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ABSTRACT
We propose a more realistic approach to trip planning
for tourist applications by adding category information to
points of interest (POIs). This makes it easier for tourists
to formulate their preferences by stating constraints on cat-
egories rather than individual POIs. However, solving this
problem is not just a matter of extending existing algo-
rithms. In our approach we exploit the fact that POIs are
usually not evenly distributed but tend to appear in clusters.
We develop a group of efficient algorithms based on cluster-
ing with guaranteed theoretical bounds. We also evaluate
our algorithms experimentally, using real-world data sets,
showing that in practice the results are better than the the-
oretical guarantees and very close to the optimal solution.

Categories and Subject Descriptors
G.2 [Discrete Mathematics]: Graph Theory

General Terms
Algorithms, Experimentation, Performance

Keywords
Generalized Orienteering Problem, Route Planning

1. INTRODUCTION
When it comes to planning their trips, many tourists are

overwhelmed by the choices they have. Large cities offer
hundreds or even thousands of points of interest (POIs),
but time and resources of a visitor are usually limited. Our
goal is to provide a tool that generates itineraries staying
within a time budget and selecting POIs along the route
that are as attractive as possible. We have identified two
important properties that help us in doing so. Usually POIs
are not evenly distributed throughout a city or area, they
tend to appear in clusters. In addition to this, most tourists
are particularly interested in certain types of POIs and not
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in others. For example, a visitor may want to view cultural
venues, such as museums, art galleries, and theaters, while
someone else may mainly be interested in shopping. Cate-
gorizing points of interests makes it much easier for a user
to provide input about the POIs he or she is interested in.
However, even though a tourist may like to go and see mu-
seums, coming up with an itinerary containing five, six, or
even more of them is not a good idea, as this will probably
result in some form of sensory overload. Another example
is someone giving high ratings to POIs that are restaurants
not wanting an itinerary consisting entirely of restaurants.
So a user should be able to restrict the number of POIs for
each selected category.

A recent survey on algorithmic approaches for tourist
itinerary planning has identified crucial topics that have
been mostly neglected so far [4]. Among them is formu-
lating more realistic scenarios for tourist trip planning by
integrating more complex requirements and constraints into
the search. An important open problem explicitly stated
in [4] is a max-n type constraint, i.e., limiting the number of
visits of POIs of certain categories. This is exactly the issue
we are tackling in our work. As we show in Section 2 on
related work, introducing max-n type constraints into exist-
ing trip planning algorithms is far from trivial, meaning we
had to come up with a new approach for generating tourist
itineraries efficiently.

In summary, we make the following contributions:

• We formally define the problem of itinerary planning
with category constraints, which facilitates the formu-
lation of user preferences.

• We show that the problem of finding an optimal route
with max-n type constraints is NP-hard and we de-
velop three variants of an algorithm (called CLIP)
based on clustering.

• Two of the three variants provide guarantees on time
budget approximation and run time, the third only on
run time.

• In an experimental evaluation we demonstrate that
CLIP’s itineraries are very close to the optimal so-
lution (much better than the theoretical guarantees),
while still being efficient.

The remainder of the paper is organized as follows. In
the next section we cover related work and in Section 3 we
formalize the problem. Section 4 contains a detailed descrip-
tion of our algorithm, while in Section 5 theoretical bounds
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are provided. This is followed by an experimental evalua-
tion, comparing our algorithm to a simple greedy heuristic
and the optimal one. Finally, Section 7 concludes the paper.

2. RELATED WORK
Solving a tourist trip planning problem algorithmically

boils down to finding a solution to an instance of the ori-
enteering problem (OP). Introduced by Tsiligrides in [17],
OP is about determining a path from a starting node to
an ending node in an edge-weighted graph with a score for
each node, maximizing the total score while staying within
a certain time budget. Orienteering is an NP-hard prob-
lem and algorithms computing exact solutions using branch
and bound [5, 11] as well as dynamic programming tech-
niques [10, 13] are of limited use, as they can only solve
small problem instances. Consequently, there is a body of
work on approximation algorithms and heuristics, most of
them employing a two-step approach of partial path con-
struction [7, 17] and (partial) path improvement [1, 2, 14].
Meta-heuristics, such as genetic algorithms [16], neural net-
works [19], and ant colony optimization [9] have also been
tested. For a recent overview on orienteering algorithms,
see [4]. However, none of the approaches investigate OP
generalized with categories.

There is also work on planning and optimizing errands,
e.g., someone wants to drop by an ATM, a gas station, and a
pharmacy on the way home. The generalized traveling sales-
man version minimizes the time spent on this trip [12], while
the generalized orienteering version maximizes the number
of visited POIs given a fixed time budget. However, in these
variants the POIs have no scores, so no trade-offs between
scores and distances have to be considered.

A natural starting point for developing a max-n type con-
straint approximation algorithm for orienteering would be
to adapt an existing algorithm for traditional OP. However,
many of the existing algorithms have a high-order polyno-
mial complexity or no implementation exists, due to their
very complicated structure. Two of the most promising ap-
proaches we found were the segment-partition-based tech-
nique by Blum et al. [1] and the method by Chekuri and
Pál, exploiting properties of submodular functions [3]. The
latter approach, a quasi-polynomial algorithm, is still too
slow for practical purposes. Nevertheless, Singh et al. mod-
ified the algorithm by introducing spatial decomposition for
Euclidean spaces in the form of a grid, making it more ef-
ficient [15]. Common to all of the approaches, though, is
breaking down the itinerary recursively into smaller and
smaller segments, which get assembled into a complete tour.
If we just run these algorithms without any alterations on
POIs with categories, it is very likely that the solution vi-
olates the max-n type constraints. A fix would be to try
out all possible distributions of max-n type constraints for
every recursive call. For example, given a max-n type
constraint of 3 for a category and assuming recl com-
putes the left half of a route and recr the right one, we
would have to make the following calls with max-n type
constraints: recl(0), recr(3); recl(1), recr(2); recl(2),
recr(1); recl(3), recr(0). While this would guarantee an
answer respecting the max-n type constraints, it would also
blow up the computational costs.

3. PROBLEM FORMALIZATION

In our problem, we assume a set of n POIs, represented
by P, with members pi, 1 ≤ i ≤ n. The POIs, together
with a starting and a destination node, denoted by s and d,
respectively, are connected by a complete, metric, weighted,
undirected graph G = (P ∪ {s, d}, E), whose nodes are the
set of POIs P as well as nodes s and d, and whose edges,
el ∈ E = {(x, y) | x, y ∈ P ∪ {s, d}} are the connections
between them. Each edge el has a cost c(pi, pj) that sig-
nifies the duration of the trip from pi to pj , while every
node pi ∈ P has a cost vpi that denotes the visiting time of
that POI. Each POI belongs to a certain category, such as
museums, restaurants, or galleries. The set of m categories
is denoted by K and each POI pi belongs to exactly one
category kj , 1 ≤ j ≤ m. Given a pi, cat(pi) denotes the
category pi belongs to and score(pi) its score, with higher
values indicating higher interest to the user. Finally, users
have a certain maximum time in their budget to complete
the itinerary, denoted by tmax.

We now define the notion of an itinerary.

Definition 1. (Itinerary) An itinerary I starts from a
starting point s and finishes at a destination point d (note
that s and d can be identical). It includes an ordered se-
quence of connected POIs I = ⟨s, pi1 , pi2 , . . . , piq , d⟩, each
of which is visited once. We define the cost of itinerary
I to be the total duration of the path from s to d passing
through and visiting the POIs in I, cost(I) = c(s, pi1 ) +
vpi1

+
∑q

j=2
(c(pij−1

, pij ) + vpij
) + c(piq , d), and its score

to be the sum of the scores of the individual POIs visited,
score(I) =

∑q

j=1
score(pij ).

pi
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Figure 1: Itinerary including n = 4 POIs

Example 1. Figure 1 shows nodes s and d, four POIs,
p1, p2, p3, and p4 as well as the duration of traveling between
places, the visiting time of each POI and the scores of the
categories to which each POI belongs. We simplify the graph
slightly to keep it readable: all POIs of a category share the
same score and we omit some edges. One example itinerary
between s and d is the one that includes only p1, i.e., I1 =
⟨s, p1, d⟩, while a second one includes p2 and p3, i.e., I2 =
⟨s, p2, p3, d⟩, a third itinerary can be I3 = ⟨s, p2, p3, p4, d⟩.
Given the values for edge costs, visiting times, and scores of
nodes, we can compute the costs and scores of the itineraries:

• I1 = ⟨s, p1, d⟩:
cost(I1) = 4 + 1 + 6 = 11, score(I1) = 0.9;

• I2 = ⟨s, p2, p3, d⟩:
cost(I2) = 2 + 1 + 2 + 1 + 3 = 9,
score(I2) = 0.5 + 0.9 = 1.4;
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• I3 = ⟨s, p2, p3, p4, d⟩:
cost(I3) = 2 + 1 + 2 + 1 + 2 + 1 + 1 = 10,
score(I3) = 0.5 + 0.9 + 0.5 = 1.9.

Example 1 shows a few of the possible itineraries that can
be constructed between points s and d using four POIs. In
general, given a subset P of P, our goal is to place them in
an itinerary from s to d as defined in Definition 1. Given the
traveling and visiting times as well as the scores, we need
to build an itinerary with duration smaller than tmax and
maximum cumulative score.

As already mentioned, we introduce an additional con-
straint specifying the number of POIs per category that can
be included in the final itinerary. More precisely, we in-
troduce a parameter maxkj for each category kj that is set
by the user to the maximum number of POIs in a category
that he or she prefers to visit during the trip. We are now
ready to define the Orienteering Problem with Maximum
Point Categories, (OPMPC).

Definition 2. (OPMPC) Given a starting point s, a
destination point d, n points of interest pi ∈ P, with
scores described by the function score(pi), visiting times
vpi , 1 ≤ i ≤ n, traveling times c(x, y) for x, y ∈ P ∪ {s, d},
categories kj ∈ K, 1 ≤ j ≤ m, and the following two param-
eters: (a) the maximum total time tmax a user can spend on
the itinerary and, (b), the maximum number of POIs maxkj

that can be used for the category kj (1 ≤ j ≤ m), a solution
to the OPMPC is an itinerary I = ⟨s, pi1 , pi2 , . . . , piq , d⟩,
1 ≤ q ≤ n, such that

• the total score of the points, score(I), is maximized;
• no more than maxkj POIs are used for category kj;
• the time constraint is met, i.e., cost(I) ≤ tmax.

Example 2. In the presence of categories k1 with
maxk1 = 1 and k2 with maxk2 = 1, and assuming that
tmax = 10, we can observe the following about the itineraries
in Example 1: Itinerary I1 is infeasible since its cost is
greater than tmax, while the other two fulfill the time re-
quirement. Comparing I2 and I3, we can see that I3 is of
higher benefit to the user, even though it takes more time
to travel between s and d. However, it cannot be chosen
since it contains two POIs from k2. Itinerary I2 contains
two POIs, each from a different category and it could be one
recommended to the user.

Theorem 3.1. The Orienteering Problem with Maximum
Point Categories (OPMPC) is NP-hard.

Proof. We can reduce the original (NP-hard) orienteer-
ing problem to OPMPC by placing each point of interest into
its own category ki, 1 ≤ i ≤ n, and setting each maxki to 1.
Solving this instance of the OPMPC gives us an answer for
a given orienteering problem, as the categories do not con-
strain the solution in any way. Consequently, OPMPC is a
true generalization of the original orienteering problem.

4. CLIP ALGORITHM
Figure 2 gives a graphical, high-level overview of the com-

ponents of our algorithm, which is called CLIP (CLuster
Itinerary Planning). It is split into four major parts, repre-
sented by the shaded boxes; the white boxes illustrate the
data that flows through the different parts.

In a first step we reduce the set of all POIs, P, to a subset
of points that belong to the categories a user asks for. This
is fed into a clustering algorithm that groups the nodes into
clusters. This set of clusters in turn serves as input for
the cluster route generator, a component that systematically
generates paths from the starting point s to the destination
d visiting clusters on the way. As we will see, by introducing
pruning we do not have to generate all possible cluster paths.
Once we have a cluster path, we can approximate the time
spent on traveling from s to d via the selected clusters, which
means we also have a good idea on how much time we can
spend visiting POIs on this route. For selecting POIs from
the visited clusters in a cluster path we utilize knapsack
algorithms. So far we have only dealt with paths on the
level of clusters. Finally, we turn these into itineraries that
traverse the individual nodes selected in the previous step.

During the early stages of developing an algorithm for
OPMPC, we found it extremely difficult to optimize POI
selection and route generation at the same time. Nodes with
a high score may be far away and low-scoring ones close by,
so we cannot just focus on absolute scores. However, utility
functions considering score and distance can also be mislead-
ing, as a greedy strategy is easily led astray by one good,
isolated POI, while it may be much more worthwhile to go
into the direction of a whole cluster of slightly less valuable
POIs. We solved this issue by separating the creation of
routes from the selection of POIs. In terms of performance,
we managed to reduce the size of the data input consid-
erably by removing irrelevant POIs belonging to unwanted
categories and by dealing with whole clusters instead of in-
dividual POIs. In the following we provide more details on
the different parts of our algorithm.

4.1 Clustering
We apply agglomerative clustering. Initially each POI is

placed in a separate cluster, and we then proceed by con-
tinuously merging (agglomerating) the two nearest clusters
into one until the desired number of clusters k is reached.
We discuss the choice of k in our experiments.

4.1.1 Definition
The distance between two POIs is determined by the un-

derlying road network of the map and can be determined
by running an all-pairs shortest path algorithm, resulting in
a completely connected graph. We denote the distance be-
tween the POIs pi and pj by the cost of the edge connecting
them: c(pi, pj). In order to measure the distance between
two clusters, we use medoid distance: for two clusters c1 and
c2, where c = c1 ∪ c2, their distance is defined as c(⊙1, ⊙2)
where ⊙1 and ⊙2 are the medoids of c1 and c2, respectively.

The intracluster distance icd of a POI p is the sum of
distances to all other POIs in the cluster c: icd(p) =
∑

q∈c
c(p, q). The medoid of a cluster is the POI with the

minimal icd. In case of a tie, we take the POI with the
smaller index. Basically, a medoid acts as a representative
or exemplar of its cluster. In our case it is very important
to have representatives that minimize the distance to all
other POIs in the cluster, as this helps us in approximating
travel time more closely. Popular clustering techniques, such
as group-average agglomerative clustering (GAAC), did not
achieve this: we noticed that the variance of distances be-
tween a medoid and the POIs in its cluster was much greater
than the variance found in our approach.
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Figure 2: Overview of CLIP algorithm (white boxes represent data, shaded boxes algorithms)

4.1.2 Precomputation
Figure 2 indicates that before clustering we first remove

irrelevant POIs, i.e., points belonging to unwanted cate-
gories or not reachable within the time constraint. However,
reclustering the POIs every time we create an itinerary is
fairly expensive (costing O(n3)). Since maps rarely change,
we want to speed up the processing by precomputing the
clustering in form of a dendrogram and materializing it to
disk. In order to make this work, we have to deal with two
issues. We have to be able to create a k-clustering for any
k on the fly and to eliminate the irrelevant POIs (as the
precomputed clustering contains all the POIs).

With the help of a priority queue, which is initialized with
the root node of the precomputed dendrogram, we now cre-
ate a k-clustering. Until we have reached k entries in the
queue we repeat the following steps. Take the first node from
the queue and split it into its two subclusters, re-inserting
the subclusters that contain at least one relevant POI into
the queue. We always split the largest cluster since the nodes
in the queue are sorted by the number of relevant POIs in
their cluster. If a single-POI cluster has made it to the front
of the queue we stop the process and basically run our al-
gorithm on the level of individual POIs, since k was larger
than the number of relevant POIs. In a final step we filter
out all the non-relevant POIs.

4.2 Route Generation
We now take a closer look at the component generating

routes. First, we define the concept of a cluster path before
showing how we can approximate travel costs given a cluster
path. Second, we illustrate how to generate cluster paths in
a systematic way to explore the search space. Finally, we
use pruning to reduce the number of generated paths.

4.2.1 Cluster Paths
A cluster path is very similar to an itinerary (see Defini-

tion 1), we replace the sequence of POIs with a sequence of
clusters.

Definition 3. (Cluster path) A cluster path C = ⟨s, ci1 ,
ci2 , . . . , ciq , d⟩ starts from a starting point s and finishes at
a destination point d and includes an ordered sequence of
clusters.

Figure 3 depicts an itinerary ⟨s, p1, p2, p3, d⟩ and its cluster
path ⟨s, c1, c2, d⟩. Mapping an itinerary into a cluster path
is straightforward, we replace every POI between s and d
with the cluster it belongs to. In contrast to the sequence
of POIs in an itinerary, the clusters in a cluster path do not
need to be unique, i.e., we can visit a cluster more than once.
However, in order to get rid of some of the duplicates in a
second step we reduce all contiguous sequences of identical
clusters to single clusters.

4.2.2 Travel Costs

s

d

c1

c2

p1

p2

p3

Figure 3: Approximation for the travel cost

We use a cluster path to approximate the time it takes to
traverse an itinerary, not including any visiting times.

Definition 4. (Cluster path travel cost) Given a clus-
ter path C = ⟨s, cj1 , cj2 , . . . , cjq , d⟩, its cost is computed
as follows. We sum up the cost of the edges between s,
the medoids of the clusters, and d: cost(C) = c(s, ⊙j1 ) +
∑q−1

i=1
c(⊙ji , ⊙ji+1

) + c(⊙jq , d).

The sum of the lengths of the dashed lines in Figure 3
is the travel cost estimation. We assume it does not cost
us anything to move within a cluster. Consequently, the
smaller the clusters, the better the estimation.

4.2.3 Generating Cluster Paths
Algorithm 1 gives an overview of the main structure of our

algorithm. When reading it for the first time, we suggest
skipping the shaded parts, which do some pruning to make
the algorithm run faster. If we removed all the pruning, the
while loop (line 9) would systematically generate all possible
cluster paths, eventually finding an optimal cluster path.

First, we initialize the queue keeping track of the gen-
erated cluster paths with the smallest possible path going
from the starting node s directly to the destination d. As
some of the paths can go over budget (cluster paths provide
an approximation of the travel cost), we store potential so-
lutions in a priority queue to determine their feasibility later
on. This priority queue is seeded with a solution generated
by a greedy algorithm to make sure that there is always at
least one feasible solution in the queue. Then, while not
empty, we take a path from the cluster path queue (line 10)
and hand it to the KnapsackSolver, which selects a set of
POIs from the cluster path trying to maximize the score of
the path (this function is discussed in more detail in Sec-
tion 4.3). We memorize this POI set as a potential solution
in the priority queue (lines 20–21). Next we expand the cur-
rent path with clusters not yet visited and append it to the
cluster path queue (lines 24–27), i.e., inserting it between
the current last cluster and d.

Once we exit the while loop, we convert potential so-
lutions into true itineraries that traverse individual POIs
rather than clusters. This is done by the function Hamilto-

nianPathGen that takes s, d, and a set of POIs and builds
a Hamiltonian path starting at s and ending at d visiting
all the points in the POI set (we discuss this function in

206



Algorithm 1: CLIP

Input: poi_graph, s, d, categories_limit, budget, ϕ, ClusteringAlgo, KnapsackSolver, HamiltonianPathGen
Output: Approximation of Iopt

1 clusters = ClusteringAlgo(poi_graph, budget, s, d, categories_limit)
2 cpathqueue← FifoQueue()
3 cpathqueue.enqueue(Path(⟨s, d⟩, peak_score← 0))

4 same_prefix← AssociativeArray(key ← Pair(cluster set, cluster), value← cost)

5 lmax ← sum of all category limits
6 potential_solutions← PriorityQueue()
7 greedy_solution← greedy(poi_graph, budget, s, d, categories_limit)
8 potential_solutions.push(score(greedy_solution), greedy_solution)

9 while not cpathqueue.empty() do
10 cpath← cpathqueue.dequeue()

11 if budget < cpath.cost() then

12 continue

13 if cpath.no_of_clusters() > lmax then

14 continue

15 sp_cost← same_prefix.get(Pair(Set(cpath.clusters()), cpath.last_cluster()))

16 if sp_cost ̸= None and sp_cost ≤ cpath.cost() then

17 continue

18 else

19 same_prefix.put(Pair(Set(cpath.clusters()), cpath.last_cluster()), cpath.cost())

20 cpath.pois_set← KnapsackSolver(poi_graph, cpath, budget− cost(cpath), categories_limit)
21 potential_solutions.push(score(cpath.pois_set), cpath.pois_set)

22 if score(cpath.pois_set) < (1− ϕ) · cpath.peak_score then

23 continue

24 foreach c in clusters \ cpath.clusters() do
25 new_cpath← append_cluster(cpath, c)

26 new_cpath.peak_score← max(score(cpath.pois_set), cpath.peak_score)
27 cpathqueue.enqueue(new_cpath)

28 loop
29 solution← potential_solutions.pop()
30 itinerary ← HamiltonianPathGen(poi_graph, s, d, solution)
31 if cost(itinerary) ≤ budget then
32 return itinerary
33 else
34 itinerary ← shortcut(itinerary)
35 potential_solutions.push(score(itinerary), itinerary)

Section 4.4). If the produced itinerary stays within bud-
get, we return it as our solution. As potential_solutions is
sorted by score in descending order, the returned itinerary
is the best feasible solution found by our algorithm. If the
itinerary goes over budget, we remove a POI from it and
return it to the queue (more details on shortening paths in
Section 4.4 as well).

If the potential solution priority queue becomes too large
and we need to free memory, we execute the Hamiltonian
path generation earlier, dropping all the infeasible itineraries
and keeping the highest-scoring feasible one.

Example 3. Assume that potential_solutions contains
the following entries: [(80, o3), (70, o2), (65, I1)], where the
bold pair is an itinerary and its score, while the other pairs
consist of a score and a set oi of POIs. Currently we only
know that (65, I1) is feasible, e.g. it is the solution generated
during initialization (see line 8 in the algorithm) and we are
not sure about the other pairs.

If the knapsack solver finds a set of POIs with score lower
than 65, this solution can be discarded immediately. Now
imagine that the algorithm adds (88, o4) to the queue, but we
are running out of space and have to free memory. We apply

HamiltonianPathGen to the elements in the queue, starting
with (88, o4). If (88, I4) goes over budget, we shorten and
re-insert it (assume that the shorter itinerary has a score
below 65 and is discarded). Next up is (80, o3), which we
determine to be feasible with itinerary I3. Then we discard
the rest of the queue and continue with [(80, I3)].

4.2.4 Pruning
Compared to an algorithm generating paths containing

individual POIs, switching to cluster paths brings down the
run time considerably. However, enumerating all possible
cluster paths is still too slow, so we prune aggressively. A
rather straightforward elimination of paths is done in lines
11–12: if the travel time between clusters in a path exceeds
the total budget, we discard it.

In lines 13–14, we eliminate a path when it includes more
than lmax clusters, which is the sum of all category con-
straints, i.e., lmax =

∑m

i=1
maxki . Adding the lmax + 1st

cluster will result in one cluster not contributing any POIs
to the solution. In this case, we would have been better
off skipping this cluster altogether, reducing the travel time
and gaining more time for visiting (better) POIs.
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A third kind of pruning starts in line 15: two paths visit-
ing the exact same clusters provide the knapsack algorithm
with the same set of POIs to choose from. We cannot just
keep the one with the smaller travel cost, though, as it may
leave us stranded in an inconvenient place for further ex-
pansions, leading to higher follow-up costs. Nevertheless, if
both paths visit the exact same POI cluster before reach-
ing the destination, then we can discard the one with the
higher cost. We say that the path with the shorter travel
time dominates the other path. By replacing the dominated
path with the dominating one in further expansions, we can
only make this solution better.

We now explain the final pruning step shown in line 22–23
of the algorithm. In general expanding paths with clusters
will increase the part of the budget used for traveling and
decrease the part used for visiting POIs. At some point
this will lead to a situation in which an expanded path has
a lower score than the original path. This is due to the
reduced visiting budget forcing us to remove POIs and the
newly added cluster not being able to make up for this loss.
One could argue to prune paths as soon as they start losing
score, but we have to be careful when doing so. On the
way to the final destination we may still be able to expand
such a path with some clusters containing very high-scoring
POIs that are able to make up for the loss and produce a
better solution. Skipping one of the clusters included in the
current path before reaching the high-scoring ones may also
not be an option, if all of them contribute to the score. The
following example illustrates this.

Example 4. Figure 4 illustrates why a naïve pruning
strategy may fail to work. As usual s and d are the start
and destination, respectively. Clusters c1 and c2 are com-
posed of the same (average) kind of POIs, while cluster c3

includes a high-scoring POI, in particular:
cluster POI name visiting time score

c1 p11 1 1
c1 p12 5 3
c2 p21 1 1
c2 p22 5 3
c3 p31 2 6

Assuming tmax = 9, CLIP first inserts cluster c1 into the
empty path, resulting in ⟨s, c1, d⟩ with a score of 3 using all
of the available budget: the travel time is 4 which leaves
5 for visiting POIs, in our case p12 with a score of 3 (we
could have visited p11 instead, but the score would have been
lower). When this path is expanded to ⟨s, c1, c2, d⟩, this re-
sults in a score of 2 visiting p11 and p21, using up 7/9 of the
budget.1 So the score drops, but pruning at this point means
we lose a solution with a score of 8: ⟨s, c1, c2, c3, d⟩.

Nevertheless, we can prune some of the paths with de-
creasing scores, guaranteeing, in the worst case, a loss of
only a fraction of the best score achievable by that path.
Formally speaking, we want to make sure that a solution
computed by our algorithm provides at least a factor of ϕ,
0 < ϕ ≤ 1, of the best score of the cluster path. In order to
achieve this, we drop a path only if it has lost score and the
current score is below a factor of (1 − ϕ) of the best score
found so far, which we call the peak score of this cluster path
(see line 26). That means, even if the path were able to catch
up, at least ϕ · peak_score has to come from future high-
scoring clusters, while at most (1 − ϕ)· peak_score comes
1The same holds for ⟨s, c2, d⟩ and ⟨s, c2, c1, d⟩.
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Figure 4: Naïve pruning missing a better solution

from the clusters in the path we are dropping. Moreover,
the fraction of (1 − ϕ) · peak_score cannot go up in future
expansions, because the expansions are further reducing the
visiting budget. If it turns out that the pruned path would
have produced an optimal solution, the systematic genera-
tion of cluster paths keeps a path containing the high-scoring
clusters, guaranteeing at least ϕ of that score.

4.3 POI Selection
Given a cluster path created by the path generator we

have to select a subset of POIs from the clusters con-
tained in that path so as to maximize the score of the path
(see line 20). In essence we have to solve a multidimen-
sional knapsack problem in which each of the m category
constraints and the visiting time constraint make up the
d = m + 1 different dimensions.

Example 5. A user has selected three categories with a
maximum constraint of two each and after subtracting the
travel costs from the total budget, there are 240 minutes left
to visit POIs. So the capacity of the four-dimensional knap-
sack is (2, 2, 2, 240). Let us assume that the Eiffel Tower is
one of the potential POIs: if it belonged to the second cat-
egory and required two hours to visit, it would be described
by the cost vector (0, 1, 0, 120).

The multidimensional knapsack component of our prob-
lem can be defined as an integer linear programming (ILP)
problem as follow:

maximize

n
∑

i=1

sipi (1)

subject to

n
∑

i=1

vipi ≤ b and

n
∑

i=1

ijpi ≤ cj , 1 ≤ j ≤ m

where pi is 0 or 1 and it determines whether POI pi is part
of the solution, si stands for its score, vi for its visiting time.
b is the time budget and cj is the category kj limit maxkj .
Finally ij = 1 if POI pi belongs to category kj and ij = 0
otherwise.

Depending on the size of the problem instance and the
time available for computing a solution, we use the algo-
rithms described in Sections 4.3.1, 4.3.2, and 4.3.3 to solve
this multidimensional knapsack problem. This gives rise to
the three different variants of CLIP.

4.3.1 Exact Solution
In our implementation we employ the GNU Linear Pro-

gramming Kit (GLPK) [6], which uses a branch-and-bound
technique to solve integer linear programming problems.
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In the general case, solving a multidimensional knapsack
problem is NP-hard, as is solving an ILP. Furthermore, ILP
problems encoding multidimensional knapsack problems are
especially hard to solve: according to [8] even finding feasible
solutions, let alone optimal solutions, is hard. However, this
refers to knapsack problems with high-dimensional objects.
In our case, every object has only two dimensions, a cate-
gory and a visiting time. Nevertheless, this version of the
algorithm should only be used for small problem instances.

4.3.2 Relaxed Linear Programming
In this version, we apply a fast approximation technique

by relaxing the ILP problem to a linear programming (LP)
problem, allowing any value between 0 and 1 for the pi. We
use the approach described by Kellerer et al. in [8] to relax
the problem and compute a solution for the resulting LP
utilizing GLPK again.

In the following, we give a brief description of the proper-
ties of this approximation. Let d be the number of dimen-
sions, n be the number of items, then solving the relaxed
ILP problem can lead to at most min(d, n) fractional val-
ues in the solution vector p. We either pick all the items
with pi = 1 or we pick the best one with a fractional value,
whichever provides a better score. This guarantees at least
1/(d + 1) of the optimal score, or in our case 1/(m + 2) where
m is the number of categories

4.3.3 Greedy Solution
In this approach we sort the POIs in descending order

according to their utility and then keep picking the best
available POI that still fits into the knapsack. In our ex-
periments we tried different utility functions, including sim-
ply taking the score of a POI or its score/visiting time ra-
tio. However, the following utility described in [8] turned
out to be most effective. Given a POI p whose category
max visits is denoted by k = maxcat(p), its utility is defined

as score(p)/
(

1/k + vp/t

)

where t is the knapsack time con-
straint. Clearly, we also have to consider that we are dealing
with a multidimensional knapsack, so every time we want to
pick a POI p, we have to make sure that we do not violate
the category constraint, i.e., we have not reached maxcat(p)

POIs in this category yet. The greedy knapsack algorithm
does not guarantee any theoretical bounds in terms of the
quality of the solution, but it is the fastest to compute.

4.4 Hamiltonian Path Generation
Converting the set of selected POIs to an itinerary means

finding the shortest Hamiltonian path with the two specified
end points s and d, see line 30 in the pseudocode. This is
equivalent to finding the shortest tour connecting all POIs
and passing through the edge between s and d since remov-
ing the edge from s to d yields the Hamiltonian path.

Since computing the shortest tour is a hard problem, we
use an approximation algorithm based on constructing a
minimum spanning tree (MST) [18] (for computing the MST
we use Kruskal’s algorithm). However, before doing so, we
need to make sure that the edge between s and d is included
in the MST. We achieve this by setting its cost to −1, mak-
ing it the shortest edge in the graph connecting the selected
POIs. (In the case of s = d, we skip this step and directly
compute the tour, which will be our itinerary.) We turn the
MST into a tour by interpreting the MST as a tree rooted
in d, having s as its left-most child, and traversing this tree

in pre-order. Going back to d after the traversal forms a
tour ⟨d, s, pi1 , pi2 , . . . , pin , d⟩. All we need to do now to get
a Hamiltonian path is to drop the first edge from d to s. In
a metric graph this algorithm guarantees an itinerary that
is at most a factor of 2 longer than the shortest path [18].

If we find that an itinerary goes over budget we have two
options. If a user allows us to spend slightly more time, we
can guarantee a lower bound on the score (more on this in
Section 5). If we have to adhere strictly to the time budget,
we can salvage the solution by removing the worst-scoring
POI from the itinerary. Due to the triangle inequality, this
cannot result in a longer path. We place the shortened path
back into the queue of potential solutions.

5. THEORETICAL BOUNDS
An important property of our algorithm is that we can

prove theoretical bounds for the time budget approximation
as well as the number of generated cluster paths. But we
first need to define the radius of a cluster.

Definition 5. (Cluster radius) The radius r(c) of a clus-
ter c is the longest edge between a POI p ∈ c and the medoid
⊙c of c: r(c) = maxp∈c c(p, ⊙c). We denote the largest ra-
dius over all clusters as rmax.

5.1 Bounding the Time Budget
For a moment let us assume that we know the optimal

itinerary P∗ for a given instance of OPMPC and compare
it to the corresponding cluster path solution generated by
our algorithm. If the travel cost is correct, depending on
the knapsack solver we use, we can guarantee at least ϕ or
ϕ · 1/(m + 2) of the optimal score using an ILP or relaxed LP
solver, respectively. But since we use an approximation for
the travel time costs in a cluster path, the visiting time in
the cluster path might be different to the one in the optimal
itinerary. We might need extra time so that the knapsack
solver is able to select the optimal set of POIs. The addi-
tionally required time is bounded, though.

Theorem 5.1. Let P∗ be the optimal path, then there ex-
ists a cluster path P∗

c = (s, c1 . . . , cT −1, d) that contains the
same POIs. The budget needed by P∗

c , denoted by B̂, is
bounded by B̂ ≤ lmax · 2rmax + B, where B is the budget used
by P∗ and B ≤ tmax.

Proof. Every POI belongs to exactly one cluster, so
given P∗ we can map it into its corresponding cluster path
P∗

c . In the following let a and b be two POIs. In P∗ the cost
for moving between a and b is c(a, b). In CLIP we estimate
the cost for moving from a to b within the same cluster by 0,
which means CLIP can never overestimate the travel time
for this case.

Now let a and b be POIs from two different clusters
A and B, respectively. In CLIP we move from A to
B via the medoids ⊙A and ⊙B , costing us c(⊙A, ⊙B).
Clearly, c(a, ⊙A)+c(b, ⊙B) ≤ 2rmax and therefore c(a, ⊙A)+
c(b, ⊙B)+c(⊙A, ⊙B)−c(⊙A, ⊙B) ≤ 2rmax. Due to the trian-
gle inequality, this gives us c(a, b) − c(⊙A, ⊙B) ≤ 2rmax. So
the difference between the true costs and the approximating
cluster path costs is at most 2rmax.

In the worst case, we change clusters with every POI,
i.e., lmax + 1 times. Considering that we have the exact
costs for leaving s and reaching d an upper bound for the
additional time needed by CLIP is lmax · 2rmax. Therefore,
B̂ ≤ lmax · 2rmax + B.
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In the final step of our algorithm we have to turn a set of
POIs into an itinerary connecting individual POIs.

Lemma 5.2. Converting the set of POIs produced by
KnapsackSolver to an itinerary connecting individual POIs
can add at most lmax · 2rmax to the cost.

Proof. We estimate the travel cost for the set of POIs
with its original cluster path. First we create a spanning
tree out of the cluster path in two steps. In the first step
we connect the starting node to the destination node via the
medoids of the clusters. This cost is already fully considered
in our estimation. In the second step we connect all POIs
directly with their corresponding medoid. An upper bound
for the error in estimation is rmax per POI. In the worst case
we have lmax POIs to connect to their medoids. Then we
create a path from this spanning tree by doubling the edges
between medoids and POIs and traversing the graph via an
Euler tour. This adds at most lmax · 2rmax to the cost.

In the algorithm we use for constructing a Hamiltonian
path (Section 4.4), we create the minimum spanning tree
and avoid visiting edges twice by shortcutting directly to
the next POI. Consequently, in practice the additional time
that CLIP would need is much lower than lmax · 2rmax.

5.2 Bounds on Run Time
The key factor in determining the run time of our algo-

rithm is the number of generated cluster paths. A naïve
brute-force approach on the level of individual POIs would
generate

∑n−1

i=0

∏i

j=0
(n − j) different paths (where n is the

total number of POIs), which is clearly infeasible. A first
step is discarding all POIs belonging to unwanted cate-
gories and creating a set of clusters C of the POIs that are

left. This would still generate
∑|C|−1

i=0

∏i

j=0
(|C| − j) cluster

paths. However, by introducing additional pruning we are
able to push this number down further.

We have the constraint lmax on the maximum number
of POIs per category, this means we have an upper bound
of

∑lmax−1

i=0

∏i

j=0
(|C| − j). Due to the removal of domi-

nated paths, for all paths containing q clusters (q ≥ 3), we
only keep 1

(q−1)! of these paths. So in total we are left with

|C|
∑lmax−1

i=0

∏i

j=1
|C|−j

j
paths. Note that this is an upper

bound, as we are not considering here the two other pruning
strategies we employ (going over the budget tmax and elim-
inating paths whose score falls below a certain threshold),
as it is difficult to exactly quantify their impact.

6. EXPERIMENTAL EVALUATION
We evaluated CLIP experimentally, comparing different

variants of it with two baseline algorithms. The two aspects
we are mainly interested in are the run time performance
and the score of the generated itineraries.

6.1 Compared Algorithms
In addition to the CLIP algorithm, we implemented a sim-

ple greedy heuristic and an algorithm that computes the
optimal solution. The optimal algorithm generates all pos-
sible itineraries on a POI level up to the time budget tmax.
Although we introduce some pruning, such as the lmax and
domination pruning also used for CLIP, the run time per-
formance of this algorithm is not competitive. We only use
it as a baseline for small problem instances.

In the following we describe the simple greedy heuris-
tic. Given a partial itinerary I = ⟨s, p1, . . . , pi, d⟩, the
simple greedy heuristic expands I by selecting as pi+1 the
POI that currently improves I the most. The contribu-
tion of a potential POI pi+1 is determined by its util-
ity, which is computed by dividing its score by its cost:
score(pi+1)/(vpi+1

+ c(pi, pi+1) + c(pi+1, d)). A POI pi+1

that violates a category constraint or is too far away to be
reached can be discarded immediately. After adding the
POI with the best utility to I, we continue the algorithm
with the remaining set of POIs (recomputing the utilities
each time) until we can add no further points due to the
constraints. This algorithm is also used to initialize CLIP,
see line 8 of the pseudocode.

6.2 Data Sets
For the real-world data we obtained a data set for the

city of San Francisco (with a total of 4215 POIs spanning 30
categories) and one from the municipality of Bolzano (1830
POIs in nine different categories).

For some tests, such as the comparison with the optimal
algorithm, the real data sets were too large, so we generated
some artificial networks as well. Nevertheless, we made sure
that these networks imitated the structure of the real-world
data sets closely. In particular, there are three important
properties we identified. First of all, we use a grid-like struc-
ture to model the street network of a city. Second, cities tend
to have areas in which POIs of certain types cluster, e.g., ar-
eas with restaurants, theaters, or shops. For each category
a random point is selected, this point becomes the center of
the cluster. Other POIs belonging to the same category are
placed at a random angle and random distance from this
center. Third, the distances between points of interests on
a map follow a power law distribution, so we used a Pareto
distribution for computing the random distances (the angles
are uniformly distributed).

6.3 Hardware and Software
The experiments were conducted on a server machine with

2 Intel Xeon X5550 CPUs (2.67GHz), each of them having 4
cores and hyper-threading enabled, thus resulting in overall
16 virtual cores. The server has 48GB of main memory and
the Java virtual machine was setup to halt the execution if
it needed more than 45GB, but this never happened.

The server is running Ubuntu 12.04 server edition and
the algorithms were implemented in Java, compiled with
javac version 1.7.0_45. CLIP uses the GNU Linear Pro-
gramming Kit (GLPK), version 4.45, to solve the multidi-
mensional Knapsack problem. The optimal algorithm was
implemented in C++ and compiled with gcc version 4.8.1.

6.4 Experimental Results
In order to get informative and representative results each

individual experiment was repeated thirty times, ten times
with different starting and destination points for three differ-
ent sets of category constraints. The first set was composed
of three categories, the second of five, and the third of eight.
The maximum number of visits was two per category. If
we did not get a result within 20 minutes, we stopped the
process (that is the reason for some measurements stopping
in the middle of a graph).

Run times.
Figures 5(a) and (b) show the run times of the different
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Figure 6: Results for score

algorithms plotted against the budget tmax. For large bud-
gets the pure greedy strategy is the fastest algorithm. Since
all variants of CLIP use the same cluster path generator,
the difference in run time is caused by the knapsack solver.
Clearly, the ILP solver is slowest, as in general solving an
integer linear programming problem is an NP-hard problem.
Using a relaxed LP solver brings down the run time consid-
erably, but not to the level of the greedy knapsack solver.
We were not overly surprised by these result, however, an
interesting question is: what do we get in return for the ad-
ditional run time of the ILP and relaxed LP solver? But
before answering this question, we present one intriguing
observation in connection with the run time. Figure 5(c)
shows the run times of greedy CLIP for different sets of cat-
egory constraints, using 3, 4, 5, 6, 7, and 8 categories with
maximally two visits each. We expected the run time to
go up with an increasing number of categories (and there-
fore increasing number of potential POIs to visit). Instead
the run time goes up with 3, 4, and 5 different categories
and then decreases again with 6, 7, and 8 categories. We
have no explanation for this effect yet, but we suspect it has
to do with properties of the underlying network, as we did
not observe it for the map of Bolzano. Currently, we are
investigating this further.

Score.
From the results in Figures 6(a) and (b) we can see that

all CLIP variants outperform the pure greedy strategy in
terms of the achieved score (POIs have scores between 0
and 99). There is almost no difference between ILP and
relaxed LP, and the greedy knapsack solver is only slightly
worse. In summary, the cost/benefit ration of running ILP
(or even relaxed LP) is in most cases not good enough to
justify running them. Figure 6(c) shows a comparison to
the score of the optimal solution. As the San Francisco and
Bolzano networks were too large to compute the optimum,

we used a smaller artifical network. We show that the so-
lutions computed by CLIP are usually closer to the optimal
score than the one generated by the pure greedy algorithm.

ϕ-pruning.
We ran CLIP with different values for ϕ: 0.1, 0.5, and 0.9.

For the San Francisco and Bolzano data sets CLIP always
generated the same scores, regardless of the value of ϕ (only
for one artificial network we observed a difference of a single
point in the scores). Thus, we run CLIP with ϕ = 0.1,
resulting in the most aggressive pruning of the three values.

Clustering.
One question that is still open is the number of clusters

we should use. Figure 7(a) shows how the run time of CLIP
with a greedy knapsack solver goes up with the number of
clusters (curve starting at bottom left). What we can also
see is that the score only improves marginally when increas-
ing the number of clusters, i.e., we already get good solu-
tions with a fairly small number of clusters. In the case of
the San Francisco data set (which is shown in Figure 7(a)),
20 to 30 clusters are already enough to find an itinerary with
a good score (curve starting at top left). The important pa-
rameter to optimize, however, is not the number of clusters,
but the radius. As shown in Section 5, the radius has a
big impact when it comes to the accuracy of our approach.
Figure 7(b) illustrates the diminishing returns we get for in-
creasing the number of clusters: at the beginning the radius
drops rapidly, but then the curve starts to level off.

“Magic Clusters”.
One pathological case for heuristics solving the orienteer-

ing problem are high-scoring POIs tucked away in a hard-
to-reach corner of the network. We call these groups of
POIs “magic clusters”, as they can turn a mediocre partial
itinerary into a top-scoring one. Heuristics have to find these
clusters and also have to make the correct decision whether
it is worthwhile to visit them. Figure 7(c) shows the results
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Figure 7: Other results

of an experiment using “magic clusters” in an artificial net-
work. As can be clearly seen, the simple greedy heuristic
struggles to find a good solution, while CLIP is able to cope
with this situation.

7. CONCLUSION AND FUTURE WORK
We define a more realistic context for tourist trip plan-

ning by adding categories to points of interests, making it
easier for a user to provide feedback on preferred types and
numbers of POIs to be included in an itinerary. We develop
an algorithm, CLIP, for efficiently solving orienteering prob-
lems with maximal cardinality constraints and show that it
is able to generate itineraries very close to the optimal.

For future work we plan to parallelize CLIP, making it
faster and scalable. More importantly, we have identified a
set of other features that will help us in creating an even
more realistic user experience when it comes to trip plan-
ning. Possible extensions to CLIP that we are looking into
are hierarchies of categories, POIs belonging to multiple cat-
egories, time windows, financial budget constraints, and ar-
rangements for group travel. Another important case we
plan to investigate are directed graphs, which may make it
more difficult to prove theoretical bounds.
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