
DICT MINIX
Secure version of Minix3 without using Swap Space

Amit Jain amit.jain@iiitb.net

Nesha Rani nesharani.m@iiitb.net

Samrat V samrat.vooradi@iiitb.net

Sandeep S sandeep.s@iiitb.net

V SatyaSai Kishore D vsatyasaikishore.d@iiitb.net

Technical Report IIITB-OS-2010-01C
April 2010

mailto:nesharani.m@iiitb.net
mailto:amit.jain@iiitb.net
mailto:samrat.vooradi@iiitb.net
mailto:sandeep.s@iiitb.net
mailto:vsatyasaikishore.d@iiitb.net

ABSTRACT

The disk accesses required by common operating systems are a potential
security threat when a device (and therefore the data on it) crosses a security
barrier. One of the solutions to the problem can be to use an operating system
which does not write any data to the secondary storage at all.

We have demonstrated the solution to this problem by creating a special
operating system based on Minix 3, which can be loaded from a live CD and
which does not use any swap space. We have also removed the Hard-Disk
Drivers, so that there is no way the operating system can interact with the
secondary storage. A web-server runs on this live CD of Minix, which serves
word requests from clients and returns dictionary meanings from the Websters
Second Dictionary.

This document gives an overview of the stripped down version of MINIX
from a technical perspective. As such, it can serve as a brief documentation to
run a web-server with a secure, reliable operating system. Also, it contains a
detailed report on the issues encountered while removing hard disk drivers,
swap space and running a web-server, so that others may avoid the pitfalls we
faced.

Project URL: http://sourceforge.net/projects/miniminix3

© 2010 Amit Jain, Nesha Rani M, Samrat Vooradi, Sandeep S, V Satya Sai Kishore.

This material is available under the Creative Commons Attribution-Noncommercial-
Share Alike License. See http://creativecommons.org/licenses/by-nc-sa/3.0/ for details.

2

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://sourceforge.net/projects/miniminix3

Contents

1. Introduction

 1.1 Problem Statement 4

 1.2 Technical Specification 4

2. Existing Systems

 2.1 Gap Analysis 5

3. Architecture Overview

 3.1 Architecture of the System 6

 3.2 User Perspective of the System 8

4. Client and Server Implementation

 4.1 Challenges for DICT MINIX 8

 4.2 Approach 8

5. Testing and Results

 5.1 Web stress load and performance testing 11

6. Product Overview

 6.1 Features of DICT MINIX 12

 6.2 Obtaining DICT MINIX 12

 6.3 Screen shots 12

7. Conclusion

 7.1 Future Enhancements 14

Bibliography

3

1. Introduction

MINIX 3 is a new open-source operating system designed to be highly
reliable, flexible, and secure [1]. MINIX 3 is an operating system on resource-
limited and embedded computers and for applications requiring high reliability.

DICT MINIX is a secure operating system built on MINIX 3 with only
the Dictionary Server in it. A web-based Dictionary Server with reference to
Webster’ s Second, is provided for the users of DICT MINIX which responds to
the client requests and retrieves the meaning. NCSA HTTPD Web Server is
provided with DICT MINIX to establish client-server interaction. CGI script
handles the dictionary requests from the client and replies the corresponding
meaning. An external client has been packaged to run on any operating system.

1.1 Problem Statement
Security threats to operating systems today largely come from the

network. The disk accesses required by common operating systems are potential
security threat when a device or the data on it cross a security barrier. A far-
end preventive approach to this problem would be to develop an Operating
System which can be booted from a Live CD and run entirely on RAM without
having to use any swap space. Thus we foreclose all access to the hard disk.

Minix3 OS being extremely small, the stripped down version of this OS
can run entirely on RAM. We equip it with the resources to host a web-based
dictionary server and a client.

1.2 Technical Specifications:
 Operating System: MINIX3.1.6
 Dictionary: Webster’ s Second
 Server: NCSA HTTPD Web Server
 Server Scripting: CGI Script.
 Client: JAVA based MINIX Dictionary Client

4

2. Existing Systems

During the course of this project, we came across various efforts and
strategies done in similar directions. Similar efforts and their strategies are
illustrated below.

 Operating Systems like Puppy Linux, Morphix have the ability to run only
on RAM, without using swap space.

Puppy Linux (of size 85MB), being so small, usually loads completely
into RAM, which accounts for incredible speed. Morphix is also a light-weight
OS which runs on a Live CD.

 Operating Systems with the feature of Live CD

Damn Small Linux is one of the distros which can run on a Live CD and
it uses minimal resources. It can fit inside a 50MB Live CD.

 Operating Systems with a web-based server

The Live CD versions for KnoppixQuake, LAMPPIX, and Devil Linux
solely run servers with a size less than 200MB. Dictionary Server Dictd is a
TCP based server that allows a client to access dictionary definitions from a set
of natural language dictionary databases.

2.1 Gap Analysis
 There is no version of MINIX Live CD which runs entirely only on RAM
and which don’ t interact with the hard disk. This customized version of MINIX
runs a stand-alone web server with minimal resources. The modified version of
MINIX is a small operating system that fits into the RAM also running a light-
weight dictionary server on it. Our system not only provides a dedicated
dictionary client but also a web interface to query the server.

5

3. Architecture Overview

During the course of this project, we had several tradeoffs in the design of
DICT MINIX system. The following are the components present in DICT
MINIX operating system.

 Kernel Space: Kernel defined as in MINIX3.1.6

 User Space: It consists of device drivers (except for hard disk driver), server
processes and user processes.

As can be seen, absence of hard disk drivers is evidently clear in device drivers’
layer. The server processes is similar to MINIX.1.6 and the User process consists
of a dictionary server.

 Dictionary Server as a User Process

It is NCSA HTTPD web-server which runs a CGI script to handle http request.

 External Client: This component represents the client which sends the http
request to the dictionary server.

3.1 Architecture of the System

The architecture [5] of DICT MINIX is shown in the Figure (1). It is
represented as kernel space and user space. It has only a dictionary web-server
running as user process with an external client as shown in Figure (1). This
version of Minix does not use any swap space, hence it runs entirely in RAM as
hard disk drivers are removed.

The OS has a working kernel, a web-server and device drivers for
Ethernet, RAM Disk, display, etc., but not hard disk.

Dictionary Server is highlighted in the architecture diagram Figure (1)

6

Figure (1): Architecture of DICT MINIX Operating System

The kernel space and user space identifies the processes, servers, drivers
that are present in the Minix3 architecture. In addition, dictionary server
running as a user process is shown in the figure. It holds a light weight
stripped-down web server (NCSA HTTPD server) and a CGI script which
interacts with the client and fetches the meaning from the database. The
External client is also shown in the figure. The client server interaction via http
is also depicted.

7

3.2 User Perspective of the System

The OS is loaded off a Live CD; it detects all device drivers except for
any hard disk driver. With the Dictionary client or the web interface the user
can place a request to the server that responds with the meaning.

4. Client and Server Implementation
The server runs on Minix Live CD and the external client is a cross-platform
application which is built using Java.

4.1 Challenges for DICT MINIX

 Hard Disk Drivers Removal: The CD-ROM drives use the same physical
connection as the hard disk drives, though the protocol differs - ATAPI &
ATA, but since the hardware access are the same, the driver is common.
Since CD support (read: ATAPI) is highly integrated with hard drive
support (ATA), this task was a major challenge.

 Apache was the only web-server that was ported to MINIX. As it occupies
more space and is a relatively a high-end web server, we had to port other
light-weight web servers.

 Avoid swap space by maintaining all the processes in RAM [5].

 To run the dictionary server program on the server that accepts the client
request and efficiently uses RAM to search from the one lakh plus words.

 Packaging the web-based dictionary server onto a Live CD.

4.2 Approach

Several approaches have been applied for this implementation. The
following are some of the approaches taken to implement this OS.

 We found a dictionary database [7] from Gutenberg project. We parsed this
document to a dictionary flat file (around 13 MB). It has about 1,10,000
words and meanings.

8

 Initially we implemented a hash table data structure to optimize the search
time but it could not accommodate one lakh plus words but finally we
programmed a script to retrieve the meaning for the given search word.

 Apache web server was initially chosen to cater to the client requests but
due to its large size, the search for other light weight servers began.
Mongoose, NCSA HTTPD servers were ported to Minix. We have finalized
on the NCSA HTTPD server that runs the CGI-script to accept client
request, search for the search word, retrieve and respond with the
corresponding meaning.

 A Java based DICT MINIX client is packaged to run on any operating
system. Running the Client, JAVA code, a pop-window appears to enter a
search word and press the button ‘ search ’ ; it sends a request to the NCSA
HTTPD Server already running in MINIX.

 For Hard disk driver removal, at_wini driver removal was a tedious task
because it holds both the ATA driver (for the Hard Disk) and ATAPI driver
(for the CD-ROM) [4]. Thus the part of the code was modified which
ensures that only the CD-ROM driver(ATAPI) is being run without the
hard disk driver (ATA) driver even being called or accessed.

9

Removing hard disk drivers
In the file /usr/src/drivers/at_wini/at_wini.c:
Line 637, w_io_test() ,The function w_do_open(dp,m_ptr) checks if a drive is a
CD drive and if it is not a CD drive, checks if it is working by invoking the function
w_io_test() in this line [3]:
if(!(wn->state & ATAPI) && w_io_test() !=OK){… }

We must remove the “ w_io_test() != OK” part so that it just checks that the drive
is a CD drive and the ignores the rest of the drives. The line is changed to:

if(!(wn->state & ATAPI)){… }

 We have used release.sh [2], and chrootmake.sh to build the Live CD image.
The NCSA HTTP server holding the dictionary program and the database
was also written into the Live CD.

7

To resolve the networking problem in Minix LiveCD, the configuration
details in inet.conf was modified to call the AMD lance network driver.

10

Creating the Live CD from the source tree (/usr/src/)

$ cd /usr/src/tools

In /usr/src/tools/release.sh, set the USRMB variable to around 170, as 170MB will
be enough for the CD without the packages

$./release.sh – c – p will create the Live CD image without the packages and from the
source tree.

-p flag is for no packages

-c flag is used for building from the source tree, i.e., /usr/src/ on the installed system

Packaging the Web-Server and Dictionary Program in the CD

1. Add a few lines to the script /usr/src/tools/chrootmake.sh to make and
make install ncsa_httpd. After the boot image gets installed and copied
and changing the directory /usr/src/tools, add these lines:

$ cd ncsa_httpd_1.4
$ make
$ make install
$ cp – p dictprg.cgi/etc/www
$ cp dict.txt /home

2. Copy the unzipped directory ncsa_httpd_1.4 to /usr/src/tools.
First get the source tar ball of ncsa_httpd and extract it.

3. A few modifications has been made in the conf files of ncsa_http so as to
necessitate changes to be made in the dictionary program, database and
configuration files such that they are present in the read-write partitions of
the CD_ROM.

5. Testing and Results

Web stress tool has been used to find the load that the server can handle
when bombarded with many requests.

5.1 Web stress load and performance testing

The hit ratio, the response times and detailed statistics can be
viewed with the help of this tool. The load analysis for the server on
simulating 10 clients with each of them placing 100 requests
independently was performed. The following results were obtained.

Table (1): Testing results showing error-rate for simulated users

The table reads that on simulating 10 users who on an average place a
request on every 1600 ms, tend to receive the response correctly 99% of
the time. This simulation is performed for 100 requests from each user.

11

Removing the setup script

Since, our CD will only be a Live CD and not an installable one; we have to remove
the setup script which installs Minix 3 on the hard disk. For this, we do:

From the file, /usr/src/commands/scripts/Makefile, comment out the lines 42, 140
and 141, which installs the setup program in the new system [6].

6. Product Overview

Dict Minix is a Live CD that establishes the fact that Minix is a
powerful operating system in the Embedded Systems context. It runs a stand-
alone web server entirely on the Live CD without using any swap space. It runs
a dictionary server referencing the Webster’ s dictionary database. A dictionary
client application has been developed for the User. It is platform independent,
and it has been packaged as a JAR file.

6.1 Features of DICT MINIX

 POSIX Compliant

 No device driver for hard disk

 Networking with TCP/IP

 Dictionary Web Server implemented as User Process

 Webster’ s Second Dictionary database

6.2 Obtaining DICT MINIX

It is free software, can be found at the website
http://sourceforge.net/projects/miniminix3 [8] which is an iso image for
creating bootable CD version of DICT MINIX. The source code is available at
https://miniminix3.svn.sourceforge.net/svnroot/miniminix3. This is the official
code repository for SVN.

6.3 Screen Shots

Figure (2) shows the setup script being removed, i.e. the OS cannot be installed
from this Live CD.

12

https://miniminix3.svn.sourceforge.net/svnroot/miniminix3
http://sourceforge.net/projects/miniminix3

Figure (2): Dict Minix booting up

Figure (3) shows that the hard disk cannot be mounted, thereby proving that
the Live CD does not use the swap space. The communication via the network
is also depicted

Figure (3): Drives mounted on Dict Minix

Figure (4) shows the directories where the config files, the dictionary program,
and the database is present in the CD file system.

13

Figure (4): Location of NCSA HTTPD server and configuration files

7. Conclusion

Our goal was to run a web-based dictionary server on MINIX 3
Operating system, which runs on a Live CD without using swap space. The
hard disk drivers have been removed. The OS can only mount from the CD,
thus the security threat of hard disk being accessed by any malicious program is
prevented.

7.1 Future enhancements

1. We are presently using a CGI script to handle the http requests at the
server. But we can use a modern scripting language like python or perl.

2. If the database does not have a word, then we can suggest a few words
which are close to the queried word. Also, we can search online for the
word which doesn't exist in our database and return that result to the
user.

3. The client can be improved in such a way that the user has more
options like connecting to a different server and the GUI can be
improved.

14

Bibliography

[1] “ MINIX 3: A Highly Reliable, Self-Repairing Operating System” , July 2006.
[Online]. Available: http://www.few.vu.nl/~jnherder/publications/osr-
jul06.pdf. [Accessed: Jan. 26, 2010].

[2] “ MINIX 3 Developers Guide” , Oct. 24, 2005. [Online]. Available:
http://wiki.minix3.org/en/DevelopersGuide. [Accessed: Jan. 20, 2010].

[3] Jorrit N. Herder,” MINIX 3 Kernel API” , Oct. 20, 2005. [Online]. Available:
http:// www.minix3.org/doc/kernel-api.ps . [Accessed: Jan.23, 2010].

[4] Andrew S. Tanenbaum and Albert S. Woodhull, Operating Systems:
Design and Implementation, 3rd ed. Prentice Hall, 2006.

[5] “ Modular System Programming in MINIX 3” , Apr. 2006. [Online]. Available:
http://www.usenix.com/publications/login/2006-04/openpdfs/herder.pdf.
[Accessed: Jan. 26, 2010].

[6] “ The Official Minix3 google Developers Google Group” Oct. 24, 2005.
[Online]. Available: http://groups.google.com/group/minix3 [Accessed
Feb23,2010].

[7] “ Gutenberg Project – Link to Webster’ s Database” Oct. 01, 1996. [Online].
Available: http://www.gutenberg.org/ebooks/673 [Accessed: Mar. 20,
2010].

[8] “ SVN code repository for DICT MINIX OS” ,Jan. 25, 2010.[Online].
Available: http://sourceforge.net/projects/miniminix3 [Accessed: April. 20.
2010].

15

http://www.usenix.com/publications/login/2006-04/openpdfs/herder.pdf
http://www.minix3.org/doc/kernel-api.ps
http://wiki.minix3.org/en/DevelopersGuide
http://www.few.vu.nl/~jnherder/publications/osr-jul06.pdf
http://www.few.vu.nl/~jnherder/publications/osr-jul06.pdf
http://sourceforge.net/projects/miniminix3
http://www.gutenberg.org/ebooks/673
http://groups.google.com/group/minix3

	[1] “MINIX 3: A Highly Reliable, Self-Repairing Operating System”, July 2006. [Online]. Available: http://www.few.vu.nl/~jnherder/publications/osr-jul06.pdf. [Accessed: Jan. 26, 2010].
	[2] “MINIX 3 Developers Guide”, Oct. 24, 2005. [Online]. Available: http://wiki.minix3.org/en/DevelopersGuide. [Accessed: Jan. 20, 2010].
	[3] Jorrit N. Herder,”MINIX 3 Kernel API”, Oct. 20, 2005. [Online]. Available: http://www.minix3.org/doc/kernel-api.ps. [Accessed: Jan.23, 2010].
	[4] Andrew S. Tanenbaum and Albert S. Woodhull, Operating Systems: Design and Implementation, 3rd ed. Prentice Hall, 2006.
	[5] “Modular System Programming in MINIX 3”, Apr. 2006. [Online]. Available: http://www.usenix.com/publications/login/2006-04/openpdfs/herder.pdf. [Accessed: Jan. 26, 2010].
	[6] “The Official Minix3 google Developers Google Group” Oct. 24, 2005.[Online]. Available: http://groups.google.com/group/minix3 [Accessed Feb23,2010].
	[7] “Gutenberg Project – Link to Webster’s Database” Oct. 01, 1996. [Online]. Available: http://www.gutenberg.org/ebooks/673 [Accessed: Mar. 20, 2010].
	[8] “SVN code repository for DICT MINIX OS”,Jan. 25, 2010.[Online]. Available: http://sourceforge.net/projects/miniminix3 [Accessed: April. 20. 2010].

