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Abstract 
The Undersea Cooperative Cueing and Intervention (UC2I) Program objectives include a heavy emphasis 
on developing autonomy for both unmanned underwater vehicles (UUVs) and Unmanned Surface 
Vehicles (USVs). The mission objective is to utilize a collection of such assets, each with different 
sensors, range, endurance, speed, and communications capabilities to work together to rapidly search and 
map a minefield area on the order of 100 x 100 kilometers in five days or under. This program explores 
the gain achieved by utilizing assets in a coordinated manner. Working together includes not only inter-
vehicle cueing and sharing of information, but also the transportation, launch and recovery of UUVs from 
USVs. The possible configurations of platform assets, sensors, sensing algorithms, navigation algorithms 
and autonomy algorithms is enormous. Of significant concern to the Navy and the execution of this 
program is the ability to explore this configuration space to find the most effective system for achieving 
mission objectives. Practically speaking, this not only requires that software solutions are decoupled from 
hardware solutions, but that the collection of software modules that comprise the sensing, navigation and 
vehicle autonomy algorithms are also decoupled from one another. This white paper outlines the plan and 
software architecture ground rules for the UC2I program to meet that objective. 

 
 
1. OVERVIEW 
 
The architecture plan described here is composed of three paradigms. The first concerns separation of the 
vehicle autonomy system from the physical platform and platform specific core software. The second 
concerns the separation within the autonomy system between high-level functions, one of which is the 
module generating autonomy decisions. The third is the separation within the decision-making module 
between dedicated modules associated with mission objectives.  
 
1. Backseat-driver paradigm: A division between “low-level” control and “high-level” control on the 
vehicle, with most likely the former residing on the vehicle’s main computer, and the latter residing on a 
computer in a payload section that can be physically swapped out of the vehicle. The low-level control is 
also referred to as “vehicle control” and the high-level control as “mission control”. 
 
2. Publish-Subscribe Middleware: The term “middleware” here refers to the architecture software that 
coordinates the set of software modules collectively comprising the “backseat-driver” system running in 
the payload. Publish-subscribe middleware implements a community of modules communicating through 
a shared database process that accepts information voluntarily published by any other connected process, 
and distributes particular information to any such process that subscribes for updates to such information.  
 
3. Modular Behavior-Based Autonomy: Behavior-based control is composed of a set of distinct, separate 
autonomy modules each vying for influence of the vehicle based on sensed conditions of the environment 
and individual objectives.  
 



In the UC2I program, participation is sought in accordance with (1) and (2), while leaving (3) entirely 
optional.  Discussion of each follows. 
 
2. The Backseat Driver Paradigm 
The backseat driver paradigm is not completely new; it has been used on several platforms typically as a 
special request from a vehicle customer seeking to control the vehicle with something other than the 
autonomy architecture and software produced by the vehicle manufacturer.  The “backseat” is 
alternatively known as the “mission control” component, and the front seat as the “vehicle control” 
component. This is usually accomplished by having a separate computer in the payload section (Figure 1) 
that produces autonomy commands to the main vehicle computer (MVC) in the form of heading, speed 
and depth commands or waypoint, speed and depth commands. The “front-seat driver” converts the 
autonomy commands into control commands, i.e., rudder, thrust, elevator, typically with a set of PID 
controllers tuned to control that particular platform. The autonomy commands may be produced in the 
range of 1-10Hz, while the control commands may be updated in the 5-50Hz range. (As Figure 1 
indicates, the “backseat” driver in the payload may not actually be back of the “front-seat” driver1.) 
 
 

 
Figure 1: Simplified view of unmanned underwater vehicle components. The backseat driver notion refers to the separation of 
roles between high-level or mission control in the backseat and low-level or vehicle control in the front-seat. There may be 
sensors on either side that also may need to push information through this interface. 
 
 
Flow of information: The flow of information between the two sections extends well beyond the passing 
of autonomy commands to the main vehicle computer. Typically the main vehicle computer has direct 
connection to platform native sensors such as a global positioning system (GPS), inertial navigation 
system (INS), Doppler velocity log (DVL), conductivity-temperature-depth (CTD), synthetic aperture 
sonar (SAS) and so on. The autonomy modules running in the payload section may need some or all of 
this information. The MVC may also be running processes that can supply fused or processed sensor to 
the payload section. One arrangement is to have the vehicle attitude information supplied to the payload 
from the MVC without specifying what sensors or fusing algorithms were used by the MVC. 
Furthermore, one or more of these sensors or others may be connected to the payload section instead and 
the information flows in the opposite direction to the MVC. External communication links to the vehicle 
in the form of radio frequency (RF), or acoustic communications (ACOMMS) typically have their entry 
point into the main vehicle computer (but not necessarily). This creates the further need to have 
information arriving from other platforms or from field-command propagated to the autonomy module in 
the payload section.   
 Although the MVC is acting as a virtual slave in the backseat mode to the autonomy commands 
produced by the backseat driver, a typical arrangement is to in fact have the MVC in ultimate control 
while temporarily “letting” the backseat driver have autonomy influence. The MVC may have certain 
veto conditions such as time-out, energy minimums, depth-limits or boundaries in the x-y plane. It may 
also reclaim control based on external communications. Some or all such conditions could be monitored 
and acted upon appropriately by the autonomy module, but it may be more suitable from the vehicle 
manufacturer’s perspective to have such watchdog functionality performed in the MVC and treat such 
watchdog activity running in the backseat act as second layer of protection. Of course one such failure 
                                                
1 Although “backseat” is a word in the English dictionary, “frontseat” is not. 



mode detectable only by the MVC is the outright failure of the payload section and subsequent cessation 
autonomy commands. 
 
Current Issues: This paradigm has been implemented on a number of platforms (e.g., Bluefin, Hydroid, 
and Ocean Server) enough to show that it is a workable arrangement that provides significant benefits to 
autonomy users/developers. It has been tested less on surface craft, partly due to the relative lack of 
commercial USVs compared to UUVs. An objective of the UC2I program is to reach a further consensus 
on the backseat driver interface across UUV and USV platforms and manufacturers and perhaps get to the 
point where this mode of operation is not a special-case, special needs arrangement worked out between a 
platform customer and manufacture, but rather a standard choice for mode of operation, and relatively 
similar between manufacturers.  
 
Benefits to the Navy: The primary benefit of operating with this separation between autonomy control and 
platform control is the freedom to separate autonomy development investments from platform 
investments. This is not to say that a platform developer may not in fact also be a suitable choice for 
providing autonomy solutions. 
 
3. The Publish and Subscribe Middleware 
The term “middleware” here refers to the architecture software that coordinates the set of software 
modules collectively comprising the “backseat-driver” system running in the payload. Publish-subscribe 
middleware implements a community of modules communicating through a shared database process that 
accepts information voluntarily published by any other connected process, and distributes particular 
information to any such process that subscribes for updates to such information.  
 The primary benefit of the publish-subscribe architecture is the separation of implementation 
details between individual modules. This also enables several modules to be developed (invested in) to 
provide the same functionality. A drawback sometimes associated with this architecture is the potential 
bandwidth bottleneck by requiring a single process to be involved in all information transactions. In 
practice this has not been a concern, especially with modern COTS computer systems. The benefits of 
modularity and simplicity often far outweigh such concerns. 
 
The MOOS publish and subscribe middleware: MOOS2 is a particular set of middleware implemented in 
C++ for both the Linux and Windows environment that implements a “publish and subscribe” 
architecture. The core functionality enables individual modules to communicate with one another and 
execute their primary functions at a pre-specified frequency (Figure 2).   
 

                                                
2 MOOS stands for Mission Oriented Operating Suite and was developed by Paul Newman as a post-doc at the MIT 
Department of Ocean Engineering before joining the faculty at Oxford University, where development has 
continued, partly with ONR support. 



 
Figure 2: A MOOS community consists of a number of (typically Linux) processes running separately, perhaps on different 
machines, communicating via TCP/IP through a single database process (MOOSDB) in a publish-subscribe framework. MOOS 
also provides basic functionality for requesting the frequency in which a process executes its primary routine. 

Components of a MOOS “community” include data logging, sensor processing, physical device 
interfaces, communication, as well as vehicle autonomy. The simple publish and subscribe interface 
allows one to swap in newer or competing modules without affecting other parts of the system. MOOS 
([NEW03]) is an Open Source project initiated at MIT under ONR and has an extensive recent history of 
reliability on marine vehicles and indoor robots ([BBESB07], [EBWS07], [HN07], [PSN07], [CN07], 
[EBSL06], [BLCN06], [CN06], [NCH06], [BGN06], [WEL05], [EWL05], [HN05], [DPNH05], [NH05], [CHN05], 
[MDDPC05], [DDHMP05]). 
 
Current Status: MOOS is an active Open Source project, partly funded by ONR, with source code fully 
available on the web from the Oxford University Robotics Research Group.  The website is:  

http://www.robots.ox.ac.uk/~pnewman/TheMOOS/ 

The software collection available at this site contains a critical subcomponent known as MOOS Core, 
which is the minimal code responsible for implementing inter-process communication and scheduling. It 
also contains a number of utilities that are essential in practice, and vehicle navigation and autonomy code 
used on prior robotic systems. The MOOS Core modules are the minimal common denominator modules 
– required for compatibility between MOOS users at different sites, platforms and projects. The rest is 
optional and open for newer, better or different versions to emerge. 
 
Benefits to the Navy: The primary benefit derived from the publish and subscribe architecture is the ease 
and freedom to separately develop and invest in subcomponents of the overall software system 
responsible for vehicle autonomy. Furthermore MOOS is an Open Source project funded in part by ONR. 
The most critical piece of glue software is exceptionally small, well tested on marine vehicles, and open 
with no proprietary issues to hinder development of further Navy autonomy system components.  
 
4. Modular Behavior-Based Autonomy 
 
The MOOS community of software modules described in the previous section contains a subset of 
modules dedicated to autonomy that ultimately publishes heading, speed and depth autonomy command 
variables to the MOOSDB. These variables are subscribed to by another MOOS process that implements 
the communication to the font-seat driver as explained earlier. We describe here one such autonomy 
architecture, a behavior-based architecture, for implementing this autonomy functionality. It differs from 
the previous two discussions on MOOS and the back/front-seat driver because the autonomy architectures 
that may ultimately be invested in under the UC2I program need not be behavior-based or any other 
particular architecture. They must however have the same publish and subscribe interface of publishing 



the heading, speed and depth variables (at least 4Hz) and subscribing to whatever they need to make 
autonomy decisions.  

The behavior-based discussion below does have one issue in common with the MOOS and 
back/front-seat driver discussions – the goal of modularity. The underlying objectives at those two levels 
is to define a minimal interface between distinct components to allow modular system development 
progression, yet also have that same interface be sufficiently rich to preclude limits on the capabilities of 
the individually developed components. In the back/front-seat driver case, this separation roughly is 
between the hardware and autonomy software on the vehicle. In the MOOS case, the separation is 
between software modules for sensing, navigation, autonomy, communication, data logging, simulation 
and so on. The discussion here is focused solely on the autonomy module(s) in the MOOS community. 
This functionality is also deeply challenging and equally benefited by modular development perhaps 
developed by different groups of experts with different missions and needs but common areas of overlap. 
As with the other cases, achieving modularity comes from settling on a particular way of doing business 
with a well-defined interface between modules that balances simplicity and extendibility. 
 
Behavior-based control:  Behavior-based control ([BRO86]) is composed of distinct software modules 
each potentially influencing control of the platform. The modules are independent and largely treated as 
black boxes when coordinating their output. Behavior coordination is the most contentious and difficult 
aspect of this architecture. Early approaches used a “layered” approach where behaviors had a strict 
precedence ordering and only a single behavior had control at any one time. Other early approaches used 
a “vector summation”, a.k.a. “potential fields”, method for handling two simultaneously active behaviors 
([KHA85], [ARK87]). This method simply takes the average of two output vectors, and has been used 
effectively on many systems. It also has well-known shortcomings when taking the said average is known 
to be unreliable. These shortcomings were described in detail in [ROS97], [PIR98], and [RIE99], all of 
which endorsed an alternative style of behavior fusion based on multi-objective optimization. 
 
Multi-objective optimization: Early research on multi-objective optimization for behavior fusion 
([ROS97], [PIR98], and [RIE99]) provided virtually no computationally efficient technique for 
implementation, beyond brute force search of the decision space. The interval programming (IvP) method 
([BEN02], [BEN04]) is a mathematical programming model for representing and efficiently solving multi-
objective optimization problems, and implemented at the inner core of a marine vehicle autonomy engine 
([BBESB07], [EBWS07], [EBSL06], [BLCN06], [BGN06]). The basic idea shown in Figure 3 is that each 
behavior produces an objective function at every iteration of the autonomy control loop (roughly 1-10Hz). 
The functions are piecewise linearly constructed “IvP Functions” with suitable syntactic structure 
balancing expressive power and computational efficiency during the combined optimization phase. 
 
 

                    
Figure 3: The IvP Helm is a MOOS module that implements a behavior-based architecture using multi-objective optimization for 
behavior coordination. On the left is the basic structure and flow of control and information during a single control loop iteration. 
On the right an objective function produce by a simple waypoint-following behavior is shown. The plot is shown in polar 



coordinates for rendering purposes; with higher (red) peaks have a greater utility. In this case the waypoint is at a bearing of 135 
degrees relative to the controlled vehicle. 

 
Current Status: The IvP model and solution algorithms have been patented by the US Navy, and the full 
software implementation has been licensed to the general public under a pseudo Open Source license. By 
“pseudo” we mean that there are no restrictions for academic and non-profit entities, as well as for entities 
using this concept in the performance of related work for the US Government. Commercial licenses are 
available for discussion with NAVSEA-DIVNPT. A true Open Source license wouldn’t discern between 
the above groups. The source code and documentation and reports of use in the field are at: 
 

http://oceanai.mit.edu/mikerb/software 
 
Benefit to the Navy: The primary benefit of the behavior-based architecture is the ease and freedom to 
separately develop and invest in subcomponents of the vehicle autonomy module. As with the 
middleware discussion, the important aspect is that overall system functionality is broken down into 
components with the “glue” being owned by the Government.  The individual components may be 
derived from academia, a Navy lab, or be commercial proprietary products. But controlling the glue or 
interface allows the Government to compete and compare modules and invest in alternative approaches 
that share only module requirements. 
 
5.  Summary 
 
Three paradigms were discussed here: the backseat/front-seat paradigm, the “publish and subscribe” 
middleware paradigm, and the behavior-based autonomy paradigm. It is worth repeating that, in the UC2I 
program, the first two will be considered standard for doing business while the third is optional. The 
motivation of all three is to ensure the Government has a sound system architecture strategy that allows 
for both competition between components, also allows for rapid field testing of complete systems with 
different hardware and software configurations to evaluate overall effectiveness, and also allows for 
further system growth not hampered by proprietary issues.  
 The reason for leaving the last paradigm as optional is that there is less consensus in the field of 
artificial intelligence (AI) as to what ultimately is the most effective architecture approach. It was 
discussed here for the following reason. If an autonomy system for unmanned marine vehicles is graded 
on (a) effectiveness in reliably achieving mission objectives, (b) the openness of the architecture to 
upgrades, verification and understanding, and (c) proprietary restrictions and cost for upgrades, then 
ultimately (a) will dominate the choice in system procurement. If however two alternative systems are 
nearly equivalent on (a), then (b) and (c) will quickly break the tie. 
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