WHITE PAPER ON The Reality of Software Testing in an
Agile Environment (SHARED)

Introduction

The definition of agile testing can be described as follows:
“Testing practice for projects using agile technologies, treating
development as the customer of testing and emphasising a
test-first design philosophy. In agile development, testing is
integrated throughout the lifecycle, testing the software
throughout its development.”*

Agile is a methodology that is seeing increasingly widespread
adoption, and it is easy to understand why, especially if you
consider the developer and user point of view.

Users: Don't want to spend ages being quizzed in detail
about the exact requirements and processes for the whole
system, and then have to review a large specification, which
they know could come back to haunt them.

Developers: Don’t want to have to follow a tight specification,
without any expression of their own imagination and creative
talents, especially if they can see a better way.

Yet for the QA professional an Agile approach can cause
discomfort — In the ideal world they would have a ‘finished’
product to verify against a finished specification. To be asked
to validate a moving target against a changing backdrop is
counter intuitive. It means that the use of technology and
automation are much more difficult, and it requires a new
approach to testing, in the same way that it does for the users
and the developers.

All the agile approaches have (at least) one characteristic in
common in that they impact the role of the QA professional.
This in itself is not a bad thing when the outcome is a step
change for the better. However, when decisions are made on
the basis of an invalid paradigm, change is not always
analogous with progress. When a new paradigm is proposed
for software development, by software developers, it is not a
surprise that it is developer-centric. Abraham Maslow said that
“He that is good with a hammer tends to think everything is a
nail.” The responsibility of the QA profession is not to bury its
head and pretend that agile development will go away, it is
our responsibility to engage in discussion to ensure that
someone with a hammer is not pounding on a screw!

With the emergence of Test Driven Development** some
suggest the role of QA is now questionable citing Test Driven

Development (TDD) as the key to testing. But, what is most
important is that QA is directly involved in the agile scrums all
the way through, to be an integral part of the team designing
the tests, at the same time as the requirements and solutions
evolve.

QA teams need to know the real impact of an Agile
methodology, there are boundless myths circulating the
industry. Here is our reply to ten of our favorite myths >>
*Definition taken from The Glossary of

Software Testing Terms from Original

Software (www.origsoft.com)

**Defined on Wikipedia as “A software
development technique consisting of short
iterations where new test cases covering the
desired improvement or new functionality
are written first, then the production code
necessary to pass the tests is implemented,
and finally the software is refactored to
accommodate changes.”

two

All the agile approaches

have (at least) one

characteristic in

common in that they

impact the role of the

QA professional.

n

Original Software Ten QA Myths of Agile Testing

There are a number of comments and statements regarding
TDD and the QA function beginning to appear in articles on
the internet by so-called specialists, that are, at best,
misguided. This article responds to some of these myths and
highlights challenges that QA teams will need to face up to
and address in order to be successful in an increasingly agile
world.

Myth One: “You only need to unit test.
TDD testing is sufficient”

For the vast majority of commercial developments this simply
isn't true. Even strong proponents of agile development
recognise the need for their armory to include a range of
testing techniques. For example, Scott W. Ambler has a list of
twenty-one different testing techniques as part of his FLOOT
(Full Life Cycle Object-Oriented Testing) methodology,

including white box, black box, regression testing, stress
testing and UAT. (http://www.ambysoft.com/essays/floot.html)

TDD programmers rely on these tests to verify their code is
correct. If the requirements (test cases) are specified
incorrectly, then you'll build robust code that fails to meet the
objective.

Therefore, most agile projects include investigative testing
efforts (black-box), which support rather than compete with
white-box testing. Good investigative testing will reveal
problems that the developer missed before they get too far
downstream.

Myth Two: “You can reuse unit tests to build a
regression test suite”

Some TDD proponents argue that conventional downstream
testing is unnecessary because every line of application code
has a corresponding test case; they suggest that by
reassembling unit tests, everything from User Acceptance
Tests to Regression Tests can be performed.

Although this sounds feasible, it isn't realistic, and here’s why:

The granularity and objectives of white-box unit tests
developed in TDD serve a different purpose from downstream
black-box testing.

While the overall objective of a unit test is designed to prove
that the code will do what is expected, the aim of regression
testing is to ensure that no unexpected effects result from the
application code being changed. These two objectives are not
synonymous — e.g. checking that an attribute has a valid date
format, is not the same as checking that for a given input, the
value of the field contains an expected date.

three Original Software Ten QA Myths of Agile Testing

Myth Three: “"We no longer need testers,

or automation tools”

Professional testers fulfill a different and equally valid role
from their development colleagues.

It is widely recognised that traditional test automation tools
have failed to live up to the hype of the vendors. Original
Software’s roots are as providers of products that improve the
productivity of the database testing environment. It was
because there were no adequate tools to provide User

interface testing that we extended our solutions into this
market sector; our heritage is aligned to effective testing
rather than screen-scraping automation. When we developed
TestDrive, we did it with the benefit of twenty years hindsight
of missed opportunities from the traditional vendors.

Often, TDD projects have at least as much test code as
application code and, therefore, are themselves software
applications. This test code needs to be maintained for the life
of the target application.

Myth Four: “Unit tests remove the need for
manual testing”

Manual testing is a repetitive task; it's expensive, boring and
error-prone. While TDD can reduce the amount of manual

effort needed for functional testing; it does not, remove the
need for further black-box testing (manual and automated).

By automatically capturing the tester’s process and
documenting their keystrokes and mouse-clicks, the tester will
have more time for the interesting, value-add activities, such
as testing complex scenarios that would be difficult or
impossible to justify automating. Though manual testing is a
time-consuming (and therefore expensive) way to find errors,
the costs of not finding them are often much higher.

Myth Five: “User Acceptance Testing is no
longer necessary”

Within agile development, acceptance testing is often
positioned as working with the customer to resolve “incorrect
requirements”, rather than correcting functionality that does
not map to what the user needs. When the user initially
defines their requirements, they do it based on their initial
expectations. When they see the system “in the flesh” they will
invariably come up with different, or additional, requirements.
While agile methods might reduce the frequency of this
happening, it is unreasonable to expect the approach to
resolve them entirely, so there should be no expectation that
user acceptance testing will be obviated. This is especially

true when it comes to the business user signing off approval
of the User Interface, since they may have envisaged
something different from the developer; which brings us nicely
to myth six...

four Original Software Ten QA Myths of Agile Testing

Myth Six: “Automation is impossible”

Automation in the early stages of an agile project is usually
very tough, but as the system grows and evolves, some
aspects settle and it becomes appropriate to deploy
automation.

To begin with, almost all testing from a user and QA
perspective will be manual but this testing effort and design
can be beneficial later if captured and re-used.

Knowing the right time to automate is tough, so using
technology that proactively supports early manual testing but
provides a path to evolve this into automation is key.

Myth Seven: “Developers have adequate
testing skills”

If testing was easy everybody would do it and we’d deliver
perfect code every time. An independent testing team serves
as an objective third-party, able to see “the big picture”, to
validate the functionality and quality of the deliverable. While
developers tend towards proving the system functions as
required, a good tester will be detached enough to ask “what
happens if...?” When you include business user testing as
well, you are more likely to have a system that is fit for
purpose.

Finally, and I'm sure this point will be disputed, most
developers don't actually want to spend much time first writing
tests and then developing code to prove the tests work. Using
the collaborative process described below, the developer gets
ample assistance in describing the functional tests and can
focus on writing lean, accurate and robust code.

Myth Eight: “The unit tests form 100% of your
design specification”

Whichever development method you use, before you develop
code you have to think about the requirements. While TDD
“done well” may identify a fair percentage of the design
specification, there are still concerns about gaps between the
unit tests. The argument, that you need TDD to prove the
requirements are captured accurately, isn't substantiated by
history.

The V-model, for example, is a valid approach to
understanding testing requirements and by implication,
functional requirements. Like TDD, the V-model and most
other models, fall down when the practitioner’s approach is
rigid, while development processes are fluid. Whichever

approach you choose, correct thinking challenges each user
requirement by asking “how would I test that?” The important
factor here is that test cases are challenged before they are
committed to code, otherwise you’ll be doing a lot of recoding
and calling it “refactoring”. When requirements are refined
through collaboration, the developer receives a more robust
specification that is less likely to change because it has been
openly appraised from several people’s perspectives.

five Original Software Ten QA Myths of Agile Testing

Myth Nine: “TDD is applicable on every project”

As the size of the project increases, the time required to run
the tests also increases. This can be addressed by
partitioning either/both the project and/or the tests. Either
route results in tests that run at different frequencies
depending upon their relevance to the current coding effort.
This approach introduces the need for test planning and
execution management. To achieve this efficiently, in addition
to white-box testing, you need to be thinking about:

Integration Testing — “*Which tests do I need to run to ensure
the new code works seamlessly with the surrounding code?”

System Testing — “"Does the functionality supported by the
new code dovetail with functionality elsewhere in this system,
or in other systems within the process flow?”

Regression testing — “How often do I need to run a
regression test to ensure there are no unforeseen impacts of
the new code?” Automated regression testing provides a
safety net that can affirm agile development techniques.

User Acceptance Testing — “*While TDD (in collaboration
with business users) should ensure that a specific function
performs correctly, is the cumulative impact of changes still
acceptable to the business users?”

However, in today’s environment it is unacceptable to think of
these testing stages as discrete serial activities. Often they
will need to be run in parallel as we get a new ‘code drop’. As
the size of the project team increases (along with testing
effort), it is no longer acceptable for the tests to be
considered “self-documenting”. Whenever the number of
participants increases, the project’s risks become exposed to
its members’ different interpretations of the requirements —
the definition of what constitutes “success” can be
misconstrued.

As the size of the project increases, so would the amount of

test code that needs to be developed. Any test code
developed needs to be supported for the life of the application
— effectively doubling the ongoing maintenance effort.

As the size of the testing workload increases the project
needs to add test automation to its armory, to minimize the
human intervention and elapsed times for each of these
testing cycles.

six Original Software

As the size of the

project team increases

(along with testing

effort), it is no longer

acceptable for the tests

to be considered
“self-documenting”. ”

" Ten QA Myths of Agile Testing

Myth Ten: “Developers and Testers are like ol
and water”

Since the dawn of time there has often been a “them and us”
tension between developers and testers. This is usually a
healthy symbiotic relationship which, when working correctly,
provides a mutually beneficial relationship between the two
groups resulting in a higher quality deliverable for the
customer.

The discussion should be focused on:

 Software delivery that meets business objectives
(fit for purpose, on time and on budget), not who
owns which part of the process.

e What can testers contribute to the requirements
gathering phase to ensure they are involved in
the TDD process?

e How can testers maximize reuse of the assets
created during the development phase?

e Is there a role for the “traditional tester” in TDD,
or should they (like the developers) be acquiring
new skills to enable them to adapt to the new
paradigm?

e How can developers and testers find mutual
benefit in exploiting new advances in software
development and testing tools?

Just as improvements in developer’s software tools and
methods have enabled a shift in development approaches,
next generation technology for test automation is similarly
reframing the opportunities for testers to automate earlier in

the delivery cycle without incurring the heavy burden of script
maintenance so often associated with traditional automation
tools.

Conclusion

Agile projects are in fact an excellent opportunity for QA to
take leadership of the agile processes; who else is better
placed to bridge the gap between users and developers,
understand both what is required, how it can be achieved and
how it can be assured prior to deployment? QA should have a
vested interest in both “the how” and “the result”, as well as
continuing to ensure that the whole evolving system meets the
business objectives and is fit for purpose. But it requires QA
professionals to be fluid and agile themselves, discarding
previous paradigms and focusing on techniques to optimise a
new strategy to testing.

seven Original Software

...next generation

technology for test

automation is similarly

reframing the

opportunities for testers

to automate earlier in

the delivery cycle...

n

“ About Original Software

With a world class record of innovation, Original Software offers a solution focused
completely

on the goal of effective quality management. By embracing the full spectrum of Application
Quality Management across a wide range of applications and environments, the company
partners with customers and helps make quality a business imperative. Solutions include a
quality management platform, manual testing, full test automation and test data
management,

all delivered with the control of business risk, cost, time and resources in mind.

More than 400 organisations operating in over 30 countries use Original Software solutions.
Current users range from major multi-nationals to small software development shops,
encompassing a wide range of industries, sectors and sizes. We are proud of our
partnerships

with the likes of Coca-Cola, Cargill, HSBC, Unilever, FedEx, Pfizer, DHL and many others.

© 2010 The Original Software Group Limited. The information in this document is subject
to change without notice. No part of this document may be reproduced or transmitted in
form without the express written permission of The Original Software Group Limited. The
Original Software Group Limited makes no warranties express or implied including without
limitation the implied warranties of merchantability and fitness for a particular purpose in
respect of any product of The Original Software Group Limited.

Original Software

Grove House, Chineham Court, Basingstoke,

Hampshire, RG24 8AG, United Kingdom

Tel: +44 (0)1256 338666

Fax: +44 (0)1256 338678

email: solutions@origsoft.com

www.origsoft.com

Original Software

Executive Place III, 1010 Executive Court,

Suite 230, Westmont, IL 60559, USA

Tel: +1 630 321 0092

Fax: +1 630 321 0223

email: solutions.na@origsoft.com

www.origsoft.com

Agile Testing Best Practices

Introduction

The testing phase of software development sometimes gets the short shrift from developers and IT
managers. Yet testing is the only way to determine whether an application will function properly at
deployment. Without an effective testing strategy, companies sometimes blindly take on significant
risks that go well beyond simply having poor functioning software. Organizational ramifications can
be fierce, including the risk of:

e Customer/end user alienation, or brand injury,

e Competitive threat, and even
e Product revenue loss.

At the development level, an oversight in testing can trigger countless technical and project
outcome challenges:

¢ Protracted development cycles, or the reverse, a shortened testing cycle to compensate for
longer development phases,

e Missed use cases triggered by developer-tester misalignment or poor communication and
resulting in compromised quality,

e Cost overruns or simply poor resource estimations.

Agile testing mitigates these risks and presents an effective solution to ensure that you achieve the
technical, project and business goals of the development process. In this whitepaper, we discuss
Agile Testing, why it’s important, and how to implement it.

What is Agile Testing?

Agile Testing is a software testing practice that follows the principles of Agile software development.
Agile development integrates testing into the development process, verses having it as a separate
phase. Testing therefore is an integral part of the core software development and actively
participates though out the software coding process. Agile Testing involves a cross-functional Agile
team actively relying on the special expertise contributed by Testers. This allows the combined

team to better meet the project’s defined business, software usability, quality, and timeline

objectives. Agile teams use a “whole-team” approach to “bake in quality” to the software product.
This approach allows the team to work at a sustainable pace because testing occurs in real time,
allowing testers to collaborate actively with the development team and giving them an

ability to identify any issues and transfer those into executable specifications that guide coding.
Testing and coding are done incrementally and iteratively, building up each feature until it provides
enough value to release to production.

Good Agile Testing Practices and Traits

Effective agile projects generally address the following important elements:

e Includes Testers and QA Managers as full members of the Agile development team.

e Leverage Testers as active contributors in planning and requirements analysis.

e Instills team value whereby each team member is responsible for the results, including quality.
e Promote the importance of Testers and encourage continuous feedback sharing with the
programmers and the customer.

e Testers actively participate in meetings to define the main business flows.

e Testers complete short iteration activities alongside developers.

e Encourage maintenance of traceability between the requirements, test cases and bugs.

e Testers contribute to user story improvements.

e Leverage the specialized skills of test-driven development, including unit testing, continuous
integration and unit level.

e Leverage Automation testing as a key way to do regression testing.

How does Agile Testing work? The process diagram at the back of this paper describes how
the process works? Please note that for the purposes of this paper, some steps of the Scrum have
not been included in diagram.

1. The combined team, including testing, takes responsibility for analyzing the business
requirements (e.g. user stories). They together define the sprint goal.

2. The QA team defines the testing scope (i.e. test plan). That is then validated by the whole team
and the client.

3. Simultaneously, while the development team starts the implementation, the QA team begins
work on the test case design. These are properly documented and handed over to the client and
the development team for review. This is to ensure the complete test coverage avoids unnecessary
or redundant test cases.

4. QA defines along with the development team and the client which main flows (test cases) will be
automated.

5. When code is ready to test, QA agrees with development to do quick testing on development
environment, in order to identify the early stage defects so developers can fix them during the next
round, on priority basis, and then progressing with further development. This iteration continues
until the end of the code implementation.

6. Automated test cases are run daily. Any defect found is reported and fixed, based on its priority.

7. The QA team then begins testing on the QA environment. Any defect at this stage is again
reported. At the end of the iteration the team determines, along with the client, which defects are to
be fixed in the current iteration.

Automated Testing-Regression

Automation is a critical component of Agile testing. It would be impossible to keep pace with the
Agile development schedule otherwise. Automation is used to run regression testing. The
combined team (Developers, Product Owners and Testers) usually predetermine, at the start of the
project, which parts of the software will be tested using automation.

Continuous integration/builds, unit, functional and integration test execution as well as continuous
or automated deployment are common areas where automation may work better than traditional
tests.

The entire project team agrees upfront on which of the main flows will be automated. They also
determine at this point how to prioritize defects identified by automation, and how to fix that during
sprints.

Automated tests consist of unit tests, capable of verifying even the most minute segment of
software. Furthermore, it does so rapidly. This makes it possible to execute the test set multiple
times per day, per hour or even more frequently if needed.

The benefits of automation include:

e Allows re-use of tests

e Enables faster execution for the most important test cases.

¢ Facilitates greater test coverage

e Delivers higher test accuracy and identifies defects sooner

e Facilitates regression testing

Advantages of Agile Testing

e Testing requirements are discussed and refined as a team (stand-ups / Scrums) allowing
combined team to better address the business/technical aspects of the requirement. This enables
overall alignment and prevents misunderstandings.

¢ Agile process often requires having an entry and exit criteria for stories (a compression of things
to do in a particular release/iteration). Agile testing ensures that each requirement is well defined
and is measurable, allowing you to determine whether the requirement was actually completed or
not.

e QA participates in the big picture requirements writing stage. This ensures testing estimates
aren’t overlooked.

e Automated tests are fully leveraged to implement Regression.

¢ Quality becomes the combined team'’s responsibility, rather than just solely that of QA. The entire
team agrees to the testing strategies, test cases and defects prioritization plan.

Disadvantages of Agile Testing:

If the ultimate goal or big picture requirements are unclear, the details can become muddled.
Normally for new products the software architecture takes a path based on the initial requirements.
If the requirements change (as allowed for in Agile), the following scenarios can occur:

e Engineering struggles to adapt to changes because significant effort has already gone into the
initial requirements development and testing process.

¢ Challenge in estimations and sizing requirements given people dependency. Sometimes QA gets
the short shrift since it's logically the last task in marking a user story done. Therefore, any delay in
the prior development task risks impacting QA timelines. Sometimes, QA is prevented from
executing a test case for the whole iteration, leaving QA to struggle to finish the task.

¢ Not asking the right questions. It very dangerous for QA not to ask questions, especially at the
point where the use story is picked up for implementation. Ensure daily team meetings avoids this
problem.

¢ Addition of new user stories into the current iteration. If QA is not included in the addition of the
new use story, the appropriate commitments, estimations are not built in, resulting in misalignment
and protracted timeframes.

Agile Testing Portfolio

Testing tools include:

Selenium, IBM-Rational Functional Tester, MS-Team Foundation Server, HP Mercury, Apodora,
Ranorex, Eclipse, Watir, Watin, Paros proxy, Nunit, MS SQL,

Jira, Rally, TestLink, Jmeter, Pywinauto, Virtual Machines, WinSCP, XML, XLST, etc.

Relevant Technologies include:

C#, Java, Python, Silverlight etc.

The key message is that testing should be considered a crucial process to the final software
outcome. Employing an Agile Testing approach can ensure overall alignment between Testing and
Software Development, yielding overall project outcome and teaming benefits.

