

PRACTICE GUIDE FOR

AGILE SOFTWARE DEVELOPMENT

APPENDIX A

TEMPLATES, CHECKLISTS AND

SAMPLE DOCUMENTS

[G62a]

Version: 1.1

December 2016

© The Government of the Hong Kong Special Administrative Region

The contents of this document remain the property of the Office of the Government

Chief Information Officer, and may not be reproduced in whole or in part without the

expressed permission of the Office of the Government Chief Information Officer

Practice Guide for Agile Software Development Amendment History

Appendix A

Amendment History

Change

Number

Revision

Description

Pages Affected

Rev.

Number

Date

1 As detailed in 1.01 to 1.04 1.1 December

2016

1.01 Add “List of Figures and

Tables”

After “Table of

Contents” (New)

1.02 Update the URL of footnote #1 1(b)

1.03 Update the sub-sections

numbering in the sample

spreadsheet

7(d), 7.1, 7.2,

7.3, 7.4, 7.5, 7.6

1.04 Add a new figure - “Project

Information” in the section of

“A Sample of Spreadsheet for

Agile Project Management”

7.1 - Figure 1

added

Practice Guide for Agile Software Development

Appendix A Table of Contents

Table of Contents

1 MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT 1

2 TYPES OF AGILE ... 3

3 SUITABILITY CHECKLIST ... 6

4 A SAMPLE PROJECT SCHEDULE ... 9

5 SAMPLE PROFESSIONAL REQUIREMENTS FOR THE AGILE COACH

 12

6 USER STORIES ... 13

7 A SAMPLE SPREADSHEET FOR AGILE PROJECT MANAGEMENT. 20

 S1 - Project Information .. 21
7.1.1 Project Schedule ... 22

7.1.2 Timebox Planning Table ... 23

7.1.3 Burn Down Chart .. 25

 S2 - Prioritised Requirements List (PRL) ... 26

 S3 - Prioritised Requirements List (with planned tasks) 27

 S4 - Detailed Tasks List ... 29

 S5 - Story Board .. 31

 S6 - Task Board ... 32

Practice Guide for Agile Software Development

Appendix A List of Figures & Tables

 List of Figures & Tables

Figure 1 - Project Information ... 21

Figure 2 - Project Schedule ... 22

Figure 3 - Timebox Planning Table ... 23

Figure 4 - A Burn Down Chart .. 25

Figure 5 - Prioritised Requirements List ... 26

Figure 6 - Prioritised Requirements List (with planned tasks) .. 27

Figure 7 - Detailed Tasks List ... 29

Figure 8 - A Story Board ... 31

Figure 9 - A Task Board .. 32

Table 1 - Feasibility Criteria .. 6

Table 2 - Benefit Criteria ... 7

Table 3 - A Sample Project Schedule of Agile Software Development Project 9

Table 4 - Examples of User Stories .. 13

Table 5 - Good Examples vs. Bad Examples ... 14

Table 6 - Characteristics of a Good User Story ... 14

Table 7 - Format of A User Story .. 15

Table 8 - Project Schedule Description .. 22

Table 9 - Timebox Schedule Information .. 24

Table 10 - Prioritised Requirements List Description .. 26

Table 11 - Planned Tasks Description ... 28

Table 12 - Detailed Tasks List Description .. 30

Table 13 - A Story Board Description ... 31

Table 14 - A Task Board Description .. 32

Practice Guide for Agile Software Development

Appendix A 1- Manifesto for Agile Software Development

1

1 MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT

(a) In 2001, some Agile practitioners introduced four main values for developing software using

Agile under the "Manifesto for Agile Software Development". The values are listed as

follows:

 Individuals and Interactions over Processes and Tools

Self-organisation of a project team, and motivation and collaboration of team members

are more important than just following the processes and tools.

 Working Software over Comprehensive Documentation

Working software will be more useful in reflecting the progress of work than just

presenting documents to clients.

 Customer Collaboration over Contract Negotiation

Customer and stakeholders are encouraged to continuously collaborate with project

team members throughout the project rather than negotiate according to the terms and

conditions in the contract.

 Responding to Change over Following a Plan

Agile focuses on quick and immediate responses to changes rather than strictly

following a plan.

(b) To supplement the Manifesto, there were twelve Agile Principles developed in 2001 to

elaborate the Agile approach. The following are the twelve Agile Principles1:

 Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

 Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

 Deliver working software frequently, from a couple of weeks to a couple of months, with

a preference to the shorter timescale.

 Business people and programmers must work together daily throughout the project.

 Build projects around motivated individuals. Give them the environment and support

they need, and trust them to get the job done.

 The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

 Working software is the primary measure of progress.

1 Source: http://agilemanifesto.org/iso/en/principles.html

http://itginfo.ccgo.hksarg/content/agile/agile.htm#manifesto

Practice Guide for Agile Software Development

Appendix A 1- Manifesto for Agile Software Development

2

 Agile processes promote sustainable development. The sponsors, programmers, and

users should be able to maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances agility.

 Simplicity--the art of maximising the amount of work not done--is essential2.

 The best architectures, requirements, and designs emerge from self-organising teams.

 At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behaviour accordingly.

2 It recommends doing just enough work in order to reduce the wasted effort.

Practice Guide for Agile Software Development

Appendix A 2 - Types of Agile

3

2 TYPES OF AGILE

(a) The Agile practices currently available in the market may be classified into two major

approaches:

i) Disciplined Agile Approach

The Disciplined Agile Approach is a structural approach which covers the entire System

Development Life Cycle (SDLC) from project initiation till system live-run. It usually

incorporates a comprehensive set of structured processes and Agile practices that work

for the entire system development life cycle. Two examples of Agile methods are the

“Dynamic Systems Development Method (DSDM)” and the “Open Unified Process

(OpenUP)”.

ii) Core Agile Approach

The Core Agile Approach such as “Scrum” and “Extreme Programming (XP)” is a less

structural approach covering only a portion of the SDLC. It emphasises the technical

aspects of system delivery mechanism and only addresses the System Implementation

Phase of the SDLC.

(c) Each Agile method has its own characteristics and merits to suit the needs of different

organisations.

(d) To adopt Agile for implementation of IT systems in the Government, a mixed approach is

used to select and consolidate the best practices from different Agile methods that are

applicable to the Government.

(e) More information about the above examples of Agile methods is provided below.

DSDM

Dynamic Systems Development Method (DSDM) is an Agile project delivery framework

that adopts an iterative and incremental approach for system development. The most recent

version, DSDM Atern, was launched in 2007. DSDM was originally aimed to provide

discipline to the Rapid Application Development (RAD), but it gradually became a more

generic approach covering project management and solution delivery. DSDM considers

that time and cost for a project are fixed while only requirements are allowed to be changed.

The following are some core techniques used in DSDM:

 Timeboxing - A timebox is an interval usually no longer than 6 weeks. Each timebox

contains several tasks which are pre-determined at the project planning stage, and are

required to deliver a working software at the end;

 MoSCow Rules - The MoSCoW prioritisation method produces a "Prioritised

Requirements List" (PRL) in which the requirements are arranged in the order of "Must

have", "Should have", "Could have" and "Won't have" to adjust the system functions to

be delivered to meet the project time and other constraints;

http://itginfo.ccgo.hksarg/content/agile/types.htm#dsdm
http://itginfo.ccgo.hksarg/content/agile/types.htm#openup
http://itginfo.ccgo.hksarg/content/agile/types.htm#scrum
http://itginfo.ccgo.hksarg/content/agile/types.htm#xp

Practice Guide for Agile Software Development

Appendix A 2 - Types of Agile

4

 Prototyping - Prototypes are used to implement critical functionality to discover any

difficulties in early stage of development, and to collect user feedback in a more

interactive way; and

 Facilitated Workshop - The idea of workshop is implemented to facilitate

communication and establish collaboration between users and project team.

OpenUP

The Unified Process (UP) is a common iterative and incremental system development

process framework which consists of four main phases. They are inception, elaboration,

construction and transition phases. These phases can be further divided into a series of

timeboxed iterations.

The Open Unified Process (OpenUP) is an open source process framework developed to

make it easier to adopt the core of the Unified Process. OpenUP preserves the

characteristics of UP including incremental development, use of cases and scenarios as well

as architecture-centric development approach.

Four core principles of OpenUP are stated below:

 Collaborate to align interests and share understanding - Foster a healthy team

environment, enabling collaboration between users and project team and development

of a shared understanding of the project;

 Evolve to continuously obtain feedback and improve - Allow project team to get early

and continuous feedback from users, and demonstrate incremental value to them;

 Balance competing priorities to maximise stakeholder value - Allow project team and

users to develop a solution that maximises stakeholder benefits, yet is still compliant

with project constraints; and

 Focus on articulating the architecture - Allow project team to focus on architecture to

support the development and to minimise project risks.

Scrum

Scrum is a popular Agile method using iterative and incremental approach for system

development. It has a set of roles and practices. One major role is the “Scrum Master”,

who acts as a coach or facilitator to guide the project team and users to ensure that the Scrum

process is used properly and keep the team focus on the tasks at hand. For example, the

Scrum Master will help the project team maximise the productivity to deliver the functions

quickly, and help the “Product Owner” who is the project owner or the representative of

stakeholders maintain the prioritised list of user requirements which is usually named as

"Product Backlog".

Practice Guide for Agile Software Development

Appendix A 2 - Types of Agile

5

A "sprint" is the basic unit of development in Scrum, and is often referred to as a timebox

covering a constant length of period of time say for example, 2 to 4 weeks. The duration

of the sprint is often determined by the Scrum Master. Each sprint starts with a scrum

planning meeting to let users and project team identify the details of tasks to be done during

the sprint and define the criteria for accepting the work done. At the end of the sprint, a

review meeting will be held to review the progress and to approve or reject the work done

according to the pre-defined criteria.

XP

Extreme Programming (XP) is a system development method which aims at rapid

development of high quality and productivity system at lower cost and faster responsiveness

of the programmers to changing customer requirements. XP teams often build a system in

2-week iterations, delivering working component at the end of each iteration based on user

stories that are written by users stating the requirements in a layman way.

XP is based on values of communication, simplicity, feedback, and respect and courage,

which are briefly described below:

 Communication - encourages constant and close communication between users and

programmers;

 Simplicity - encourages development to start from a simple, planned solution and then

add extra functionality;

 Feedback - provides immediate feedback from the unit testing performed by system if

an automated testing tool is used, and the functional testing performed by user;

 Respect - builds up team members' respect for their unique contributions by every small

success; and

 Courage - refactors code when necessary, easily evolves the code and makes small

changes on the code to support new requirements, and thus improve the overall quality.

Practice Guide for Agile Software Development

Appendix A 3 - Suitability Checklist

6

3 SUITABILITY CHECKLIST

(a) Table 1 illustrates how the criteria are used to consider the feasibility of Agile. Agile is

considered feasible if all the criteria under this category are skewed to the right-hand side.

However, the existence of negative responses may not necessarily indicate non-feasibility.

If additional cautions are taken and potential impacts on the Agile project execution are

properly managed, Agile is still feasible for the project.

Table 1 - Feasibility Criteria

Feasibility Criteria

Project aspect

1. Criticality High

Low

Critical systems (e.g. mission critical or safety critical systems) require more detailed

specifications, exhaustive validation and verification activities making it unlikely to be

suitable for Agile.

2. Project team size Large

Small

Agile prefers small teams, or the large team can be divided into smaller teams.

3. Team location Remote

Co-located

Agile prefers project teams to sit together physically or at least virtual communication

tools are used for geographically distributed teams.

4. External

dependency

High

Low

It is desirable that systems have low dependencies with other systems or parties (e.g. do

not rely on information provided by systems from other departments). Nevertheless,

Agile can still be used if the impacts from external dependencies are able to be foreseen

and controllable.

People aspect

5. Staff knowledge

and skills in Agile

Low

High

Staff knowledge and skills on the use of Agile methodology may affect the smoothness of

Agile project delivery.

6. Staff stability Low

High

Maintain staff stability by avoiding staff turnover or ensuring effective hand-over of tasks.

7. User involvement

& interaction

Seldom

Frequent

Practice Guide for Agile Software Development

Appendix A 3 - Suitability Checklist

7

Agile requires that full-time user representatives are dedicated to the project with

delegated decision power, and are willing to participate, communicate and make

authorised decisions.

Technology aspect

8. Tools availability

for solution

Low

High

Agile requires appropriate development tools to allow for iterative development and

testing, demonstrable work products and control of versions. Code construction should be

rapid and easily testable with automated build and testing tools.

(b) The following table indicates the characteristics of a project that could benefit the most from

Agile.

Table 2 - Benefit Criteria

Benefit criteria

1. Requirement

volatility Stable

Volatile

Characteristic: Requirements are volatile, i.e. there is a high possibility of changes in

user requirements, or high uncertainty in user requirements.

Benefit: The use of Agile can improve the flexibility of implementing requirement

changes because low-level requirements can be swapped rapidly.

2. Product

novelty and

innovation
Less

More

Characteristic: The deliverables are new to the market or to the Government (e.g. Web

2.0, HTML5).

Benefit: As innovative product usually evolves along the implementation, detailed up-

front design is not required. Whereas, the Agile approach on design such as

modelling and prototyping techniques is more appropriate. Therefore, Agile helps

reduce SA&D lead time.

3. Time to

delivery Slow

Fast

Characteristic: On-time / shorter time to delivery is required or highly desired.

Benefit: The nature of timeboxing approach and frequent release capability of Agile

lead to timely delivery of the product.
4. Demand for

visibility Low

High

Characteristic: Users demand for early preview of the product such as user interface

design and features as well as the progress of the project.

Benefit: Better project tracking and monitoring can be achieved with timeboxing

approach, which can help bring higher visibility to both the product and project.

5. Extensibility Low

High

Practice Guide for Agile Software Development

Appendix A 3 - Suitability Checklist

8

Benefit criteria

Characteristic: Systems that can be built as components or require high extensibility

(e.g. a core system with incremental add-on components or features).

Benefit: Business benefits will be realised early by delivering self-contained

components with more frequent and predictable software releases using Agile.

Practice Guide for Agile Software Development

Appendix A 4 – A Sample Project Schedule

9

4 A SAMPLE PROJECT SCHEDULE

The following table shows a sample project schedule with various deliverables. A

project team should suitably adjust the schedule, milestones and deliverables according

to the project nature and needs. If there are multiple releases to be rolled out to

production, some milestones (e.g. 5 to 9 as shown in the following table) may be repeated

in each release according to the project needs.

Table 3 - A Sample Project Schedule of Agile Software Development Project

Milestone End of Date Deliverables

1. Project

Initiation

1st Month Project Initiation Document (if project is

outsourced)

2. System Design

< In agile

approach, duration

for system design is

normally shorter

than the waterfall

approach.>

2nd Month

 Requirement Specification

 User Requirements Document

 Prioritised Requirements List

 Non-functional Requirements

 Future Business Process

 Technical Requirements

 System Specification

 Functional Specification

 High-level Required System Overview

 High-level Functional Definition

 Architecture Design

 System Design

 High-level Logical Data Model (e.g.

Entity Relationship Diagram, Class

Diagram)

 User Experience (using prototyping

techniques)

 Technical System Option

3. Site Preparation

and Cabling

4th month Site Specification

 Accepted site

4. Procurement &

Installation of

Hardware and

Software

4th month Procurement Plan

 Procurement Specification and/or Procurement

List

 Hardware and Software procured, installed and

accepted

5. Program

Development,

Unit Tests and

Integration

Tests

4th Month

 Revised Prioritised Requirements List

 Revised Prototypes/Models

 Test Plan and Test Result

Practice Guide for Agile Software Development

Appendix A 4 – A Sample Project Schedule

10

Milestone End of Date Deliverables

6. User

Acceptance

< In agile

approach, duration

for user acceptance

is normally shorter

than waterfall

approach>

5th Month

 Acceptance Test Plan for the overall system,

Specifications and Results

 "Passing tests" software components

7. Training 6th Month Training Plan

 Training Manual

 Training Courses

 Trained Users

8. Prepare System

Documentation

< In agile

approach, a

minimum set of

documentation

is required, e.g.

Application

Operation

Manual and

Application

User Manual.

However,

System Manual,

Program

Manual, Data

Manual and

Computer

Operation

Procedures

Manual will be

produced for

on-going

maintenance

and operation

support as

necessary.>

6th Month Application Operation Manual

 Application User Manual

<Below are for mission critical systems >

 Business Impact Analysis <if not yet in place or

the reviewed one if already in place>;

 Business Continuity Plan which includes a

Disaster Recovery Plan

9. System

Installation &

Production

7th Month System Installation Plan

 H/W and S/W modules in integration

 System Installation Report

 System roll-out and in production use

10. Nursing 10th Month System Nursing & Maintenance;

 Hand-over Plan

Practice Guide for Agile Software Development

Appendix A 4 – A Sample Project Schedule

11

Milestone End of Date Deliverables

11. Disaster

Recovery Drill

<if required>

11th Month Disaster Recovery Drill Test Report

12. Project Closure 11th Month Project Evaluation Report

Practice Guide for Agile Software Development 5 – Sample Professional Requirements

Appendix A for the Agile Coach

12

5 SAMPLE PROFESSIONAL REQUIREMENTS FOR THE AGILE

COACH

In acquiring the Agile coaching/mentoring services, it is recommended that the Agile

Coach has the following areas of experience and qualification:

(a) Possessed <xxx years> of working experience in Information Technology (IT);

(b) Delivered <xxx> IT Projects* using agile method (project management or system

development services, excluding coaching services) with each project having a

duration of <xxx>;

(c) Provided coaching services to users and/or project teams in using agile method for

<xxx> IT Projects* with each project having a duration of <xxxx>; and

(d) Awarded <xxx> of the following Agile certifications:

 Certified Scrum Coach (CSC) by Scrum Alliance

 Certified Scrum Trainer (CST) by Scrum Alliance

 PMI Agile Certified Practitioner (PMI-ACP) by Project Management Institute

* IT Project refers to a project to provide IT system implementation service(s)

Practice Guide for Agile Software Development

Appendix A 6- User Stories

13

6 USER STORIES

(a) User stories act as requirements on the system, and are written in layman’s terms which are

not technical. This facilitates verbal communication between end users and project teams.

(b) The content of a user story should include the following information:

 Role of the user

 Function/features the user wants to have

 Benefits/achievements/reasons to have the function/feature

(c) For clarity in communication, it is suggested that the user story is presented in a structured

format as follows:

As a/an <user role>…

I want to <goal>…

so that <reason>.

(d) Alternatively, user story can be written in free format to suit the project needs or user

preferences. An example of user story written in free format is shown below:

“A login password should be provided to each user to allow them to protect his/her

own user account from unauthorised access.”

(e) There is no strict rule on how a user story should be written as far as the requirements

presented are clear and capable of providing information necessary for project team to start

the timebox development.

(f) The following tables show several examples of user stories. The words that are written

in “bold italic” are sample contents for reference.

Table 4 - Examples of User Stories

No. As a/an I want to... So that...

1 user bookmark the current page I can quickly find the same page

next time.

2 user change my login password I can better protect my account.

3 job seeker search the job vacancies by

a keyword

I can save time finding target job

vacancies.

4 student submit my sick leave

application online

I can save time to go to the Student

Affairs Counter to submit the sick

leave application form in person.

5 Manager view my projects status in

one page

I can keep track of the projects at a

glance.

Practice Guide for Agile Software Development

Appendix A 6- User Stories

14

(g) The followings are some good and bad examples of user stories.

Table 5 - Good Examples vs. Bad Examples

Good Example Bad Example

As a Supplies Officer, I want to access the product

marketing information so that I can make a

purchasing recommendation.

As a user, I want to access the stored

information so that I can learn more.

As a conference attendee, I want to register

online so that I can save time on paperwork.

As a conference attendee, I want to click on

the “Register” button next to the conference

name to register online so that I can save

time on paperwork.

(h) A well-written user story should possess the following six common characteristics, with an

acronym “INVEST” for easy reference.

Table 6 - Characteristics of a Good User Story

Characteristics Description

Independent User stories should be self-contained, independent of other user

stories.

Negotiable User stories should be allowed for change and rewritten until

they start to be implemented in a timebox.

Valuable Each user story should deliver a business value to the user.

Estimable Each user story should be capable of being estimated of its size

i.e. required effort.

Small User stories should be small enough to fit within a timebox.

Testable A user story needs to provide information that is necessary for

testing i.e. to make the development of tests possible.

(i) Each user story should have a story title, story content, acceptance criteria, a submitted

person, the submission date and also the last modified date. The acceptance criteria should

be written in simple language, and should not contain any technical terms.

Practice Guide for Agile Software Development

Appendix A 6- User Stories

15

Table 7 - Format of A User Story

Item Description

Story Title: Title of a user story

Story Content: The content of a user story

Acceptance Criteria: A list of acceptance criteria for the user story

Submitted By: Name and post/rank of a person who creates the

user story

Submitted On: The submission date

Last Modified: The last modified date

(j) More examples on user stories are listed below:

User Story Example 1

Story Title: Computer Items Lending

Story Content: As a Computer Centre Administrator, I want to process

the lending of computer items so that the computer items

lent are properly recorded and a maximum of five items

can be borrowed by one authorised staff at a point of time.

Acceptance Criteria: (a) Computer items lent can be successfully recorded.

(b) Support manual input either by keyboard or by a barcode

scanner to record Staff ID and the items’ barcodes.

(c) An item can only be borrowed by one person at a given

time.

(d) Alert if the item has already been borrowed by another

person at a given time.

(e) Alert if the staff ID is invalid e.g. retired, resigned,

transferred out to other B/D, etc.

(f) Alert if the staff has borrowed five items already.

(g) A maximum 5 items can be borrowed at a given time after

the input of the staff ID.

(h) The Computer Centre Administrator does not need to hit

any keystroke when using a barcode scanner unless an

alert is prompted or the lending request is to be cancelled.

Submitted By: Mr. AAA, Computer Centre Administrator

Submitted On: 01.08.2014

Last Modified: 05.08.2014

Practice Guide for Agile Software Development

Appendix A 6- User Stories

16

User Story Example 2

Story Title: Login

Story Content: As a registered user, I want my login to be validated so

that I can obtain the required access rights to perform

various user functions.

Acceptance Criteria: (a) Format of the user login ID should be of the same format

as the Departmental Portal ID,

i.e.“[name].[dept/bureau]”to login. Login hints (such as

format of the login ID) should be displayed for user,

special characters should not be allowed.

(b) Login ID in other format will be rejected and display an

error message showing “Invalid user login ID”.

(c) Login ID should be a valid Departmental Portal ID and

should be a registered user in the system. Otherwise, an

error message “You are not authorised to access the

system since you are not a registered user.”

Submitted By: Mr. BBB, User of Division B

Submitted On: 01.08.2014

Last Modified: 13.08.2014

User Story Example 3

Story Title: Reset Password

Story Content: As a registered user, I wish I can recover my login ID

and/or password so that I can login again if my login ID

was locked by the system.

Acceptance Criteria: (a) A button to allow user to submit a request to recover login

password.

(b) An email will be automatically sent to the User

Administrator by the system upon receipt of a password

reset request.

(c) The administrator can then unlock the user account and

randomly re-generate a new password from the system

and send it to the registered email address of the user. In

the email, the login information and new password is

listed, and a message should be stated to request user to

reset the password immediately once login the system.

(d) The login password generated by the system should be of

8 alphanumeric characters long.

Submitted By: Mr. BBB, User of Division B

Submitted On: 01.08.2014

Last Modified: 13.08.2014

Practice Guide for Agile Software Development

Appendix A 6- User Stories

17

User Story Example 4

Story Title: Search Computer Items

Story Content: As a user, I want to search the computer items by selecting

an item type and/or specifying a keyword for any item with

description that contains the keyword. After searching,

a list of search results containing the matched item types

and/or item descriptions, and their corresponding

available quantities and location should be displayed. I

want to have the search results displayed in a scrollable

list for ease of navigation. When there are too many

searched items, I accept go to the next page to continue

the viewing of search result.

Acceptance Criteria: (a) Search result can be displayed successfully.

(b) Paging can be performed successfully for large volume of

search results.

(c) Item details can be displayed successfully.

Submitted By: Mr. CCC, User of Division C

Submitted On: 01.08.2014

Last Modified: 23.08.2014

User Story Example 5

Story Title: Statistical Report

Story Content: As a Computer Centre Administrator, I want to have a statistical

report on the number of transactions on lending, reservation and

renewal of computer items for a specific date range.

Acceptance Criteria: (a) The number of lending, reservations and renewals are displayed

correctly on the report.

(b) An online function for printing the report should be provided.

Submitted By: Mr. AAA, Computer Centre Administrator

Submitted On: 01.08.2014

Last Modified: 22.08.2014

Practice Guide for Agile Software Development

Appendix A 6- User Stories

18

User Story Example 6

Story Title: Assign case number

Story Content: As a Supplies Officer, I want to assign an approval case number

to the current Inventory Holder who has issued a request for the

disposal of computer items so that the disposal process can be

completed following the Stores and Procurement Regulations.

Acceptance Criteria: (a) A unique case number is assigned to each disposal request.

(b) Upon receipt of a valid disposal request, trigger the flow of

disposal process, otherwise reject the invalid disposal request.

(c) Notify all related parties for the valid disposal request.

Submitted By: Mr. SSS, Supplies Officer

Submitted On: 01.08.2014

Last Modified: 22.08.2014

User Story Example 7

Story Title: History Enquiry

Story Content: As a Supplies Officer, I want to enquire the history of

transactions so that I can view all past transactions for a

specific period of time.

Acceptance Criteria: (a) Able to enquire the following transaction history for a

specific period of time:

 Update of Computer Items;

 Issue of Computer Items;

 Hand-Over and Take- Over of Computer Items;

 Transfer of Computer Items;

 Trade-in of Computer Items;

 Write-off of Computer Items; and

 Disposal of Computer Items.

Submitted By: Mr. SSS, Supplies Officer

Submitted On: 01.08.2014

Last Modified: 23.08.2014

Practice Guide for Agile Software Development

Appendix A 6- User Stories

19

User Story Example 8

Story Title: Audit Trail Report

Story Content: As a Supplies Officer, I want to prepare an audit trail

report so that I can trace the activities related to the

system.

Acceptance Criteria: (a) Keep a log of user access to the login function and login.

(b) Keep a log of user retrieval and updating of computer

items information on the system.

(c) Keep a log of data changed (before and after images) for

all data updating.

Submitted By: Mr. SSS, Supplies Officer

Submitted On: 01.08.2014

Last Modified: 23.08.2014

User Story Example 9

Story Title: Duplicate Computer Item

Story Content: As a Supplies Officer, I want to copy details of a computer item to

create another new computer item so that I can duplicate similar

item details to save input time.

Acceptance Criteria: (a) Create a new item which is copied from another existing item with

the following information prefilled: item type, item description,

maintenance/warranty period, location, quantities, unit price,

total price, etc.

Submitted By: Mr. SSS, Supplies Officer

Submitted On: 01.08.2014

Last Modified: 23.08.2014

Practice Guide for Agile Software Development 7 - A Sample Spreadsheet for

Appendix A Agile Project Management

20

7 A SAMPLE SPREADSHEET FOR AGILE PROJECT

MANAGEMENT

(a) Besides the Agile software tools, the project team may consider to use a spreadsheet or a

worksheet to monitor the project information and progress.

(b) A spreadsheet helps maintain the user stories, PRL and tasks list and generate the burn

down charts, story boards and task boards.

(c) A spreadsheet template is prepared using some of the examples of user stories in Section

6.

(d) The spreadsheet contains the following six worksheets covering:

 S1 - Project information

 S2 - PRL

 S3 - PRL (with planned task)

 S4 - Detailed Tasks list

 S5 - Story board

 S6 - Task board

(e) The sample contents which are in form of tables or charts are extracted below. Input

values for the sample contents are marked in “bold italic” and should be replaced by

project-specific information to suit specific project needs. Upon input of values, fields

shown in grey colour will be updated automatically by some pre-defined rules or formulas

set in the worksheet.

Practice Guide for Agile Software Development 7 - A Sample Spreadsheet for

Appendix A Agile Project Management

21

 S1 - PROJECT INFORMATION

This worksheet includes the basic project schedule, the timebox planning table and the burn

down chart.

Figure 1 - Project Information

Practice Guide for Agile Software Development 7 - A Sample Spreadsheet for

Appendix A Agile Project Management

22

7.1.1 Project Schedule

The project team should fill in the project schedule in Figure 2.

Figure 2 - Project Schedule

Table 8 - Project Schedule Description

Field Name Description

Project Name Fill in the name of the project.

Project Start Date* Fill in project start date.

Estimated End Date* Fill in project estimated end date.

Total No. of

Timeboxes

(Excluding the

Timebox 0)

Fill in the total number of planned timeboxes for the

project.

Last Timebox

Velocity

(points/timebox)

An auto-generated field showing the velocity of last

timebox.

Today* An auto-generated field with today’s system date.

Current Timebox Fill in the current timebox number e.g. 3 stands for the

third timebox.

Timebox Length (in

days)

Fill in a fixed length for all timeboxes, i.e. a fixed number

of time interval in calendar days, normally ranging from

7 days (1 week) to 28 days (4 weeks).

Blocked Stories An auto-generated field with the number of blocked user

stories when it was selected as “Blocked” status at the

PRL (if any).

*Note: The format of all date fields displayed can be flexibly set, e.g. dd-mon-yy, dd-

mon-yyyy, dd-mm-yyyy, etc.

Practice Guide for Agile Software Development 7 - A Sample Spreadsheet for

Appendix A Agile Project Management

23

7.1.2 Timebox Planning Table

The project start date in Figure 2 will be automatically copied as the Start Date of Timebox

0 in Figure 3 in the worksheet. Project team should fill in the start date of all timeboxes

throughout the timebox period until all timeboxes are completed.

Figure 3 - Timebox Planning Table

*Note: This is an example of using story points to represent the effort of tasks. Project

teams can also use man-days instead of story points in estimating the staff effort. Story

points or man-days are simply two different units of measurements used to express how

much staff effort is required to complete the planned user stories in a timebox. The

calculation formula used in the spreadsheet will remain unchanged.

Practice Guide for Agile Software Development 7 - A Sample Spreadsheet for

Appendix A Agile Project Management

24

Table 9 - Timebox Schedule Information

Field Name Description

Timebox An auto-generated field to indicate the sequence number of

each timebox.

Start Date Fill in the start date of each timebox (except the first one

which was copied from the project start date provided in

Figure 2).

End Date An auto-generated field with the end date of each timebox.

Estimated Points

Initial No. of

Points

Fill in the total no. of points planned in each timebox, which

is roughly estimated at the Release Planning meeting and

can be revised before the timebox starts.

No. of Points Will

be Completed

Fill in the estimated no. of points that will be completed in

each timebox.

No. of Points

Remaining

Auto-generated fields showing the estimated no. of points

remained (i.e. Initial No. of Points minus No. of Points will

be Completed) in each timebox.

Actual Points

No. of Points

Completed

Fill in the actual no. of points completed (i.e. done) for the

timebox.

Accumulated No.

of Points

Completed

Auto-generated fields showing the accumulated total no. of

points that were completed from timebox 0 to the end of the

current timebox.

Actual No. of

Points Remaining

Auto-generated fields showing the accumulated total no. of

points left (i.e. Initial No. of Points minus Accumulated No.

of Points Completed) in each timebox.

Practice Guide for Agile Software Development 7 - A Sample Spreadsheet for

Appendix A Agile Project Management

25

7.1.3 Burn Down Chart

(a) A burn down chart shown in Figure 4 will be auto-generated based on the information in

Figure 2 and Figure 3.

Figure 4 - A Burn Down Chart

(b) The chart shows two running down lines for the planned estimated points (planned line)

and the actual completed points (actual line) respectively. The amount of work left (i.e. the

work that needs to be completed for the project) is shown on the vertical axis, while the

project timeline is shown along the horizontal x-axis.

(c) The actual line and the planned line initially start at the same point. As time progresses,

the actual line fluctuates above or below the planned line depending on how effective the

team is. If the actual line is above the planned line, it means that there is more work left

than originally estimated and the project is behind schedule. On the other hand, if the

actual line is below the planned line, it means that there is less work left than originally

estimated and the project is thus ahead of schedule.

(d) Besides the above tables for project management, BA should help users fill in a PRL based

on the defined user stories. A PRL contains the user story name, acceptance criteria,

priority (or business value) and assumption. A sample PRL is shown in Figure 4.

Practice Guide for Agile Software Development 7 - A Sample Spreadsheet for

Appendix A Agile Project Management

26

 S2 - PRIORITISED REQUIREMENTS LIST (PRL)

BA should copy the user stories from the PRL which was confirmed by users at the Release

Planning meeting, into the worksheet. This list should be continuously updated by the

BA throughout the timebox period if there are any changes in the user stories. The project

team will make use of the information to update the corresponding planning tasks after

discussion in the timebox planning meeting.

Figure 5 - Prioritised Requirements List

Table 10 - Prioritised Requirements List Description

Column Name Description

Story Title The name of a user story

Story Content The content of a user story

Acceptance Criteria The detailed acceptance criteria for the user story such as

business rules, validation checks, processing, input

to/output from the user story, and so on.

Priority The value of relative importance of the user story, which

can be assigned with values such as “Must-have”, “Should-

have”, “Could-have”, “Won’t-have”, or with relative

numbers, say 1 to 5.

Assumptions Assumptions or remarks of the user story.

Practice Guide for Agile Software Development 7 - A Sample Spreadsheet for

Appendix A Agile Project Management

27

 S3 - PRIORITISED REQUIREMENTS LIST (WITH PLANNED

TASKS)

During the timebox period, the project team should update information related to the

planned tasks for the user stories such as the planned story points or man-days estimated

for each user story, the assigned programmer name and project status in the worksheet.

This list should be continuously updated by the project team throughout the timebox period.

.

Figure 6 - Prioritised Requirements List (with planned tasks)

Practice Guide for Agile Software Development 7 - A Sample Spreadsheet for

Appendix A Agile Project Management

28

Table 11 - Planned Tasks Description

Column Name Description

Story ID A unique sequence ID assigned to each user story.

Timebox A timebox number assigned to each user story during

the Release Planning meeting.

Story Title* The name of a user story

Acceptance Criteria* The detailed acceptance criteria for the user story such

as business rules, validation checks, processing, input

to/output from the user story, and so on.

Priority* The value of relative importance of the user story

which could be assigned with values such as “Must-

have”, “Should-have”, “Could-have”, “Won’t-have”,

or with relative numbers, say 1 to 5.

Assumptions* Assumptions or remarks of the user story.

Planned number of

Story points (man-days)

The total estimated effort required in terms of story

points (or man-days) for the user story.

Assigned To The name of the project team member i.e. the

programmer/SA who has been assigned to implement

this user story.

Blocked “Yes” if the user story was finally identified as blocked

i.e. could not be done at the end of the timebox.

Default value is “No”.

External Dependency The external dependency affecting the progress of the

user story. Default value is “N/A”.

(e.g. the development task of a planned function to

capture a scanned image of a document could only be

done after the bar code scanner has been delivered.)

Status The progress of the user story such as “Defined”, “To

Do”, “In Progress”, “Tested”, “Done”, “Removed”.

Creation Date The creation date of the user story

Last Updated Date The last updated date of the user story

*Note: The columns are initially copied from the PRL shown in Figure 5 and project

team will have to update the user stories in the list during the timebox period if there are

any changes.

Practice Guide for Agile Software Development 7 - A Sample Spreadsheet for

Appendix A Agile Project Management

29

 S4 - DETAILED TASKS LIST

Each user story will be broken down into detailed tasks for implementation. The project

team should fill in the tasks list and maintain the progress of each individual task as well

as the overall progress of the user story in the PRL in Figure 5 accordingly.

Figure 7 - Detailed Tasks List

Practice Guide for Agile Software Development 7 - A Sample Spreadsheet for

Appendix A Agile Project Management

30

Table 12 - Detailed Tasks List Description

Column Name Description

Timebox A timebox number assigned to each user story during the

Release Planning meeting.

Task ID A unique sequence ID assigned to each task

Story ID A unique sequence ID assigned to each user story.

Story Title The name of the user story.

Task The detailed task description with detailed requirements

and acceptance criteria.

Assigned To The name of the project team member i.e. the

programmer/SA who has been assigned to implement the

detailed task of the user story. Normally, all tasks of a user

story will be assigned to the same person.

Planned number of

man-days (Points)

The estimated effort required for the detailed task in terms

of man-days (or story points).

Blocked “Yes” if the detailed task of the user story was identified as

blocked, i.e. could not be done within the schedule.

Default value is “No”.

External

Dependency

The external dependency affecting the progress of the user

story. Default value is “N/A”.

(e.g. the development task of a planned function to capture

a scanned image of a document could only be done after the

bar code scanner has been delivered.)

Status The progress of the user story such as “Defined”, “To Do”,

“In Progress”, “Tested”, “Done”, “Removed”.

Creation Date The date of user story creation.

Last Updated Date The last updated date of user story.

Practice Guide for Agile Software Development 7 - A Sample Spreadsheet for

Appendix A Agile Project Management

31

 S5 - STORY BOARD

Based on the project progress updated at the PRL in Figure 6, a story board will be

generated automatically as shown in Figure 8 below.

Figure 8 - A Story Board

Table 13 - A Story Board Description

Column Name Description

Defined Outstanding user story.

To Do The task was assigned to a programmer/SA and planned to

be done at the current timebox.

In Progress The task was being implemented.

Testing Testing was being performed.

Done The user story was completed and tested.

Removed The user story was removed (i.e. withdrawn) from the PRL.

Practice Guide for Agile Software Development 7 - A Sample Spreadsheet for

Appendix A Agile Project Management

32

 S6 - TASK BOARD

Based on the project progress updated on the detailed tasks list in Figure 7, a task board

will be generated automatically as shown in Figure 9 below.

Figure 9 - A Task Board

Table 14 - A Task Board Description

Column Name Description

Corresponding Story The user story for the detailed task.

To Do The detailed task was assigned to a programmer/SA, and

planned to be done at the current timebox.

In Progress The task was being implemented.

Testing Testing was being performed.

Done The user story was tested and completed.

	Structure Bookmarks

