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Abstract: Assessment of dynamic stability in a modern power system (PS) is becoming a stringent 
requirement both in operational planning and in on-line operation, due to the increasingly complex 
dynamics of a PS. Further, growing uncertainties in forecast state and in the response to 
disturbances suggests the adoption of risk-based approaches in Dynamic Security Assessment 
(DSA). The present paper describes a probabilistic risk-based DSA, which provides instability risk 
indicators by combining an innovative probabilistic hazard/vulnerability analysis with the 
assessment of contingency impacts via time domain simulation. The tool implementing the method 
can be applied to both current and forecast PS states, the latter characterized in terms of renewable 
and load forecast uncertainties, providing valuable results for operation and operational planning 
contexts. Some results from a real PS model are discussed. 
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1. Introduction 

The increasing complexity of power system (PS) dynamics, due to the penetration of 
non-synchronously connected generation, make the assessment of instability phenomena a 
fundamental need in security analyses, both in real time operation and in operational planning. 
Moreover, the need to address multiple contingencies, potentially leading to widespread blackouts, 
suggests Transmission System Operators (TSOs) adopting risk-based approaches [1] to assess 
power system (PS) security. 

Probabilistic risk-based approaches have been adopted for many decades in power system 
planning [2], but are relatively new in security assessment for operational context, where the N-1 
criterion is still deemed to be a good tradeoff between completeness and computational time. 
Though several risk-based approaches to security assessment have been proposed by researchers in 
the last few years [3–10], the risk concept has been introduced only very recently by a few 
operational standards to deal with extreme events affecting an uncertain PS [11–13].  

Many risk-based tools only deal with static impact of a contingency (in terms of 
post-contingency steady-state high currents or low voltages). Applying risk-based approaches to 
Dynamic Security Assessment (DSA) is more challenging because dynamic models are quite more 
complex to deal with (analysis techniques are less flexible and computation effort is higher); 
moreover, the outcome of a contingency does not only depend on the affected components and 
initial system state, but also on control and protection system parameters, as well as fault type, 
location, and clearing sequence. In [3], a transient stability margin from Potential Energy Boundary 
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Surface (PEBS) theory is used to quantify the impact of a contingency on transient stability. 
Risk-based approaches are suitable to study the effects of uncertainties which affect both the system 
state (in operational planning studies) and the PS response to disturbances (major sources of 
uncertainties in on-line operation where the system state is “known” with good approximation). In 
particular, Intelligent Systems (IS) and fuzzy inference can be exploited in the context of dynamic 
security assessment under uncertainties for operational planning studies: reference [6] proposes an 
Artificial Neural Network (ANN) based method to quickly estimate the long-term voltage stability 
margin. In [7], the authors present an innovative IS based on Extreme Learning Machines, which 
learns very fast and provides an estimate to the credibility of its DSA results, allowing accurate and 
reliable results in pre-fault DSA analyses, thus avoiding long time-domain simulations in online 
sessions. In [8], a hierarchical IS, the ensemble learning strategy based on Neural Nets with random 
weights, is proposed to analyze short term voltage stability. In [9], a Monte Carlo method is used to 
get the pdf’s of small and large disturbance rotor angle stability indicators, considering load and 
generation and fault-specific uncertainties; the pdf’s are subsequently decomposed into regions 
based on user-defined thresholds and the outputs of this decomposition are analyzed using a fuzzy 
inference system to complete a stability assessment. In [10], a very large amount of dynamic 
simulations are performed to train Decision Trees and generate security rules which are then used 
for security assessment for on-line operation. 

This paper presents the innovative Risk-Based Dynamic Security Assessment (RB-DSA) 
approach developed within the EU FP7 Project AFTER (A Framework for electrical power sysTems 
vulnerability identification, dEfense and Restoration). The aim of RB-DSA is to quantify the risk of 
instability phenomena in the system due to a set of critical, single, and multiple (also dependent) 
contingencies selected on the basis of the threat scenarios affecting a given current (or forecast) 
operating point. Thus, the RB-DSA represents an important step forward with respect to more 
conventional risk-based approach, such as [3], because the proposed methodology does not 
compute the failure probabilities from historical records but from short-term forecasts of hazards 
and from vulnerability curves of components, thus linking Hazard Analysis to Contingency 
Planning, which up to now have been considered as separate “problems”. This is also an added 
value with respect to IS systems: In fact, the IS training set is built starting from a plausible PS states 
elaborated on the basis of historical data, which does not assure the good performance of such tools 
in case of inadvertent “new” states occurring in the future. 

The paper is organized as follows: Section 2 illustrates the risk-based dynamic security 
assessment tool developed in the AFTER project. Section 3 presents the indicators used to quantify 
the impact and risk of contingencies on a power system. Section 4 describes the test system under 
study and discusses some simulation results. Section V concludes the paper. 

2. The AFTER Risk-Based Dynamic Security Assessment Framework 

The fundamentals of the AFTER methodology and tool are presented in [14]. Following a brief 
overview of the AFTER risk assessment framework, the section presents the main features of the 
developed RB-DSA methodology and tool. The tool can be applied to a forecast (uncertain) or a 
specific (current or known) PS state, thus focusing on both operation and operational planning 
applications. 

2.1. AFTER Methodology and Tool 

The probabilistic risk assessment methodology developed within AFTER [15,16] is based on the 
conceptual bow-tie model describing the relations between causes and consequences of unwanted 
events. Figure 1 shows an example where the main unwanted events are contingencies potentially 
leading to cascading and blackouts, i.e., with severe (major, critical, or catastrophic) consequences.  

The left side shows the adopted threat classification, which distinguishes natural from 
man-related threats, both of them are classified as internal or external to the power system: the 
man-related ones are further divided into intentional (sabotage, etc.) or unintentional (human error). 
Threats may lead to a contingency through a set of causes exploiting vulnerabilities, while the 



Energies 2017, 10, 475 3 of 15 

 

contingency may lead to different consequences (impacts) through a set of circumstances. The initial 
impact may in turn affect other vulnerabilities, incepting a cascading process that finally results in a 
blackout. The hazard analysis performed in the AFTER framework provides a coherent framework 
where different hazards (each one usually managed with its own “ad hoc” models and assumptions) 
are modelled via a unique mathematical formulation. Moreover, its outcomes are the inputs for the 
next modules aimed at assessing the power system security, thus reproducing the straightforward 
causal process from hazards to disturbances. Figure 2 shows the architecture of the prototype, 
developed in MATLAB environment and aimed to power and Information Communication 
Technology (ICT) risk assessment. 

 

Figure 1. Bow-tie diagram for AFTER methodology. 

 

Figure 2. Architecture of the AFTER tool for the risk assessment of Power-ICT system. 

In the proposed modeling framework, a threat can affect different vulnerabilities of power-ICT 
components by activating stress variables (i.e., the physical quantities through which the threat 
affects the component vulnerabilities). For example, a tornado induces additional mechanical forces 
to transmission line pylons; the stress may in turn cause the failure of a component.  
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Vulnerability can be mathematically interpreted as the conditional probability of failure of a 
component given the occurrence of a specific threat. In turn, any threat can also be described in 
probabilistic terms; e.g., the probability of a natural threat, such as lightning or a fire, depends on the 
weather or environmental conditions at the time of the event. 

Based on the above, the computation of component failure probability is performed making use 
of threat and vulnerability probabilistic models. In module F (Figure 2), all components are ranked 
based on their failure probability PF. The “critical components”, defined as the ones “explaining” the 
largest fraction of total failure probability, are identified. To this aim a cumulative sum screening 
technique [17] is used, which works as follows: 

1. Rank failure probability of all components into decreasing order, creating a map C(l) = l′ 
between l and l′ (indexes of original and ordered components) s.t. ( ) ( )1'' −> l

F
l

F PP . 
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5. Select components with failure probability higher than PFTOT. 

The generic “contingency” at the system level consists of the failure of one or more components. 
Starting from critical components, an enumeration technique is adopted in module C to generate a 
large set of single and multiple (also common mode and dependent) contingencies, including busbar 
or half-busbar faults, power plant outages, and double circuit outages. In a preliminary screening 
phase the risk associated to each contingency is computed by combining contingency probability 
with a fast evaluation of the impact, based on topological or DC load flow-based metrics. Only those 
contingencies which show a risk value higher than a minimum risk threshold are analyzed in detail 
by both power flow based analyses and dynamic simulations run in module R: the results of these 
analyses are synthetized in impact indices in module I. 

The final outcome consists of impact-based and risk-based ranking lists of contingencies. In case 
of a forecast PS state, the tool provides the Complementary Cumulative Distribution Curves 
(CCDFs) of the risk indicators. In particular, the RB-DSA tool evaluates the severity of the 
contingency with respect to angle voltage and frequency dynamics by calculating dynamic impact 
indicators and combining them with contingency probability. 

2.2. Failure Probability Assessment: Validation and Data Availability 

The characterization of the probabilistic models is one of the main barriers for the application of 
probabilistic techniques in real world power system operation. In this regard, reference [16] collects 
references which provide guidelines for statistical analyses of historical data and for the 
development of probabilistic models related to different threats and vulnerabilities (from 
transmission equipment to distribution networks), with special focus on long/medium term 
horizons. Instead, short term models of threats, like the ones modeled in the present paper, are tuned 
considering measurements of stress variables (e.g., wind speed, precipitation rate, etc.), available 
from technical disturbance reports concerning specific “real life” weather/environmental hazards. 

Some interesting results have been derived from benchmarking the threat and vulnerability 
probabilistic models relevant to lightning against real world data. As an example, from statistical 

analysis of real data [18], the yearly average failure rate averageyearly _λ  of a 220 kV transmission line 
for the Italian system is 3.5 × 10−10 failures/(km·s). Assuming 15 h of severe storms, in the region 

under study, allows for estimation of the failure rate BadWeatherλ  over “bad weather” quarters of an 
hour:  

[ ] ( )4
_15 4 quarters of hour 365 24 3600 1.8 10 nr flashes/ km quarter of hourBadWeather yearly averageλ λ −⋅ × = ⋅ × × = × ⋅   
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This means 5.4 × 10−5 failures/(quarter of hour) for any span of a line (assuming a 300 m long 
span for a 220 kV line). The simulation of a severe lightning storm was performed by the AFTER tool 
on a realistic 220 kV test grid, assuming a flash-to-ground density of 3.2 flashes/(h·km2), i.e., a 
realistic value for severe storms as in [17]. Results shows that the maximum 10 min failure 
probability over the most exposed 300 m long span of a 220 kV line is 3.6 × 10−5 failures/(10 min), in 
good accordance with estimates from historical data. 

2.3. Contingency Definition in Dynamics 

In dynamic simulations, a contingency is characterized by more elements than in load 
flow-based analyses. In fact, besides the components that are in outage and the PS state, the features 
which affect the dynamic response are: 

1. Specific parameters of the fault (location, type, duration). 
2. Control, protection, and defense systems (which affect the behavior over fault-on and post-fault 

periods). 

With regard to point 1, the proposed RB-DSA exploits the probabilistic models of component 
vulnerabilities and of the threats affecting the current (or forecasted) system state, to perform a 
probability-based filtering of the most critical components: this drives the choice of the contingency 
generation, thus, the location of the faults to be investigated by the RB-DSA. The simulations herein 
presented only consider three-phase faults but this is not a limitation for the tool which can simulate 
any type of symmetric and a-symmetric faults.  

As for point 2, the severity is mainly determined by the behavior of control and protection 
systems in the fault-on and post-fault periods. This aspect is not thoroughly tackled by other 
risk-based DSA approaches [3]. The clearing time depends on the typical TSO settings of primary 
and back-up protections [19]. In particular, Table 1 reports the different types of busbar and branch 
contingencies which differ for the behavior of primary and back-up protections in clearing the fault. 
The time domain simulator evaluates the system dynamic response in the first seconds after each 
contingency, including primary and back up protection logics, i.e., the Bus Differential Protection 
(BDP), distance relays (zones 1 and 2), overcurrent protection for transformers, and breaker failure 
device [19].  

The failure probabilities of involved components (ptr2, pl and psb respectively for 
transformers, lines and busbars) are calculated from hazard/vulnerability analysis, while the “fail on 
command” probabilities (pCBj, p_bdpj, p_dsj, p_ptj and p_BDP respectively for Circuit Breaker 
(CB), BDP signal, distance protection signal, transformer protection signal to component j, and BDP 
operation) are retrieved from literature [20]. K stands for bus coupler. 

Table 1. Definition of dynamic contingencies in the RB-DSA AFTER tool. 

Contingency ID Description Probability 
ICT Failure/Stuck 

Breaker 
Action 

Busbar fault with correct 
operation of all CBs and BDP 

psb/2 × [Пj(1 − pCBj)] × (1 − 
pK) × [Пj(1 − p_bdpj)] × (1 − 

p_bdpK) × (1 − pBDP) 
NO Intervention of BDP 

Busbar fault with malfunction 
of one signal to a CB 

psb/2 × p_bdpj × (1 − pCBj) × 
(1 − pBDP)  

for any j 

YES, missing 
signal to a CB 

Intervention of BDP and breaker 
failure device on one CB 

Busbar fault with one stuck 
breaker 

psb/2 × pCBj × (1 − pBDP)  
for any j 

YES, one CB stuck 
Intervention of BDP and back up 
protection for one CB 

Busbar fault with missing 
signal to K 

psb/2 × (1 − pK) × p_bdpK × 
(1 − pBDP)  

for any half-busbar 

YES, missing 
signal to K 

Intervention of BDP for faulty 
half-busbar + back-up 
protections for components of 
safe half-busbar 

Busbar fault with stuck K 
psb/2 × pK × (1 − pBDP)  

for any half-busbar 
YES, stuck K 

Intervention of BDP for faulty 
half-busbar + breaker failure 
device for components of safe 
half-busbar 
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Busbar fault with BDP out of 
service 

psb/2 × pBDP  
for any half-busbar 

YES, BDP out of 
service 

Intervention of all backup 
protections for all components at 
two half-busbars 

Line fault  pl × (1 − pCBj) × (1 − p_dsj)  NO 
Opening of faulty line with 
distance protections + 
telepiloting 

Transfo fault  ptr2 × (1 − pCBj) × (1 − p_ptj) NO 
Opening of faulty transformer 
with overcurrent/differential 
protections 

Line fault with stuck breaker 
plj × pCBj  

for any line j 
YES, stuck breaker 

Intervention of breaker failure 
device for all safe CBs and 
backup protection intervention 
for faulty CB 

Line fault with missing 
tripping signal from distance 
protection (telepiloting) 

plj × (1 − pCBj) ×p_dsj 
for any line j 

YES, missing 
signal 

Intervention of back-up 
protections for components of 
the whole substation connected 
the faulty component 

transfo fault with stuck 
breaker 

ptr2j × pCBj 
for any transfo j 

YES, stuck breaker 

Intervention of breaker failure 
device for all safe CBs and 
backup protection intervention 
for faulty CB 

transfo fault with missing 
signal from 
overcurrent/differential 
protection 

ptr2j × (1 − pCBj) × p_ptj 
for any transfo j 

YES, missing 
signal 

Intervention of back-up 
protections for components of 
the whole substation connected 
the faulty component 

3. Contingency Impact and Risk Assessment 

The impact of each of the contingencies is evaluated in terms of three dynamic severity indexes, 
respectively related to angle, over- and under-voltage, and frequency instabilities. Impact indicators 
are based on rotor angle, bus voltage, or mean frequency deviations. Dynamic risk indexes are 
defined as the expected value of the contingency impact and are calculated by combining 
contingency probability and impact. Risk and impact indicators can be used to rank contingencies, to 
focus operators’ attention on those events which may jeopardize the PS stability in the operating 
point under analysis. 

3.1. Transient Stability Impact 

Angle impact indicators consist in integral metrics measuring the “cumulated” displacements, 
over time, between rotor angles and center of inertia angle weighted on generator inertia constants: 
machine angles are obtained by the time domain simulator. In particular, the Integral Squared 
Generator Angle (ISGA) [21] indicator is adopted: 

( ) 
+

=
−=

Tt

t

Ng

i
COAii

TOT

dM
TM

ISGA
0

0
1

21 τδδ  (1) 

where 
iδ  is the i-th machine rotor angle, 

TOT

Ng

i
ii

COA M

M
=

⋅
= 1

δ
δ  is the Center Of Angles (COA), Mi = 2 × 

Hi with Hi = the i-th machine inertia constant on the system base, and 
=

=
Ng

i
iTOT MM

1

, Ng is the 

number of generators belonging to the same electrical island. T is the time window (s) and t0 is the 
initial time instant. 

3.2. Voltage Stability Impact  

Voltage impact indicators consist of integral metrics measuring the “cumulated” 
displacements, over time, between node voltages and maximum/minimum voltage security limits 
weighted on node nominal voltages: voltages are obtained by the time domain simulator. The 
adopted Dynamic Under Voltage (DUV) and Dynamic Over Voltage (DOV) indexes are shown in 
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Equation (2) and represents the mean under- and over-voltage deviations over a time window T 
starting from time instant t0 [22]. 
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where ( ) hhh VVv min,max, ,,τ  are respectively the voltage, the maximum threshold and the minimum 

threshold for h-th node. A reasonable range for hVmin,  can be given by the typical settings used by 

TSOs for under-voltage load shedding activation (0.85–0.89 p.u.). hVmax,  is set considering the 

upper limits of voltage operational range for motors and generators (1.15–1.20 p.u.). 

3.3. Frequency Stability Impact 

System frequency can be evaluated as the weighted average of machine angles in the same 
electrical island, where weights are the inertia constants on the system base. However, the presence 
of transients due to faults can alter the assessment of the slower frequency dynamics of interest. To 
filter out these transients, the RB-DSA calculates a moving average on a 500 ms window of the two 

signals: frequency f and frequency time derivative df/dt. The results are the mean average f


 and 
the Rate of Change of Frequency (ROCOF). The severity frequency indicators are defined as follows 
[23]: 
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(3) 

where deadbf, DFDOWN and DFUP are respectively the mean frequency sensitivity band, the max 
admissible under-frequency and over-frequency deviation according to TSO standards, while min 
ROCOF, ROCOFDOWN and ROCOFUP are respectively the ROCOF sensitivity band, the max 
admissible downward and upward ROCOF deviation. 

3.4. Risk Indicators 

In general terms, risk is defined by the set of possible events (“contingencies”), their probability 
of occurrence, and their impact on the system. More specifically, risk is quantified as the expected 
values of the impact of a contingency (or a set of contingencies). With such a definition, contingency 
risk indicators are simply calculated by multiplying the impact indicators with contingency 
probabilities found in Subsection II.B. Risk indicators may refer to a set of contingencies deemed as 
dangerous under specific weather/environmental conditions (total risk indicators) or to one 
contingency (individual risk indicators): The former indexes measures the overall risk of the PS 
exposure to dynamic instabilities, the latter ones are useful to rank contingencies and focus 
operators’ attention on the most risky events. 

3.5. Assessing the Effect of Uncertaintites on Forecast PS State 

At the operational planning stage, the RB-DSA can be used to assess dynamic risk over a 
“forecast” operating point, given k-hour ahead renewable and load forecasts. In particular, the goal 
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is to answer the following question: How does the operational risk of a PS subjected to a set of 
contingencies depend on the forecast error distributions of Renewable Energy Sources (RES) 
production and load absorptions available k hours ahead? 

To this aim, the RB-DSA exploits the Point Estimate Method (PEM) and Third Order 
Polynomial Normal Transformation (TPNT) to generate a set of PS states starting from the marginal 
probability distributions of the stochastic INPUTS (k-hour ahead forecast errors of the RES injections 
and load absorptions) and their correlation. Then, the RB-DSA runs impact and risk assessment on 
each of the abovementioned states. The results consist of probability distributions of dynamic risk 
indicators (on the whole contingency set and/or for each contingency) and provide alarms in case of 
a too high probability that exceeds max risk limits. 

In the present models, the standard deviation of RES generation forecast errors depends on the 
level of aggregation and geographic extension of RES, and by the forecast horizon under 
investigation. The standard deviation associated with load forecasts is usually very low (typically 1–
4% of the rated power). In general, the k-hour ahead forecast error distributions for RES (solar and 
wind plants) can be derived from climatological models or from more advanced models like 
ensemble forecasts. The non-symmetry of the RES forecast errors, derived from statistical analyses of 
historical data, suggests the use of non-symmetric distributions (like beta distributions), see also 
[24]. 

Dependence among inputs is tackled using the Third Order Polynomial normal transformation. 
More details about this technique can be found in Appendix A. 

3.6. RB-DSA Outcomes 

The typical outcomes of the RB-DSA tool consists of: 

• Risk and impact based ranking lists of contingencies, to focus operators’ attention and let them 
deploy suitable corrective actions, for on-line operation applications. 

• Complementary Cumulative Distribution Functions (CCDF), i.e., the probability of overcoming 
a certain x-value) for risk and impact indicators referred to the whole threat scenario (global 
indicators) or to each contingency (individual indicators), useful for operational planners. 

The accuracy of the RB-DSA results essentially depend on the accuracy of (1) contingency 
probability, (2) the system response to the contingencies, and (3) the uncertainties on the PS state. 
Section 2.2 has demonstrated the good match between short-term single outage probabilities with 
real-world available data for a “lightning” threat. Standard impact indicators already proposed and 
validated in literature are used to quantify the impact of contingencies. As far as item (3) is 
concerned, the PEM method combined with TPNT transformation (used to model uncertainties on 
PS state) has been validated by the authors against the Monte Carlo method in [24], demonstrating 
a good match between the probability densities of risk indicators evaluated by the two methods.  

4. Test System and Simulation Results 

This section presents the results of the RB-DSA application on a model of a realistic 220/400 kV 
system. 

4.1. Test System and Simulation cases 

The test system represents a portion of the Italian Extra High Voltage (EHV) grid in a high load 
operating condition (autumn peak load) in the early 2000s. The power system includes 80 lines, 70 
electrical nodes, and 20 generators. The dynamic model of the test grid includes the 6th order 
model of synchronous machines, their prime movers with governors, and their automatic voltage 
controls and exciters. As RES are usually interfaced with the bulk systems through power 
electronics, the displacement of much of the power from conventional units to renewables 
determines a lower system inertia, which affects both angle stability and frequency stability. 
Moreover, voltage stability properties can change as a result of the voltage controls enabled by 
converters (especially those with Voltage Source Converter (VSC) technology). The time-domain 



Energies 2017, 10, 475 9 of 15 

 

simulator allows for representation of the RES with different levels of detail: from a simple injection 
with constant P (active power) and Q (reactive power), to a more refined VSC model including the 
inner (current) and outer control loops of the typical Park’s transformation based controller [25]. In 
both cases, the dynamics of the specific RES “behind” the VSC is neglected, which can be a 
reasonable assumption due to the brevity (a few seconds) of the time interval for simulations. 

The abovementioned operating state represents the “current” system state for the simulation 
cases describing the RB-DSA applications to on-line operation sessions. In this context uncertainties 
only concern the occurrence of contingencies over a future short time interval (10–15 min).  

In operational planning applications of the RB-DSA, the available operating state is the 
“forecast” state available k hours ahead and subjected to RES and load forecast uncertainties. To 
simulate these uncertainties in the presented simulations, some changes have been performed on 
the system: two hydro units at the ANPP power plant and one thermal unit at the TIMP power 
plant have been respectively replaced with two aggregated wind farm injections and one equivalent 
solar power injection with the same ratings. Moreover, a stochastic load is modeled at one 150 kV 
busbar of the CMRP substation. “ANPP”, “TIMP” and “CMRP” are few examples of identification 
code for the grid substations. Figure 3 shows the RES and stochastic load connection points to the 
grid and the identification codes for the substations mentioned in the analyses. 

 
Figure 3. EHV transmission system in Sicily: identification codes of the substations considered in the 
analysis and location of stochastic load and RES injections. 

The resulting difference between the generators’ injections and the load absorptions is balanced 
by the “slack” unit at the SRGP substation which represents the behavior of continental units. The 
forecast errors of the aggregated RES injections are modelled as a beta distribution, where mean 
and variance are calculated from the data reported in Table 2. 

Table2. Data for stochastic characterization of RES generation. 

RES type 
Total Rating 

[MW] 
Number of 

Devices 
Equivalent Area 
Diameter [km] 

Std Dev of Forecast 
Error *, % of Rated 

Power 

Mean Value of 
Forecast Error *, % of 

Rated Power 
Wind Farms 125 63 30 15 0 
Solar Farms 12 240 30 25 0 

* Referred to a single component (Wind Turbines, or Solar Panels) and to a 24-h ahead horizon. 

The load forecast error is modelled as a normal variable with a mean and a standard deviation 
of 0.9% and 3%, respectively, of the rated power (corresponding to typical values for an autumn 
peak hour condition). The contingency set that is under study includes the set of single and 
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multiple (also dependent) contingencies which are selected as “dangerous” by the AFTER risk 
assessment tool, for a mild wind storm affecting the West side of the island. Different simulations 
have been performed: two of them, discussed in detail, are reported in Table 3. 

Table 3. Summary of presented simulations. 

ID Description Application Goal 

1 
RB-DSA applied to a set of contingencies due to a storm threat 
affecting West side of the system 

on-line operation 
Contingency ranking 

by dynamic indicators 

2 
System with stochastic RES power injections and load 
absorptions—time horizon = 24 h, distance among WF’s = 20 km 

Operational 
planning 

Quantifying the effect 
of forecast uncertainties 

4.2. RB-DSA Application for On-Line Operation 

The following section intends to demonstrate an application of the RB-DSA tool in operation. 
For this purpose, we assume that RES generation is known with good accuracy, we are given the 
known system “state”, the tool analyses the dynamic response of the PS to a set of single and 
multiple dependent contingencies, which are more risky for the specific threat scenario under 
study. Telepiloting among distance relays is assumed out of service, thus the zone 2 delay is 400 ms. 

Table 4 shows the top 20 list of ranked contingencies based on the angle stability risk index.  

Table 4. Top 20 contingencies in the risk-based ranking list for angle stability problems. 

It can be noticed that after N-1 branch outages, two N-k contingencies affecting the CMRP 
substation have the largest contributions to the risk, mainly due to their significant probability of 
occurrence. Subsequent contingencies are N-2 dependent contingencies (double circuit failures) and 
some N-k dependent contingencies with high impacts (higher than 1), which involve both power 
component failures and ICT malfunctions, and which determine the loss of synchronism of some 
units in the system (this is checked with conventional criteria—e.g., maximum angular 
deviations—in time domain simulations). The results demonstrate the importance to also consider 
N-k dependent contingencies which are neglected in “conventional” dynamic security assessment 
analyses; these usually only consider contingencies selected according to a “credibility” (e.g., the 
N-1) criterion. In particular, the probability of occurrence of some N-k contingencies caused by a 

Contingency ID Impact Prob. Risk 
N-1_BLLP211_CRCP211 0.1623 5.53 × 10−5 3.41 × 10−4 
N-1_BLLP211_CRCP211 0.1623 5.53 × 10−5 3.41 × 10−4 
N-1_CMRP211_PRRP211 0.1632 4.81 × 10−5 2.95 × 10−4 
N-1_CMRP211_PRRP211 0.1632 4.81 × 10−5 2.95 × 10−4 
N-1_CRCP211_CORP211 0.1596 4.48 × 10−5 2.81 × 10−4 
N-1_CRCP211_CORP211 0.1596 4.48 × 10−5 2.81 × 10−4 

SSB1_CMRP211 0.1754 1.51 × 10-5 8.58 × 10−5 
SSB2_CMRP211 0.1741 1.49 × 10−5 8.58 × 10−5 

N-2_Ln_BLLP211-CRCP211_Ln_BLLP211-CRCP211 0.1625 2.13 × 10−6 1.31 × 10−5 
N-2_Ln_CMRP211-PRRP211_Ln_CMRP211-PRRP211 0.1633 1.75 × 10−6 1.07 × 10−5 
N-2_Ln_CRCP211-CORP211_Ln_CRCP211-CORP211 0.1599 1.60 × 10−6 1.00 × 10−5 

SSB2_CRCP211_stuckCB_FAULT_ON_L_PP2211 1.097 4.83 × 10−8 4.41 × 10−8 
SSB1_BLLP211_stuckCB_FAULT_ON_L_PP2211 1.07 4.72 × 10−8 4.41 × 10−8 
SSB2_BLLP211_stuckCB_FAULT_ON_L_PP2212 1.061 4.67 × 10−8 4.41 × 10−8 
SSB2_CRCP211_stuckCB_FAULT_ON_L_PP2210 1.078 3.92 × 10−8 3.63 × 10−8 

SSB1_CORP211_no_signal_to_one_CB 9.475 2.66 × 10−8 2.81 × 10−9 
SSB2_CRCP211_stuckCB_FAULT_ON_L_PP2248 1.097 1.75 × 10−8 1.60 × 10−8 
SSB1_CMRP211_stuckCB_FAULT_ON_L_PP2248 1.095 1.75 × 10−8 1.60 × 10−8 
SSB2_CMRP211_stuckCB_FAULT_ON_L_PP2249 1.09 1.74 × 10−8 1.60 × 10−8 

N-2_Ln_BLLP211-CRCP211_Ln_CMRP211-PRRP211 0.1625 1.64 × 10−8 1.01 × 10−7 
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severe hazard may be relatively high compared to the outage of a single component (N-1) located 
far from the impact area of the hazard. This underlines the added value of the proposed RB-DSA 
method with respect to similar risk based approaches. In fact, the AFTER approach can exploit the 
forecasts of an incumbent hazard and of the PS state to compute the short-term component failure 
probability (thus, also the contingency probability), which are of paramount importance in 
operation. 

Figure 4 reports the impact and risk-based ranking lists for angle stability and dynamic 
undervoltages. Red, yellow, and green bars correspond respectively to N-k, N-2 and N-1 
contingencies.  

 
(a)

(b)

 
(c)

 
(d)

Figure 4. From top to bottom: Impact based contingency ranking lists with reference to (a) angle 
stability; (b) dynamic undervoltages; risk-based ranking lists with reference to (c) angle stability; (d) 
dynamic undervoltages. 

It can be noticed that for angle stability problems, the highest impacts are related to multiple 
N-k busbar contingencies, especially close to power plants (e.g., CORP and CRCP substations).  

Due to telepiloting malfunction, high impacts both on angle and voltage transients are 
detected for those N-k contingencies which imply the intervention of back-up protections (like zone 
2 for distance protections). 

In particular, the application of a standard stability criterion (Maximum Angular Deviation) in 
time domain simulations shows that the ISGA transient stability impact metrics allows a clear 
separation between “stable cases” (impacts < 0.2) and “unstable cases” (impacts > 1). 
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4.3. RB-DSA Application to Forecast PS State 

This section illustrates an example of application of the proposed RB-DSA over a forecast 
power system state affected by the uncertainties due to the probability distributions of forecast 
errors related to RES and loads, and available k-hours ahead of the PS state under study. 

Figure 5 illustrates the CCDF of angle instability risk and of dynamic undervoltage risk 
indexes relevant to the whole set of contingencies (total risk) and to a specific contingency, which 
represents a fault on one of the lines of the double circuit between the CRCP and the BLLP 
substations, with one stuck breaker and the loss of all the bays connected to the half-busbar relevant 
to the stuck CB. 

 
(a)

 
(b)

Figure 5. (a) CCDF’s of total risk of angle instability (on the left) and of dynamic undervoltage (on the 
right); (b) histograms of risk of angle instability indexes in PEM states (on the left) and CCDF of 
dynamic undervoltage indexes (on the right) relevant to a multiple N-k busbar contingency. 

In the present case, forecast uncertainties do not significantly affect the total risk index which 
shows a small variance, due to the fact that the impact of N-1 and dependent N-2 contingencies 
(which mainly contribute to the total index) are little affected by the variability of the stochastic 
injections. On the contrary, the severity of a very impacting contingency 
“SSB2+DT_CRCP211_L212-stuck CB” can be greatly affected by the amounts of renewables: for 
some states analyzed by the PEM, the RES, and load configurations determine the rotor angle 
instability (angle severity impact largely greater than 1), while for other states, the system is stable 
(angle severity impacts much lower than 1). This is explained by the large difference in risk index 
values among the PEM states illustrated in Figure 5b, this instability is due to the loss of 
synchronism of a generating unit in the TIMP power plant, to which the equivalent solar farm 
injection is assumed to be connected. A large amount of RES increases the power flow between 
TIMP PP and the rest of the grid, and this can favour the angle instability of the conventional units 
of the same plant in case of persisting faults in the surrounding substations. The tool allows to 
quantify the effect of system state uncertainties on each contingency. With reference to angle and 
dynamic undervoltage problems, Figure 6 reports the coefficients of variation (CV) in dB, defined 
as ( )( )base×μσ10log10 , with μ and σ respectively mean and standard deviation of the individual risk 
index CCDF, and used to identify the contingencies whose risk is most affected by uncertainties 
(adopted base = 10−5). 
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(a) (b)

Figure 6. Coefficients of variation (in dB) of (a) angle stability risk; (b) dynamic undervoltage risk 
indexes: a subset of the contingencies with highest CV values. 

The most affected contingencies which consist of two busbar N-k contingencies involving the 
loss of two double circuits: the former connects the BLLP substation in a heavy load area and the 
CRCP substation, and the other represents a heavily loaded path from East (generation area) to 
West (load area) on the 220 kV ring of the system. 

5. Conclusions 

This paper has proposed a risk-based dynamic security assessment method which can account 
for uncertainties affecting a power system state, initiating events (contingencies), and system 
response to contingencies themselves. In quasi real time operation, the tool can rank the selected 
contingencies on the basis of the threats currently affecting the system state, thus evaluating the risk 
of instability to which the PS is exposed, due to the contingencies. This can help operators focus on 
the most risky events, including multiple dependent contingencies on substation busbars and power 
plants. In operational planning, the tool can quantify the effect of uncertainties due to RES and load 
forecast errors on the risk of losing angle, voltage, and frequency stability, while looking at the 
complementary cumulative distribution functions of the risk indicators, and highlighting which 
disturbances show the highest impact sensitivity to these uncertainties. This information can be very 
valuable at an operational planning stage. Further works will focus on algorithms to elaborate 
optimal corrective/preventive control actions in order to reduce risk. 
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Nomenclature 

Acronym Meaning 
ANN Artificial Neural Network 
BDP Bus Differential Protection 
CB Circuit Breaker 
CCDF Complementary Cumulative Distribution Function 
COA Center Of Angles 
DSA Dynamic Security Assessment 
DOV Dynamic OverVoltage 
DUV  Dynamic UnderVoltage 
IS Intelligent Systems 
ISGA Integral Squared Generator Angle 
PEM Point Estimate Method 
PS Power System 
RB-DSA Risk Based - Dynamic Security Assessment 
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RES Renewable Energy Sources 
ROCOF Rate Of Change Of Frequency 
TPNT Third order Polynomial Normal Transformation 
TSO Transmission System Operator 

Appendix A. Third Order Polynomial Normal Transformation 

The Third Order Polynomial Normal Transformation (TPNT) transformation permits one to 
extend the potentialities of probabilistic load flow based on Point Estimation Method (PEM) scheme 
also to dependent non-normal distributions. Given the marginal distributions FX of inputs X, the 
rationale is to express non normal variables X (i = 1, …, m) as a third order polynomial of dependent 
normal variables Z:  
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Coefficients 
iiii aaaa ,3,2,1,0 ,,,  are calculated as functions of L-moments [26]. In particular:  
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L-moments are calculated as a function of the expectation value of an order statistic EX [26]: 
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distribution function and the probability density function of stochastic variable X. 
Also, Z variables are dependent and relevant correlation matrix ρz can be derived from ρX by 

solving the equation below for any pair of X variables: 
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where XiXi μσ ,  are respectively the standard deviation and the mean value of variable i. Again, ρZ 
is positive definite and it can undergo Cholesky decomposition. GZ is the resulting matrix so that 

T
ZZZ GG=ρ . Using matrix GZ it is possible to link transformed normal dependent variables Z to 

independent normal variable Y to which the PEM can be applied. The linear transformation between 
Z and Y is given by: ZGY Z ⋅= −1 . 
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