or sense line  of the machine. When the machine detects a hit event it detects it at a
particular port, but the identity of the sensor is not explicitly known. A similar difficulty
arises for the switches, both for their position states and for their flip events.

The second identities difficulty concerns the barcoded destination strings and the bins.
Each bin can be associated  with the sensor guarding its entrance, but this does not help: the
machine has no access to the mapping between the bin sensors and the strings. Effectively,
therefore, it has no way of determining which is the desired bin for a particular barcoded
destination string.

Both of these difficulties are solved in the standard way for identities difficulties: the
mapping must be made explicit, and put in a form accessible to the machine. Creating the
mapping is a simple problem, perhaps fitting the Workpieces frame. The mapping is then



used by the router controller to identify the destination of each package with the bin sensor
that is its eventual goal. An identities mapping, is, of course, a particular kind of model
domain.

6.5 Another Connection Difficulty
Another connection difficulty still lurks in the problem. When a package arrives at the
sensor guarding a switch the machine must flip the switch or not according to the required
routing of the package. But the machine has no access to the necessary routing information:
that is, it has no way of determining whether a particular bin can be reached from a
particular switch, and if so, whether by its left or its right exit.
The solution to this difficulty is another model, but this time of a static domain. As often
happens with static models, it appears necessary to create the model with the help of a
human informant, as shown in Figure 7.

Figure 7.  Making a Model Domain for the Router Topology

This static model provides all necessary information about the router topology: Which
sensors are on which ends of which pipes? Which pipes feed which switches? Which pipes
leave which switches? Which pipe leaves the reading station? Which bins are guarded by
which sensors? From this information the router controller can determine the package routes
to their destination bins.

6.6 An Information Display Problem
The display of an appropriate message when a misrouted package arrives at a wrong bin is,
at first sight, a simple information display problem. When each package arrives at the sensor
guarding a bin, the bin identity can be compared with the package’s destination and a
message produced in the case of a mismatch. Connection and identity difficulties are
present, as in the behaviour subproblem; they are solved by the same model and mapping
domains.

6.7 Composing the Solution
To compose the solutions of subproblems it is necessary to consider the scheduling of their
machines.

In the present case the composition is fairly easy. The machines providing the solutions
to the identities difficulties, along with the machine that builds the static model of the router
topology, must be run to completion first. The mappings and models produced are then
available for use by the other machines. Those other machines can run in parallel,
essentially synchronised by the read and hit events controlled by the Router & Packages
domain. That is, when one of those events occurs, each machine reacts to the event and
returns to a quiescent state. Of course, the machines’ reactions must be appropriately
ordered: the information on which the answer to a question is based must be established
before the question is answered.

Package
Router

Model
Correspondence

Router
Controller

3

Router
Topology

Model

Informant



7. Subproblem Concerns and Composition Concerns

The treatment of the Package Router Control problem in the preceding section has been
brief and necessarily somewhat superficial. Decomposition proceeded both by recognising
familiar subproblem classes  controlling the package flow, reporting misroutings  and
by adopting familiar solutions to recognised concerns  the connection and identities
difficulties. The classification and recognition of familiar difficulties and concerns, arising
in particular problem classes, for particular domain types, or for particular combinations of
subproblems, is fundamental to any sound development discipline. In this final section some
common difficulties and concerns are discussed, and some of their implications for software
development technique are briefly sketched.

7.1 The Initialisation Concern
Initialisation is a well known concern in programming: an uninitialised variable is a classic
error. It is perhaps less well known in problem analysis and structuring, where it is of equal
importance and often greater difficulty.

It is easy in a formal approach to software development to introduce a formal treatment
of initialisation. For example, in the Z specification notation the Init schema is deemed, by
convention, to be an operation executed at the beginning of system operation. Conventional
representations of state machines have an initial state, which is deemed to hold at the
beginning. But deeming is not the same as doing; and initialising the machine or the model
domain is not the same as initialising the Real World. A desired initial state of the machine
or of a model domain, defined without reference to the problem world, is easily achieved by
programming. But the initialisation concern is about the initial state both of the machine and
of the problem world: when system operation begins, the machine must be in the initial state
described in the machine behaviour specification, and the problem world in the initial state
described in the domain properties descriptions.

In an information problem the Real World is autonomous. There is therefore no way of
forcing it into an initial state; the initial correspondence between the Real World on one side
and the machine or a model domain on the other must be achieved by initialising the
machine or model domain. In database applications this is sometimes called by the slightly
misleading name of ‘populating the database’.

In a behaviour problem the Controlled Domain is not autonomous, and it may be
appropriate to initialise it to conform to a fixed initial state of the machine. Sometimes this
can be done by the machine itself, sometimes by external human physical help; sometimes a
combination is needed. The Package Router pipes and switches must be initially empty, to
correspond to empty queues in the model. This can only be achieved by stopping the flow of
packages past the reading station and waiting until every package in the router has reached a
bin. The necessary operating instructions are as much a part of the software development as
the programs themselves.

7.2 The Breakage Concern
In a Behaviour problem the Controlled Domain may be vulnerable to certain occurrences of
events controlled by the machine. For example, a router switch must not be flipped when a
package is passing through. The direction of the lift motor must not be changed while the
motor is running. The gearbox of a car must not be shifted into low gear while the car is
travelling at more than 50mph.

Handling the breakage concern means, of course, avoiding the machine behaviours that
can cause breakage of the domain. In itself it provides a compelling reason for explicit
domain properties descriptions. The machine behaviour specification alone can not express
the consequences of particular departures from that specification. Domain property
descriptions, therefore, may need language elements to denote a broken state. The behaviour



of a domain that has reached a broken state should be assumed to be entirely unpredictable.
It is the CHAOS process of CSP [12].

The breakage concern does not arise in Information problems, because the Real World
is autonomous, and unaffected by the Response Machine or Display Machine. In
Workpieces problems it arises only if the Workpieces lexical domain has been so designed
that it is vulnerable to certain sequences of operations.

7.3 The Reliability Concern
Causal and biddable domains are, in general, unreliable. There is no cast-iron guarantee that
they will conform to the domain property descriptions on which we must rely to solve the
core of the Information or Behaviour problem in hand. Addressing the reliability concern
means dealing appropriately with the possibilities of failure  that is, providing against
those failures to the extent that is merited by the cost of provision, and by the likelihood and
the consequences of failure.

Almost always, non-trivial provision demands a separate audit subproblem to detect,
and perhaps diagnose, failure. The separation is valuable because it allows analysis and
solution of the core subproblem to proceed on the basis of a clear description of the domain
properties that solution must rely on, without becoming entangled in the complications of
every possible failure. Similarly, the audit subproblem does not become entangled in the
complications of the causal chains associated with correct operation; it needs a very
different description of domain properties.

A simple illustration of the point is the separation of compilation from source program
error diagnosis. Very early compilers largely ignored error diagnosis, because the problem
of compilation was complex enough to tax the designer fully. When error diagnosis is
treated as a separate subproblem it becomes practical to use much additional information
that is irrelevant to compilation  for example, text indentation, personal style in choosing
identifiers, and so on.

7.4 Interference and Synchron isation
Problem structure is most often a parallel composition of subproblems. Hierarchical and
embedded structures are also found, but parallel structure is the commonest. The right
metaphor for problem structure is not the bill-of-materials assembly structure but the
superimposition of CYMK separations in the printing of a four-colour graphic. Within such
a problem structure, the subproblem machines behave as concurrent processes; any problem
domain common to two or more subproblems is potentially a shared variable.

The concerns arising from variables shared by concurrent processes are well known.
There are two distinct concerns: interference and synchronisation. Interference is the classic
concern, to be solved by choosing appropriate critical regions and implementing them by
mutual exclusion. For example, mutual exclusion must be enforced between the updating of
the Packages & Sensors model and use of the model for routing packages and for reporting
misrouted packages. The need for mutual exclusion is easily seen: without it, at least one of
the subproblem analyses is invalidated. More precisely, the described domain properties of
the model domain, on which the package routing machine relies, can not be guaranteed to
hold if the model is being updated while it is being inspected.

Synchronisation is a larger concern, more directly arising from the particular problem
in hand. By separating subproblems as we have done, we obtain a vital simplification of
each subproblem; but we may also leave an indeterminacy in their scheduling that reaches
all the way up to the problem requirement.

Consider, for example, a small traffic light system in which the required regime of
traffic control is represented in a lexical domain that can be manually altered by any
authorised person possessing the key to the control box. Addressing the interference concern
means ensuring that the regime is syntactically correct whenever the control machine is



accessing it. Addressing the synchronisation concern means ensuring that the result of
altering one correct regime to give another satisfies the problem requirements: in particular,
that the crossover from old to new regime does not allow a dangerous traffic control
condition that is not allowed by either regime separately.

To take another example, in the library administration problem it is necessary to check
membership validity when a book is borrowed. Access to the membership model domain
must therefore subject to mutual exclusion. But it is also necessary to answer some
requirements questions: How close to membership expiry can a member take out a fresh
loan? Renew an existing loan? What transactions can take place after membership has
expired?

7.5 Consistency and Contradic tion
The specification, problem domain and requirement descriptions for each subproblem
describe projections of those problem parts. A significant part of the rigorous treatment of a
problem is dealing with the possibility of inconsistency among those projections. Different
subproblems may demand incommensurable descriptions of the same phenomena. For
example, the subproblem of reporting misrouted packages may be expressed in terms of the
phenomena earlier referred to as hit events; but the package routing subproblem may need a
finer-grained view of the phenomena, in which the arrival of the leading edge of a package
at a sensor is distinguished from the departure of the trailing edge.

Requirements in different subproblems may be in direct contradiction in certain
circumstances. For example, subproblem requirements must sometimes be placed in a
precedence order, to express preferences among behaviours. For example, in a safety-critical
system it may be right to distinguish three operational modes: normal, danger, and
emergency. The treatment of each mode can be regarded as a distinct subproblem; the
precedence among them is not embodied in each separate subproblem, but in the statement
of their composition. A similar approach can be used to impose a precedence order on
requirements of different degrees of importance in the presence of specification and
programming errors. For example, in a radiotherapy machine, restriction of the radiation
dose to the maximum safe level is a requirement that must take precedence over all others,
and must be safeguarded against errors of specification or progamming in all other
subproblems.

The need for appropriate treatment of this kind of contradiction is one reason why
problem analysis must form an integral part of the discipline of software development and
hence of computer science: it brings into prominence description structures that might
otherwise receive too little attention.

8. Summary

The approach presented aims, above all, to be an approach to problem analysis and
structuring rather than to solution design. There are many forces drawing the developer’s
attention towards devising solutions; to focus attention on the problem requires conscious
effort and awareness. The developer must always bear certain fundamental principles in
mind:
• Problems are usually located some way into the external world, distant from its interface

with the computer. Problem analysis must therefore focus on that world.
• The world is physical and therefore informal. Finding a sound basis for formal

descriptions of its properties, and then making and using such descriptions, is a central
task that has received less attention that it demands. As Scherlis [13] observed:
“One of the greatest difficulties in software development is formalization 
capturing in symbolic representation a worldly computational problem so that



the statements obtained by following rules of symbolic manipulation are useful
statements once translated back into the language of the world.”

The careful modesty of the need for ‘useful statements’ should be noted. In describing
the world, formalisation and formal reasoning can show only the presence of errors, not
their absence.

• To come to grips with the world it is necessary to pay the most careful attention to its
physical phenomena. In an abstract, formal treatment, it is misleadingly easy to
introduce and use global indices  for example, for the packages in the router 
without considering whether the phenomena on which identification must be based are
equally global.

• The model domain must not be confused with the Real World. This confusion is
endemic in today’s software development methodology and practice. It can be largely
traced to the unthinking use of the word ‘model’ where the more modest word
‘description’ would often be far preferable.

• The ancient principle divide and conquer holds good in problem analysis no less than in
program and algorithm design. The divided tribes must eventually be reunited under the
conqueror’s rule  but not yet. Much of the composition of subproblem machines
belongs to the solution rather than to the problem analysis. And even that part that
indubitably belongs to the problem analysis should be deferred as long as possible.
Premature composition is the largest source of combinatorial complexity.

Acknowledgements

Many of the ideas discussed in this paper have been developed during several years’
cooperation with Daniel Jackson of MIT. Structuring a development in terms of
requirement, domain properties and machine specification descriptions formed the basis of
much work with Pamela Zave of AT&T Research. There are earlier discussions of the
Package Router problem in [8] and in [9]. Further discussion of problem frames may be
found in [2] and [3]. The decomposition ideas have something in common with the goal
decomposition approach of KAOS [10,11].

References

[1] Michael Jackson; Software Requirements & Specifications: A Lexicon of Practice, Principles and
Prejudices; Addison-Wesley, 1995.

[2] Michael Jackson; Problem Analysis Using Small Problem Frames; Proceedings of WOFACS ’98, South
African Computer Journal 22, pages 47-60, March 1999.

[3] Michael Jackson; Problem Frames: Analysing and Structuring Software Development Problems;
Addison-Wesley, 2000.

[4] Carl A Gunter, Elsa L Gunter, Michael Jackson and Pamela Zave; A Reference Model for Requirements
and Specifications; Proceedings of ICRE 2000, Chicago Ill, USA; reprinted in IEEE Software Volume 17
Number 3, pages 37-43, May/June 2000.

[5] G E Krasner and S T Pope; A cookbook for using the Model-View-Controller user interface paradigm in
Smalltalk-80; Journal of Object-Oriented Programming Volume 1 Number 3, pages 26-49,
August/September 1988.

[6] R L Ackoff; Scientific Method: Optimizing Applied Research Decisions; Wiley, 1962.

[7] William Swartout and Robert Balzer; On the Inevitable Intertwining of Specification and
Implementation; Communications of the ACM Volume 25 Number 7, pages 438-440, July 1982.

[8] Robert M Balzer, Neil M Goldman and David S Wile. Operational Specification as the Basis for
Prototyping; ACM Sigsoft SE Notes Volume 7 Number 5, pages 3-16, December 1982.

[9] Daniel Jackson and Michael Jackson; Problem Decomposition for Reuse; Software Engineering Journal
Volume 11 Number 1, pages 19-30, January 1996.



[10] A van Lamsweerde, R Darimont and Ph Massonet; Goal-Directed Elaboration of Requirements for a
Meeting Scheduler: Problems and Lessons Learnt; in Proceedings of RE95, the Second IEEE International
Symposium on Requirements Engineering, pages 194-203, May 1995.

[11] Axel van Lamsweerde and Emmanuel Letier; Integrating Obstacles in Goal-Directed Requirements
Engineering; in Proceedings of the 20th International Conference on Software Engineering, April 1998.

[12] C A R Hoare; Communicating Sequential Processes; Prentice-Hall, 1983.

[13] W L Scherlis; responding to E W Dijkstra “On the Cruelty of Really Teaching Computing Science”;
Communications of the ACM Volume 32 Number 12, page 1407, December 1989.


