
Data Testing White Paper

BY JOHN WELCH

PART 1
Testing Data and Data-centric Applications

PART 2
Pragmatic Data Testing

PART 3
Verifying Data in Production

Testing data and data-centric applications is a vital step for
organizations that are using their data to drive their business.
This article explains what data-centric testing is, and provides
an overview of a methodology that can be used to implement
data-centric testing in your organization.

Testing Data and
 Data-centric Applications

PART 1

Testing Data and Data-Centric
Applications
Data is critical to organizations today. Businesses
depend on accurate data to determine whether
their business is doing well, make decisions on new
products and offerings, and evaluate the success of
current initiatives. Governments use data to deter-
mine what programs are successful and which are
not. And non-profits use data to evaluate the impact
they are making, evaluate fund-raising programs, etc.

There are countless examples of data being used
to support critical processes today. However, most
of the energy and effort in testing in IT today goes
into testing the application functionality that creates
or uses the data, and not into verifying the end
result - the data itself. Often, data-centric processes,
such as data integration, extract, transform, and
load (ETL) processes, and analytic applications, are
not tested or are only subjected to simple manual
testing. On the other hand, application functionality
(like application of business rules or implementation
of a calculation) are tested extensively, but at an
application level only.

develop these applications quickly, iterate on
them rapidly, and build new ones when the busi-
ness drivers changed. This has required flexible
and powerful testing frameworks. After all, it is
very difficult to make rapid changes to an applica-
tion without having a solid set of test cases that
can validate that the changes you just made are
actually working.

It was often thought that the application would
be the only thing working with the data, so if the
application was “correct” then the data must be
correct as well. In practical terms, though, most
data today is used and manipulated by multiple
systems. Now you have to verify all the applica-
tions that may have access to the data, that they
all interact with it correctly, and that there are no
issues with cross-interactions. The problem is even
more complex in today’s self-service driven world,
because new applications that use your data can be
added at any time, often without you being aware.

Another reason that data-centric testing hasn’t
been a focus is that testing application logic is
“easy”, while testing data is “hard”. Developers
in many cases don’t like testing data, because it
involves outside dependencies, above and beyond
their code. Many testing approaches advocate
isolating the code under test – for most applica-
tions, this means testing only the code (.NET, Java,
etc.) and not the data that the code interacts with.
There are even frameworks used for testing that
exist simply to “mock” outside objects so the tests
have no dependencies. This isn’t necessarily a bad
approach, and is quite valuable in many application
testing situations. However, it can be a drawback
for data-centric applications, as the tests often
verify only the application logic, and don’t validate
how it works with real data.

Testing is the single most
overlooked aspect of a project.

Why is this? For one, the state of the art in testing
has concentrated heavily on testing application logic
for many years, because that’s where the interest
was. People were focused on developing new and
better applications. They wanted to be able to

Businesses are becoming more
data-driven.
Organizations are realizing that the real value is in
the data they collect and manage – the applications
that work with the data are subject to constant
change and replacement. In many cases, the data
produced from the applications is more valuable
than the application itself. So, while we continue to
need to test application logic, we also need to test
data. This is particularly true in the following cases:

• The data is business critical or a differentiator
for the organization

• The data is interacted with from multiple
applications or systems

• The data is part of a data-centric application or
workflow (for example, data integration between
systems, extract, transform, and load, or a data
warehouse)

This document presents a methodology for testing
data-centric applications and data. Not every piece
of the methodology needs to be adopted to realize
benefits from it. Any improvement to the testing has
tangible results in reducing the number of defects in
your data, as well as providing a reason for the devel-
opers and consumers of a system to feel confident in
the results that it provides.

There are two main areas that this methodology
covers – doing data-centric testing during devel-
opment, and doing data verification for production
or during system testing. Many of the same testing
techniques can be used in both areas. However,
the focus is a little different. Data-centric testing
in development focuses on the testing necessary
to make sure your data-centric applications pro-
duce the correct results. Data verification testing
is focused on making sure that the systems that
interact with the data produce consistent, verifiable
results every day (or even more frequently).

Benefits
The major benefit of testing your data and data-
centric applications is confidence in your data.
One of the more common reasons for business
intelligence initiatives to fail is that the users lack
confidence in the results. By testing and verifying
both the processes and the data that you are using,
you can give the consumers of the data the confi-
dence they need to make business decisions.

According to Gartner, less than
10% of self-service BI initiatives
will be monitored for consistency.

Another benefit arises if your organization makes
use of self-service BI. According to Gartner, less
than 10% of self-service BI initiatives will be moni-
tored for consistency. That can create major issues
for both the accuracy of the reporting, and adher-
ence to regulatory requirements.

Testing data-centric applications also leads to overall
cost improvements. The earlier in the development
cycle that defects are discovered, the easier and less
costly it is to correct them. By incorporating robust
testing into the development process, the mainte-
nance and update costs can be greatly reduced. True,
it does require a little more time upfront to create
the tests, but it pays off heavily.

Challenges
One of the biggest challenges with testing data-centric applications
is that you are interacting with data.

Another major challenge with data-centric testing
is that the tools haven’t progressed at the same rate
as the application tools. It’s difficult to automate
data testing, and even with tools that support it,
you may find yourself pulling various technologies
together with duct tape in order to assemble a
working solution.

Another challenge is the time it takes to create the
tests. Often, testing is the first area to suffer when
projects fall behind, and it can be easy to think
that taking time from testing to complete other
parts of a project will be okay. However, this often
creates a downward spiral – the parts of the project
that aren’t being tested create larger numbers of
defects and rework, which can take more time
away from testing, which just repeats the cycle. In
addition, data testing in particular is time consum-
ing – managing the test data, as mentioned above,
can require a lot of effort.

To test it well, you need a set of data that addresses
the test scenarios. Depending on the goal of the
test, you may need a small, static set of data that
represents some specific expected data details, or
you may need a much larger set of test data that
represents your production data. Managing these
data sets can be challenging, as the creation of
good test data can be time consuming. Simply taking
a copy of the production data for testing purposes is
not an option for many organizations, due to privacy
concerns and regulations.

Related to managing the test data is the problem
of keeping the data and the tests synchronized.
As the database schemas are updated with new
columns, tables, etc. the test data sets and the
tests themselves need to be updated to reflect
the current state.

Tools Used
As mentioned in the previous section, the tools available for data-centric testing
are, for the most part, lacking in several noticeable ways.

tools. If your people are familiar with .NET or general
programing languages, there are a broader array
of choices. On the other hand, if your people don’t
spend a lot of time using .NET, then you will want
to use tools that provide a friendly interface for
creation of the tests.

As you are looking for tools to drive your
data-centric testing initiatives, please keep
the following criteria in mind:

AUTOMATED

Automated testing support is critical to any modern
testing initiative. You should be able to execute most,
if not all, of your tests without requiring any human
interaction. This enables you to run tests while you
do other things, freeing up resources and time for
more critical tasks. It also means that the tests are
executed consistently. Manual testing introduces the
chance of human error – perhaps a tester forgets to
execute a test or a set up step. Automated testing
means that you get exactly the same tests executed
the same way, every time.

TECHNOLOGY COVERAGE

Look at what technologies you need to be able to
test – do you only work with SQL Server or Oracle?
Do you have ETL tools or BI tools in the mix? Which
of those are important to validate? (That last one
is a trick question – they are all important) Now,
compare that to the tools that you are looking at.
Do they support only one technology, or do they
cover multiple ones? How many tools total will you
have to invest in to get complete coverage?

One, most tools are targeted to a particular tool
or technology, and don’t provide a way to use
the same testing approaches and logic across the
different technologies that an organization may
use. A certain amount of that is expected, as it is
quite difficult to cover every possible data-centric
technology available. Often the tools focus on
one specific technology. As an example, there are
testing tools for Microsoft SQL Server relational
databases. However, you have to use a different
tool, and learn a different skillset, in order to test
SQL Server Reporting Services reports. This lack
of technology coverage adds to the complexity of
producing a full testing solution.

To some degree, you can work around this by
pulling multiple tools together, and scripting the
interactions between them. However, not all
tools support the automation necessary for that
approach, and it doesn’t reduce the need to have
and maintain multiple tools and the skillset neces-
sary to use them.

Any of the “x” Unit frameworks can make a
good foundation for performing data-centric
testing. However, you will need to spend some
time developing an additional layer of functionality
to make interacting with the database and other
data focused applications easier. In addition, this
layer will ensure consistency in how the testing is
performed.

You should also consider the people who will be
developing and executing the tests when selecting

SUPPORT FOR THE THREE A’S (ARRANGE, ACT,
ASSERT)

A very common pattern in testing is the three A’s –
Arrange, Act, Assert. Arrange involves the setup of
the necessary conditions for the test. Act involves
invoking the actual code or application being tested.
And Assert is where you verify assertions about the
state of things after the code has been executed.
This is a common pattern because it works very
well and there are many resources on successfully
using it. Look for tools that support it.

TEST DATA MANAGEMENT

Since data-centric testing is, well, data-centric,
managing test data is a vital part of the process.
Unfortunately, most tools today do not offer this
as an integrated function. You may be able to use
other tools to manage the test data, but this again
increases the number of different tools you have
to integrate.

RESULT REPORTING

Finally, for data-centric testing and data verification,
reporting the results of the tests often goes beyond
the typical test tool approach. Particularly for data
verification, the consumer of the test results may
not be in IT, and may need a friendlier way to view
and process the results.

The methodology discussed here can be implement-
ed using a variety of tools. However, you will find
that some tools are better suited to it than others.
The samples shown in this series of articles will use
LegiTest (http://pragmaticworks.com/Products/
LegiTest), which is a tool developed with the
methodology in mind, so it fits very well. However,
as mentioned, the approaches discussed in the
articles can be implemented with other tools and
a bit of ingenuity, they may just require more work
to set up and use.

Look for tools that
support the 3 A’s:
Arrange, Act, Assert

People / Roles
There can be a wide variety of people involved in testing. In the context of Pragmatic Data
Testing, though, you will focus on a few key roles. Please note that these roles do not have to
be different people, though each role has a specific focus to the testing.

Involve these roles in your testing strategy: Developer,
Development Tester, QA

do that well. In data-centric testing, it is often neces-
sary to have a developer who really understands the
data participate in the test creation, or at a minimum,
educate the testing team on working with the data.
If you are really focused on improving your data-
centric testing, you are likely to have at least a
portion of your developer’s time spent on testing.

Developers would still be primarily involved in
development testing for functionality, at the unit
and system testing level. These will be defined in a
later section of this series of articles. Data verifica-
tion is typically not in their area of responsibility.

DEVELOPMENT TESTER

This is a more specialized role in organizations that
focus on having extremely thorough automated
test coverage. These are testers who are focused on
testing and quality, but develop automated testing to

DEVELOPER

In some organizations, it’s felt that developers
shouldn’t be involved in the testing process. Instead,
they should just focus on producing code and let the
Quality Assurance (QA) group handle testing. This is
a good way to produce lots of code that nobody has
tested. Developers are integral to the testing pro-
cess, because they are the only ones that know what
code they have written. At a minimum, they need to
work with the testers to ensure that everyone has
a clear understanding of the requirements and the
implementation, so that the tests can accurately
exercise the system.

In many organizations, particularly those adopting
test driven development (discussed further in the
next article), there is a trend towards developers
actually creating their own tests. An additional
benefit you may find is that when creating automat-
ed tests, developers are often the best equipped to

verify the systems they work on. They differ
from developers in that they are typically not
adding new functionality to the systems, instead,
they are writing automated tests that verify the
new and existing functionality of the system. This
is a role that fits very naturally with the Pragmatic
Data Testing approach. Development Testers have
much the same responsibility as developers, in that
they focus on testing functionality, through unit,
integration, and system testing.

QUALITY ASSURANCE

Quality Assurance encapsulates the traditional
testing in many organizations. Often the people in
QA focus primarily on “black box” testing – that is,
they don’t know the internals of the system, but
rather what goes in and what should come out
for the application. Particularly when it comes to
data-centric applications, they make focus on the
application side, and not test details of the underly-
ing data. What data testing is done is typically done
manually.

Adopting a testing approach for data-centric
applications tends to change this role more
significantly than the other roles. The focus for
your QA resources becomes a) understanding the
data requirements of the application, b) developing
automated test scripts for that data, and c) testing
the bigger interactions of the data-centric applica-
tion or system under test. The QA role is usually
responsible for testing the system functionality at
a macro level, rather than smaller units of code.
They should be involved in testing at the system
level, as well as performance and load testing. In
addition, the QA role is heavily involved in data
verification testing, which will be defined in a later
section in this series.

Conclusion
This has covered a brief introduction to data-cen-
tric testing. It also explained why it is a critical
factor in today’s data-driven world. The quality,
accuracy, and reliability of the data your organi-
zation works from is not something that can be
left up to chance, or the hope that “nothing will
go wrong”. Instead, you need to be able to have
confidence in your data, and be able to prove that
it is accurate, and adheres to the organizational
requirements for your data.

The next sections of the series will go into more
details on the Pragmatic Data Testing methodolo-
gy. It will focus on how you can adopt data-
centric testing as part of your development
processes, along with the different types of
testing that you can consider as part of your
development of new and enhanced functionality
and data. You will also see how to apply data
verification testing to data throughout your
organization, which can increase your confidence
in the data you work with every day.

FOR MORE INFORMATION ON DATA-CENTRIC
TESTING AND TO REQUEST A DEMO OF
OUR PRODUCT LEGITEST, PLEASE VISIT
PRAGMATICWORKS.COM.

http://www.pragmaticworks.com

Testing data and data-centric applications is a vital step for
organizations that are using their data to drive their business.
This article explains what data-centric testing is, and provides
an overview of a methodology that can be used to implement
data-centric testing in your organization.

Pragmatic Data
 Testing

PART 2

Testing Data-Centric Code in
Development
In this section, you will learn more about the types
of testing that can be used with data-centric appli-
cations when they are under development. For the
most part, these line up with traditional application
testing approaches, but there are some differences
to accommodate the data focus.

WHAT IS CODE?

When you think of code, you may picture a mon-
itor full of C++, C#, Java, or another programing
language. However, code has a much broader
application. SQL, SSIS packages, SSRS reports a
nd many other languages and tools that you use in
data-centric applications are also considered code.

When testing code for data-centric applications,
we need to define what code actually is. As men-
tioned, you might think of code as .NET or Java
code, something that is compiled into an executable
order to be run by the computer. But in a more
general sense, code can be any set of instructions
to the computer or an application that produces
an output. From a testing standpoint, if we have
an input (the instructions) and an expected output
(the results), we have something to test.

So what types of computer instructions can this
include? It certainly includes traditional applica-
tion code, but it also includes database code, and
instructions to the computer for other, specialized
applications, like data integration tools and business
analysis and reporting tools. When you create an

SSIS package, or an SSRS report, you are creating
a set of instructions to an application that specify
how you would like to retrieve data, manipulate
it, and then either store it somewhere (for SSIS) or
display it to a user (for SSRS). A stored procedure
would be a set of instructions on how to retrieve,
combine and return data to the user.

The Data Definition Language (DDL) that you
use with databases is also a set of instructions to
the database engine. The DDL details the tables,
views, foreign keys and other objects that should
be created, altered, or deleted in the database.

SQL Server Analysis Services uses a similar
language, XML for Analysis (XMLA), which
supports creating, modifying and deleting
objects on an Analysis Server. There is also the
Multi-Dimensional Expression language (MDX)
and Data Analysis Expressions (DAX) which allow
for querying and shaping results from Analysis
Services.

When you look at it from that perspective, most, if
not all, of the things that we create for data-centric
applications would be considered code. And since
they are code, they should be tested. The rest of
this section will discuss how to do this.

Types of Testing
There are several types of testing that are done
on traditional applications. Most of these are
directly applicable to testing data-centric code as
well, though you might find it necessary to tweak
the approaches a bit to make them work well.

UNIT TESTING

Unit tests focus on small units of work (logical
groupings of code) in the system under test and
check assumptions about the behavior of that
code. Generally, unit tests are implemented by

Code can be any set of instructions to
the computer or an application that
produces an output.

the programmer in conjunction with the develop-
ment of the code. These are tests that you would
run against the code you have just completed to
ensure it works as expected. Once completed,
you would keep the unit tests to form the back-
bone for regression testing, and to act as a verifiable
check on whether the code performs as expected.

Automated unit testing is a standard practice
in application development. In application
development unit testing, efforts are made to
isolate the unit of work being tested from any
outside dependencies, including the database or
the file system. This is challenging for data-centric
applications, and you will find that it can create
additional work to abstract away the external
systems the code interacts with. In some cases,
the tools you use for data centric applications don’t
support this level of isolation. SSIS, for example, is
very difficult to unit test in a fully isolated manner,
as some components require a connection to a
database in order to function. Rather than getting
too wrapped up in debates about whether this truly
meets the definition of a unit test, we prefer to take
a practical approach and work with what we have. If
you like, you can refer to unit tests that interact with
outside dependencies as micro-integration tests.

When creating unit tests, you should control the
inputs to the code. The tests should verify that the
output of executing the code delivers the results
you expected. In some cases, the same unit tests
may be driven through a variety of inputs, so that
the same unit of code can be tested with many
different inputs. This verifies that the code produces
the correct results for all the tested inputs. These
are often referred to as data driven unit tests.

Unit tests should also be isolated from each other.
You should create unit tests so that any unit test is
atomic and can be run independently of other unit

tests. This isolation means that the tests can be
run in smaller subsets easily, even down to a single
unit test, and that you do not have to run them in
any particular order. This does require that each
test sets up the appropriate preconditions for the
test, creating any necessary data prior to the test
execution and cleaning it up afterward.

Unit tests should ideally be fast to execute.
The longer the unit tests take to run, the less likely
you are to execute them. Since much of the benefit
of unit tests comes from running them frequently,
you should ensure that your tests run as fast as
possible. You can accomplish this by making sure
your unit tests are done against small sections of
code and that they do not cover too much of your
application at once. If the tests are created properly,
you can also run them singly or as a smaller subset
to get faster feedback on the section of code you
are testing. Another key point is that data-centric
unit tests should focus on small sets of data. The
point is to exercise the functionality of the code
unit, not to performance test it.

WHAT TO INCLUDE IN UNIT TESTING

Often, the reason that developers object
to including external dependencies in their
unit tests relates to performance. Typically,
external resources like databases or file
systems are orders of magnitude slower
than the same operation carried out in
memory. However, you can work around this
in many cases by following the guidance in
the preceding paragraph. In addition, running
subsets of the unit tests when you are testing
interactively, and the full test suite when
doing a full integration, can lead to a better
experience with resource constrained tests.

INTEGRATION TESTING

Integration tests generally span multiple units of
work, and verify that larger portions of the system
work together correctly. This may involve interact-
ing with multiple subsystems, for example, verifying
that a report can correctly retrieve information
from a database, perform calculations on the result,
and then display that to the user. Integration testing
further ensures that code or modules developed
by one developer works properly with code from
another developer, and that it doesn’t have unin-
tended impact on other parts of the system.

As noted above, often testing of data-centric
applications falls into the category of integration
testing, as it can be difficult to isolate the app-
lication being tested from the underlying data.
In many cases, isolating the application from
the data can actually hamper the effectiveness
of the tests, as the data is central to the require-
ments for the application. Rather than getting
too concerned about what type of testing is being
performed, we prefer to take a pragmatic approach
(no pun intended) and focus on creating the tests
that best verify the system under test.

Integration tests generally take a block box
approach to the code, that is, the tests don’t
assume knowledge about the internal implemen-
tation of the code itself. Instead, they focus on
providing inputs that model the requirements
and expected inputs of the system, and verify
that the output from the system matches the
expected results.

Creating integration tests for data-centric
applications is much like creating unit tests, in
that you generally have to set things up for the test,
invoke the part of the system under test, and then
assert that the new state of the system matches an
expected result. However, it focuses on larger sets
of functionality. To create an integration test, you

TEST DRIVEN DEVELOPMENT

Test Driven Development (TDD) is a practice in
which unit tests and code are written in conjunction
with each other. As a developer, you would write
small, incremental tests, then write the code to
satisfy those tests and ensure they pass. You start
by creating a test that implements a specific test
case. This test will fail initially, so you write the code
necessary to make the code pass. Then you refactor
the code until it is clean and elegant, while maintain-
ing the passing status of the test. You would then
repeat the process for the next set of functionality,
until the code delivers the expected results.

This approach has a number of benefits. One,
since you are creating tests in conjunction with
the code you are writing, test coverage of the
code is much higher. Two, it keeps your efforts
focused on implementing the code that meets
the requirements. Three, one of the most import-
ant benefits it offers is increased confidence as a
developer. When you develop using a TDD approach,
you always know where your code stands. Because
you are working in small increments, you are never
very far away from a system that passes all the
tests. If all tests are passing, then you know all
implemented code is working as designed. If you
make modifications, you will get immediate feed-
back on whether the change has impacted other
functionality in the system. This makes it much
easier to make updates and refactor code.

When you develop using a TDD
approach, you always know
where your code stands.

would define a usage scenario for the application,
the expected end state, and test data that supports
the scenario. For example, a scenario for an ETL
process for a sales data mart might look like the
one in Figure 1 - Sample Integration Scenario.

Scenario: A customer places a new order.
The customer was recently married, and as part
of placing the order, the customer notes that both
their name and address have been changed.

Application Functionality: The Load_DimCustomer
package should be executed to pick up the changes
from the SalesStage staging database and load them
into the SalesDM datamart.

Expected Results: The customer name change
should be handled as a Type 1 change – all historical
customer records should be updated to reflect the

new name. The address change should by handled
as a Type 2 change – a new version of the customer
dimension record should be created with the new
address, and marked as the current record.

Just as can be done with unit tests, integration
testing can be automated. In many cases, the
same framework or harness that is used for unit
testing can also be leveraged for integration testing,
as the general structure of the tests is very similar.
The primary difference is in the granularity of
what is being tested, and how hard you try to isolate
the code being tested from other systems. Using a
framework also enables you to assemble integration
tests into suites that can be run together, and the
ability to include your integration tests as part of
the build process. You will find that using an auto-
mation approach to your integration tests provides
an immense amount of value, and is required to take
advantage of integration tests for regression testing.

Source Data: The source data for the test.

ACCT. ID NAME ADDRESS CITY REGION POSTAL CODE CURRENT

75 Jane Smith 123 Elm Ln Tampa FL 33601 N
75 Jane Smith 111 Oak Rd Tampa FL 33601 Y

Target Data (before): The data in the dimension before the load is executed.

ACCT. ID NAME ADDRESS CITY REGION POSTAL CODE CURRENT

75 Jane Smith 123 Elm Ln Tampa FL 33601 N
75 Jane Smith 111 Oak Rd Tampa FL 33601 Y

Target Data (after): The data in the dimension after the load is executed.

ACCT. ID NAME ADDRESS CITY REGION POSTAL CODE CURRENT

75 Jane Smith 123 Elm Ln Tampa FL 33601 N
75 Jane Smith 111 Oak Rd Tampa FL 33601 Y

Figure 1 - Sample Integration Scenario – bold indicates expected changes

SYSTEM TESTING

System testing tests the system as a whole.
It generally focuses on validating that the system
meets the overall requirements for the solution,
and often includes user interface, usability, and
load and performance testing. For data-centric
applications, system testing may need to take on
some additional steps to truly validate the system.
For example, it becomes much more important to
validate the underlying data in the system when
dealing with data-centric applications.

Since individually reviewing each row of a table in
a database isn’t practical, you will need to apply tools
to this problem. Good tools are capable of comparing
expected data with the actual data, and ideally will
have the capability to do this against either a com-
parable, known good database, or against control
totals. Control totals are things like a customer
count, the total amount of sales for the month of
December, or some other aggregated value that
gives you confidence that if the aggregate matches,
the underlying details are likely to match as well.

REGRESSION TESTING

Regression testing is testing done to validate
that new changes to a system have not adversely
affected existing functionality. In basic terms, this
is something that most of us have seen when we
have fixed one problem, only to see something that
we thought was unrelated suddenly stop working
in another part of the system. Regression testing is
all about finding unintended consequences. It also
is used to ensure that corrected issues do not resur-
face in later versions of the system by continuing to
validate those fixes for subsequent versions.

Regression testing is a problem spot for many orga-
nizations, because it doesn’t involve testing what has
changed, it involves testing everything that has not
been changed. People are not very good at anticipat-
ing the side effects of their changes. In addition, in
cases where testing is done manually, it can be easy
for people to not test as thoroughly for areas of the
system where they don’t expect to find issues.

If you are using Pragmatic Data Testing
approach, you will get regression testing with-
out having to do any additional work. By creating
automated unit and integration tests, you establish
a baseline of functionality testing that can be easily
re-executed as needed. So for subsequent changes,
you can continue executing the same tests that you
have already created, verifying that nothing unex-
pected has changed in the system. This does mean
that you will need to make sure any new changes
to the system are also covered by automated tests,
particularly any defects that are corrected. Once
you have a test that validates that a particular
defect is fixed, you can have confidence that if it
shows up again, you will catch it during testing,
rather than in production.

TAKE NOTE
Be careful with tools that only allow you
to do a row-by-row, column-by-column
comparison. Often, when dealing with
changes to data-centric applications,
updates to the system require modifica-
tions to the data structures. When that
happens, it can break the functionality of
many data comparison tools. Rather, you
should look for tools that support both a
tabular comparison, as well as the ability
to compare aggregated values.

Use of automated tests for regression tests is
incredibly valuable, particularly if the system you
are working on experiences a lot of change. It also
means that your investment in automated tests
gets more valuable every time you make a change
– just look at all the time you are saving over having
to manually re-execute tests, or the costs of having
a regression in functionality make it through testing
unnoticed.

LOAD AND PERFORMANCE TESTING

Load and performance testing is testing to deter-
mine if the system handles operations at the
expected volume of the production system in an
acceptable timeframe. Load and performance
testing generally assumes that the functionality
is correct, and focuses primarily on timeframes
and volume. Pragmatic Data Testing doesn’t focus
specifically on load and performance testing, as
existing approaches for this type of testing work
well for data-centric applications. However, it can
be helpful to use a test framework that allows you
to easily time operations that are being performed.

One item to note is that load / performance tests
should not be combined with tests that verify
functionality. Developer focused tests need to

run quickly, so that the developer doesn’t spend
time waiting on them to complete. Load tests in
particular, and most performance tests, require a
large significant volume of operations, so the tests
tend to take more time. This doesn’t mesh well with
quick functionality tests. You will find it much easier
to manage if you keep a clear separation between
these types of testing.

Specific Technologies
The information below contains information on
the types of functionality that you should consider
testing for data-centric applications. It also provides
information on the how-to of actually automating
test cases that verify this functionality. However, we
can not document all the possibilities around that
for this article, due to space constraints, so it keeps
things at a fairly generic, pseudo-code level. We will
use the common Arrange, Act, Assert pattern for the
pseudo-code. When looking at a test framework, it
should be capable of handling the requirements of
the scenarios below. LegiTest was developed with
the Pragmatic Data Testing approach in mind, so it
enables the below scenarios. Other testing frame-
works can be used as well, though some of them may
require additional work.

Use of automated tests for
regression tests is incredibly
valuable, particularly if the
system you are working on
experiences a lot of change.

SQL

When working with SQL databases, you will want to test the structure, the data and the various ways
that the data can be manipulated.

This primarily includes the tables and views in the database. From a testing standpoint, you want to
verify that the object exists, and that it contains the correct columns with the correct data types. You
may also want to verify that calculated columns and check constraints are set up properly, as shown in
Figure 2- Test for table creation.

You will also want to test stored procedures, triggers and functions that are used in the database.
Verifying that these are properly implemented requires that you set up the necessary prerequisites,
inputs, and verify the outcome of executing the routine. An example of testing a stored procedure is
shown in Figure 3- Test for a stored procedure. The requirement for the stored procedure is that it eval-
uates the customer records looking for possible duplicates based on names and addresses. It requires
that there are customer records to evaluate, that a threshold for similarity be provided as input, and
that a list of customer that exceed the threshold be provided as output.

ARRANGE
• Create an empty Sales database to test Customer table creation.

ARRANGE
• Using Sales connection

 – Execute CreateCustomer.sql
 – Execute CreateCustomerDeduplicatorProcedure.sql
 – Execute InsertTestCustomerRecords.sql

ACT
• Using Sales connection

 – Execute CreateCustomer.sql
 – Execute InsertTestCustomer.sql

ACT
• Using Sales connection

 – Execute EvaluateCustomers procedure (Threshold = 0.90).

ASSERT
• That the Customer table contains a column FirstName (Type: VARCHAR, Length: 50)
• That the Customer table contains a column FirstPurchaseDate (Type: DateTime, Default: GETDATE())
• That the Customer table contains a column YearsAsCustomer (Type: Int, Calculation: DATEDIFF(year,

FirstPurchaseDate, GETDATE())
• That the Customer table contains a row where FirstName = “John”, LastName = “Smith”,

FirstPurchaseDate = “2012/01/01”, and YearsAsCustomer = 3.

ASSERT
• That the result contains 3 rows where FirstName = “John”, LastName = “Smith”, and Similarity >= 0.90.

Figure 2- Test for table creation

Figure 3- Test for a stored procedure

SSIS

SSIS can be among the most heavily used component of the BI stack, and thus requires
rigorous testing. An area for special focus is the Data Flow Task, which handles the bulk of
the work in most packages. Two types of tests for the data flow are fairly standard, validating
the number of rows loaded, as well as comparing the loaded data against the source.

Further, your requirements may also dictate performance levels that a package must achieve.
These too should be validated to ensure, as the example in Figure 4- Example SSIS Package
Test illustrates, the package executed within a predefined run time. As noted earlier in the
performance and load testing section, though these should be split into separate tests if
they are performing load or volume testing, so they can be isolated as necessary.

ARRANGE
• Create a connection to the LoadCustomer package.
• Create a connection to the Sales source system.

 – Insert test data from CustomerTest.sql script.
• Create a connection to the SalesMart target system.

ACT
• Execute the LoadCustomer package.

ASSERT
• That the Sales Customer table row count matches the SalesMart DimCustomer table row

count.
• That the Sales Customer table rows match the SalesMart DimCustomer table rows.
• That the ExecutionTime property of the LoadCustomer package is <= 60 seconds.

Figure 4 - Example SSIS Package Test

Additionally, the Execute SQL Task often needs validation as it has the ability to modify
data, or to return data that can have an impact on the other tasks in the package. Figure
5 - Validation of an Execute SQL Task Which Returns Data covers a test for an Execute SQL
Task which runs a query and returns a value which is placed in a variable.

ARRANGE
• Create a connection to the LoadCustomer package.
• Create a connection to the SalesMart target system.

 – Insert test data from DimCustomerTest.sql script.

ARRANGE
• Create a connection to the LoadCustomer package.
• Create a connection to the SalesMart target system.

 – Insert test data from DimCustomerTest.sql script.

ACT
• Execute the GetMaxID Execute SQL Task.

ACT
• Execute the Truncate DimCustomer Execute SQL Task to truncate the target table.

ASSERT
• That the value of the NextID variable is = 6.

ASSERT
• That the DimCustomer table row count is = 0 (zero).

Figure 5 - Validation of an Execute SQL Task Which Returns Data

Figure 6 - Validation of an Execute SQL Task Which Alters Data

In addition to Execute SQL Tasks which return data, many also perform commands against the target
system. These can be tested by querying the target database. Figure 6 - Validation of an Execute SQL
Task Which Alters Data is an example of a test that verifies an Execute SQL Task truncates a target table.

SSAS

Analysis Services has three main areas that you will want to test: dimensions, measures and calculated mem-
bers. With dimensions, there are a few different aspects to consider. First, you should ensure that expected
members exist in the database. Next, you should validate the count of those members. Finally, you should test
the accuracy of any calculated members of the dimension. Figure 7 - Test for SSAS Dimension walks through
an example scenario of testing a product dimension.

ARRANGE
• Create a connection to SalesCube SSAS database
• Create a connection to the SalesMart source system

 – Insert test data from ProductTest.sql script.

ACT
 – Process the Product dimension to ensure data is valid and up to date

ASSERT
• That the Product dimension contains an Unknown member.
• That the Product dimension contains a Widget123 member.
• That the Product dimension member count matches the Product table row count.
• That the Product dimension Discontinued Products member Sales Amount = $100,000.

Figure 7 - Test for SSAS Dimension

The second area of focus for Analysis Services testing revolves around measures. These tests tend to
be straightforward, comparing the aggregated values from the cube against similar aggregations from
the source systems. Figure 8 - Test SSAS Measures illustrates this scenario.

ARRANGE
• Create a connection to SalesCube SSAS database
• Create a connection to the SalesMart source system

 – Insert test data from SalesTest.sql script.

ACT
• Process the Sales cube to ensure data is valid and up to date

ASSERT
• That the cube Sales Amount measure equals the table FactSales SalesAmount column total.

Figure 8 - Test SSAS Measures

ARRANGE
• Create a connection to SalesCube SSAS database
• Create a connection to the SalesMart source system

 – Insert test data from SalesTest.sql

ARRANGE
• Create a connection to the Sales report.
• Create a connection to the SalesMart source system

ACT
• Process the Sales cube to ensure data is valid and up to date

ACT
• Execute the Sales report.

ASSERT
• That the Sales cube Avg Cost of Sale measure matches the calculation SUM((UnitPrice * Qty) –

(UnitCost * Qty)) / COUNT(SalesId) from the FactSales table.

ASSERT
• That the Sales Amount grand total value from the Sales report is equal to the FactSales table

SalesAmount total.

Figure 9 - Test SSAS Calculated Measures

Figure 10 - Test an SSRS Report Value

Finally, it is important that you test the accuracy of the cube’s calculated measures. This could involve
calculating the expected value by hand, then hard coding it into the test. Alternatively, you may wish to
recreate the calculation in a query against source data. Figure 9 - Test SSAS Calculated represents the
basic workflow for validating calculations.

SSRS

Testing around Reporting Services falls into two areas, validation of values and ensuring reports
executed successfully in a predefined time period.

As part of the test, you will need to execute the report. After executing the report, you would retrieve
a value from the report, and then compare that to a known value, whether it is manually set or calculat-
ed from the source data. Most commonly, the grand totals of the report are used for this purpose.

Retrieving values from SSRS reports can be complicated. You will often find it easiest to do this by
exporting the report to an XML format. Once you have it in the XML format, you can use XPath
queries to locate specific values in the report.

Figure 10 - Test an SSRS Report Value summarizes these steps for a sales report.

Many reports have performance requirements associated with them. You can validate that the report
runs in the expected timeframe by capturing the runtime for the report, and comparing that to an
expected value. Again, as noted in the performance and load testing section, these tests should be split
into separate tests if they are performing load or volume testing, so they can be isolated as necessary.

ARRANGE
• Create a connection to the Sales report.

ACT
• Execute the Sales report.

ASSERT
• That the Sales report execution time is <= 60 seconds.

Figure 10 - Test an SSRS Report Value

On the next page, we explore how to
manage test results.

Managing Test Data
One question that often comes up when testing
data-centric applications is “How do I manage
test data?” There are a number of possible ways to
handle this, and which will work best depends on
your environment and the tools you have available.
Before getting into that, though, you should make
sure you understand where and what types of test
data are needed for your solution.

You need test data anywhere that you expect
external input to your solution. Most data-centric
applications deal with one or more databases.
Each of these is a potential area where you will need
to create or load test data. In addition, some data
integration processes deal with text files or other
non-relational sources — you will also need test data
that represents these inputs. If your data-centric
application is a data mart or warehouse, you may be
wondering if you need test data for the warehouse
itself — after all, you can just load the data from the
source system as needed.

While this is an option, it’s recommended that you
have separate test data for each data store / input
source you deal with. The reason for this is it is
difficult to create effective unit tests if you rely on
processes unrelated to the unit of code under test
to set up the test data. It’s very common that these
upstream processes can be modified in a way that
breaks downstream unit tests, so keeping them
isolated is a better approach.

When it comes to types of test data, it generally falls
into two categories: specific data sets to validate
known scenarios and large volumes of data that
represents a broad sample of the types of data the
solution may possibly encounter. The specific, well
known data sets are most often used for unit and
integration testing, and generally represent a small
number of rows that are designed to exercise any
conditional paths in the solution. These data sets
cannot be randomly generated, as they need to pro-
vide specific values to make sure the test conditions
are met. By the same token, extracting this data from
production data generally doesn’t result in a data set
that exercises all the conditional paths. Often, these
data sets have to be created by hand. It’s very useful
to leverage a test framework that has support for
creating and managing these targeted data sets.

Large volume data sets are used for load and stress
testing. They are also useful for sanity checks on the
solution — verifying that out of range data is handled
or that a sample of production data can be processed
successfully. Random data generators and extracting
data sets from production are valuable approaches
to creating these types of data sets. If you do extract
production data for test purposes, there will often
be a requirement to mask or strip certain pieces
of information. In these cases, it can be helpful to
combine random data generation with the extract
process, to fill in any gaps in the extracted data.

Regardless of the type of test data, look for test
frameworks that include or can be modified to
include the management of the test data sets. You
will find creating tests much easier if you have simple
ways to load test data, reset the data sources, and
persist the test data outside of the database itself.

It’s recommended to have
separate test data for each
data store/input source you
deal with.

Integration into Continuous Delivery
Continuous integration is a development practice in
which any changes checked into the team’s source
control system are immediately compiled, analyzed
and tested, so that the developers get immediate
feedback on the state of the solution. Continuous
delivery builds on this with a set of processes that
enables teams to build solutions in short iterations,
while keeping it in a state that it can be released at
any time. This approach can lead to much faster time
to value, and enables users to see and respond to
changes in the solution much more quickly. It is quite
popular in traditional application environments, but
there are some challenges in implementing it for
data-centric applications. One of the challenges is
that, in order to ensure the solution is in a releasable
state at all times, you need to be able to test any
changes quickly and efficiently. If extensive manual
testing is required, it becomes very difficult to do
this. This is why many people feel that automated
testing of a significant portion of the solution is
mandatory to truly implement continuous delivery.

Continuous Integration &
Delivery leads to much faster
time to value.

Once you have an automated suite of tests, it
becomes much easier to have your data-centric
applications participate in continuous integration
and continuous delivery processes. Since the tests
are automated, they can be added to integration
and build processes. Most automated testing
frameworks support this capability, at a minimum
by using a command line tool. Some feature the
option for direct integration of the test execution
and result evaluation into the build tools.

You don’t have to do continuous integration or
delivery to use the Pragmatic Data Testing
approach. However, you will find it much easier
to implement continuous delivery if you follow
the approach of automating the tests for your
data-centric applications. Continuous delivery can
add significant flexibility to your team’s ability to
deliver useful business results in a timely manner,
and should be something that you evaluate when
looking at improvements in your delivery process.

Conclusion
In this part of the series, we covered some
important concepts on what sort of things you
need to consider testing during development
of your data-centric applications and what types
of testing you should consider. There are also
several examples of test cases that you can look
at implementing in your automated testing frame-
work of choice.

The next part of the series will discuss how
testing your data and data-centric applications
is still important even after development has
finished, and the solution is in production. It will
also cover several techniques that you will find
useful for this type of testing.

Testing data and data-centric applications is a vital step for
organizations that are using their data to drive their business.
This whitepaper explains what data-centric testing is, and
provides an overview of a methodology that can be used to
implement data-centric testing in your organization.

Verifying Data
 in Production

PART 3

Verifying Data in Production
In this section, you will learn about verifying data in production and how this
is different than testing performed in the development process. Verifying data
in production is a critical step for organizations that rely on their data for
decision making.

In the sections below, the different types of
verification will be discussed in more detail.

These three types of verification are often im-
plemented as queries against the data stores and
applications in a data-centric system. There can
be a large number of these queries to execute in
a production system to verify all the data. These
may not all be queries in the traditional relational
or SQL sense, as you will often find the need to
interact with systems that have non-SQL interfac-
es or use web APIs. In all likelihood, you will want
to automate the process of interacting with these
heterogeneous systems, running the queries
and comparing the results, whether you use a
homegrown system or implement a commercially
available package like LegiTest (http://pragmat-
icworks.com/products/legitest). Key features to
look for (or implement, if you are creating your
own) are the ability to store the test results and to
access and query the breadth of data sources that
you use.

The supporting infrastructure needed to perform
data verification effectively will be discussed
further later in this whitepaper. First, however,
we will discuss the differences between testing in
development and verifying data in production.

This step is performed after data integration
processes are executed or after any changes to
the data of the system. This verification includes
several important aspects, but they can be summed
up in the three R’s: Is the data reconciled? Is it
related? And is it reasonable?

• The reconciliation of data is performed by
comparing counts, totals and balances between
sources. For example, if the daily sales transac-
tions in your source system total $100,000, then
the daily sales in your data warehouse should
also be $100,000.

• The relationship of data is verified by examining
the categorization of the data and how it relates
to other data. Continuing the example above,
your data warehouse total sales might match
the source system, but if 80% of the sales are re-
corded against an “unknown” product, the data
isn’t related in a useful way for decision making.

• The reasonableness of data is determined by
looking at trends, history and tolerances. If
historically your data warehouse daily sales total
within +/- 10% of $100,000 (a range of $90,000
to $110,000), seeing daily sales of $200,000
would trigger some additional investigation to
ensure the results were valid.

In development testing, your tests will often deal
with individual records, comparing expected and
actual values at a detail level. However, since the
data volumes in production systems can be quite
large, and the data is expected to be transformed
as it moves between systems, you don’t usually
focus production data verification on a line-by-line
reconciliation. The performance impact from doing
row-by-row validations in a production system
usually outweighs the benefits. Rather, you would
focus initially on testing aggregates and rollups of
information. If these show that the data is incor-
rect, then you would go to a more detailed level of
data, to identify the underlying issues that caused
the incorrect data.

Testing in Development vs. Verification of Data in Production
There are a number of similarities between testing in development and verifying
data in production. They can leverage the same techniques and the same tools.
However, there is a significant difference — and that is in your focus.

Testing in Development Goal
Ensure code is working successfully

Verifying Data in Production Goal
Verify the data manipulated is valid

When you are testing in development, the goal is
to make sure that the code is working successfully,
so you typically control the inputs to the processes
by using known test data. This gives you the ability
to verify that the process produces the expected
results. So, in this case, the focus of the testing is
on the code functionality.

When you are verifying data in production, how-
ever, you don’t control the inputs. You are now
dealing with real, production data. So the focus
shifts from verifying the process or code itself, to
verifying that the data manipulated by the process
is still valid and reasonable. You do this by verifying
that the input matches the output, with any appro-
priate transformations or modifications accounted
for. Since you no longer control the input, you
also have to validate that the output is reasonable,
based on past history.

Types of Verification
As mentioned above, when you are considering
data verification, there are many considerations.
We like to sum these up as the 3 R’s: Is the data
reconciled? Is it related? And is it reasonable?

The 3 R’s are interconnected and build on each
other. Reconciliation is a fundamental verification
step and should be your first goal to implement.
It provides a baseline of confidence in the data,
as you will know that the totals and key values in
each system matches. Verifying data relationships
is the next logical step and adds a significant
amount of value, as it ensures that data is related
in a way that is useful for the business. Finally, you
will want to verify that your data is reasonable.
Implementing this depends on having appropriate
reconciliation and relationship tests in place, as
you can’t verify that data is reasonable if it can’t
be reconciled. The ability to find and be alerted to
exceptional scenarios by reasonableness testing
can be invaluable, particularly since this type of
verification can catch problems that you haven’t
even considered.

RECONCILED

Reconciliation of data involves comparing the
sources of your data to the targets, and verifying
that the data matches. This is rarely as simple as
just comparing rows of data from the source and
the target systems. Data structures are usually
different between source operational systems and
reporting data structures, and the data is often
cleaned, transformed and otherwise modified
when it is moved from repository to repository.
Reporting applications can add their own layers
of transformation, including new calculations
and filtering, that have to be accounted for in the
reconciliation.

The primary measures of reconciliation are totals,
counts and balances. You can calculate these easily
from data storage by running aggregate queries
against the data store. For example, if you are
verifying a SQL Server repository, you might use a
query like the following to get the count of orders
and the totals for sales:

SELECT

 COUNT(DISTINCT OrderId) AS OrderCount,

 SUM(UnitPrice * ItemCount) AS TotalSalesAmount,

 SUM(ItemCount) AS TotalItemsSold

FROM

 Sales.OrderLine

A similar query can be executed against the data
warehouse to retrieve the same numbers, and
the results can be compared to validate that they
match. Any differences should trigger additional
research to discover the source of the mismatch.
These queries may also need to be filtered for
specific time ranges. It usually isn’t necessary,
nor wise for performance, to process your entire
history for the totals each time you run your data
verification. Rather, you will likely want to filter the
results to data that has been modified or moved
since you last ran the verification. Another common
approach is run the verification for a specific time
window — for example, records modified in the last
24 hours or the last 7 days.

The 3 R’s

RECONCILED

RELATED

REASONABLE

RELATED

When verifying the second ‘R’, that data is related,
you are checking the relationships in the data.
For example, you expect sales data to relate to a
number of other pieces of information. The record
of a sale could relate to a product, a customer, a
date or a number of other entities. If those rela-
tionships are missing or invalid, the data may lose a
significant amount of value.

One scenario where you can encounter the
potential for unrelated data can be found if you
work with non-relational data stores, like file based
systems or NoSQL stores. These types of data
stores don’t enforce referential integrity, so there
is nothing to guarantee that records are properly
related.

If you work primarily with relational databases, you
may not think you have much to worry about here.
However, it’s not uncommon for relational data-
bases to be missing the referential integrity checks
that they need to properly enforce relationships.
In addition, many data warehouses intentionally
don’t enforce referential integrity for performance
reasons.

Even when you are working with a relational
database where referential integrity is enforced,
you may need to verify that your data is related.
For example, in data warehouses, it is common
to have an “Unknown” record in dimensions and

fact records that don’t match existing dimensions
may be assigned to these unknown records. These
records are valid in that they pass referential in-
tegrity checks, and a certain volume of “unknown”
relationships may be acceptable for your business
scenarios. However, all organizations have limits to
how many unknown relationships they can have in
their data before it becomes unusable for decision
making.

For example, when processing product sales, it
may be acceptable to have 5% of sales map to an
“unknown” customer location (geography), because
it either wasn’t provided from the customer or the
provided information is invalid (the provided region
and the postal code don’t match so the geography
can’t be determined accurately). However, if the
volume of “unknown” geography relationships for
sales grows to 10%, that may be unacceptable to
your business users for reporting accuracy. This
tolerance will be different for other details — most
business users would be pretty unhappy about 5%
of their sales relating to “unknown” products.

To verify that data is related you will be testing
counts and totals, but they will be subdivided by
the relationships. In the case that you are checking
a specific relationship, like an “unknown” record
of a dimension, you may use a query that filters
results to just that subset of data, like this:

SELECT

 SUM(ExtendedPrice) AS TotalUnknownSales

FROM

 DW.SalesOrder

WHERE

 CustomerId = -1

This allows your data verification tests to do specif-
ic checking for certain relationships and report any
unexpected variances.

It is not uncommon for relational
databases to be missing the
referential integrity checks
needed to enforce relationships.

Another technique for validating relationships can
be to look at specific groupings and the distribution
across groups. This can help you to quickly identify
outliers and unusual relationships.

SELECT

 Product.Category,

 SUM(ExtendedPrice) AS ExtendedPrice

FROM

 DW.SalesOrder

 INNER JOIN

 DW.Product ON SalesOrder.ProductId =
 Product.Id

GROUP BY

 Product.Category

The above query would let you easily compare
categories to see if sales were abnormally high in
any particular category, which would indicate that
the categories were being related incorrectly. By
using a second query that leveraged the results
from the categorized sales query, you can test for
anomalies in the distribution.

SELECT

 MAX(ExtendedPrice) – MIN(ExtendedPrice)

 AS ProductCategoryHighestToLowestDelta

FROM

 CategorizedSales

These values can also be useful in the next step,
checking the reasonableness of the data. This is an-
other place where being able to persist the values
and results from the verification tests is beneficial.

REASONABLE

The 3rd ‘R’ is that data is reasonable. This verifica-
tion is a bit more subjective and will require you to
work with your business users to determine what
data scenarios are expected and normal, and which
data scenarios are abnormal and require someone
to be alerted. It’s very helpful to know the trends
for key metrics in your historical data and to have
that available for discussions with business users.
Generally, you can consider data reasonable if
a business user would look at it and not find it
surprising.

A simple example of reasonableness is looking at
daily sales. Imagine your organization typically sells
10,000 widgets a month. After loading the current
day’s data into your data warehouse, you find
that the data shows that you’ve exceeded 10,000
widgets for the month and it’s only the 4th day
of the month. While that’s certainly exciting data
(it’s a record sales month!), you may not consider it
reasonable that sales have skyrocketed that quickly.
It’s certainly possible that the data is legitimate,
but you would want to be alerted and do some
research to confirm those numbers, particularly
before telling your CEO to buy a new house.

Reasonable verification will require
you to work with your business users
to determine what data scenarios
are normal or not.

While that might be an extreme example, the same
reasonableness criteria can be applied in other scenarios.
If you pay sales people commission on your product
sales, there’s likely a specific range that you expect the
commissions to fall into when you look at as a percentage
of the sale. Doing a reasonableness verification on orders
to ensure that commissions fall into the appropriate range
can be very beneficial.

Simple reasonableness verification can be done by getting
expected values for key metrics from the business, and
querying to validate that they fall within an acceptable
range. For example, if you wanted to verify that your daily
sales were within 10% of an expected value of $5,000,
you could use the following query:

SELECT

 (TotalSalesAmount - 5000) AS Variance,

 CASE

 WHEN TotalSalesAmount

 BETWEEN (5000 * .9) AND (5000 * 1.1)

 THEN ‘Valid’

 ELSE ‘Invalid’

 END AS Result

FROM

 (SELECT

 SUM(UnitPrice * ItemCount) AS TotalSalesAmount

 FROM

 Sales.OrderLine) SalesToday

As currently implemented, this test is useful, but doesn’t
deal well with the normal variances that most organiza-
tions experience. Perhaps Fridays tend to be your busiest
days or there are seasonal factors that lead to significant
differences in the data for different time periods.

This type of test gets much more powerful when you
combine it with historical results and expectations. If
your data verification framework enables you to store
test results, you can implement verification tests that
compare the current results to historical data and trends.
You can also leverage other sources of historical data to
implement trend comparisons. With the proper setup,
these tests can automatically adjust to changing business
scenarios and trends.

DECLARE
 @CurrentDate DATE = GETDATE(),
 @Deviation MONEY,
 @Yesterday MONEY,
 @Today MONEY,
 @Delta MONEY

SELECT
 @Deviation = STDEV(TestValue)
FROM
 TestResult
WHERE
 TestCase = ‘OrderAmount’
 AND ExecutionDate < @CurrentDate

SELECT
 @Today = TestValue
FROM
 TestResult
WHERE
 TestCase = ‘OrderAmount’
 AND ExecutionDate = @CurrentDate

SELECT
 @Yesterday = TestValue
FROM
 TestResult
WHERE
 TestCase = ‘OrderAmount’
 AND ExecutionDate = DATEADD(dd, -1,@CurrentDate)

SET @Delta = ABS(@Yesterday - @Today)

SELECT
 @Deviation AS Deviation,
 @Delta AS Delta,

 IIF(@Delta <= @Deviation, ‘Valid’, ‘Invalid’) AS Result

One way to leverage historical information Is to
use standard deviation. In the example query batch
below, the historical test results for total sales are
used to determine a baseline standard deviation
value. The difference between the current day’s
sales and the previous day’s sales is then calculated
and compared to the standard deviation. If it
exceeds the calculated standard deviation, an alert
would be raised.

Note that this example assumes the use of a da-
tabase table to store and retrieve the test results.
Different implementations may take different
forms. In the case of LegiTest, test history storage
and retrieval is built into the test framework.

Reasonableness verification testing is a powerful
technique, as it can be used to provide consistent
sanity checks to your data. It can also be used to
monitor for exceptional data situations, that might
otherwise go unnoticed, as they don’t always show
up as errors or data reconciliation issues.

Applying Data Verification
Data-centric systems often contain multiple data
stores and applications. There can be numerous
separate processes that move or transform the
data. So how do you go about verifying that it’s
happening correctly? At what points should you
apply the three R’s of verification? There are two
approaches that are commonly used, and frequent-
ly, these approaches are used in conjunction with
each other for additional validation.

STEP-BY-STEP

One approach is step-by-step validation. In this
case, you look at the major components of your
data infrastructure. Within the infrastructure, you
identify each transition point for your data – where
does it move from one system to another, or where
is it transformed? You would then implement
testing for each of these points.

Testing for reconciled data works very well in the
step-by-step approach and it’s highly recommend-
ed that you do reconciliation verification at each
transition point. This helps you quickly identify
spots where some of the data may have been
missed or not transformed correctly. Checking for
related and reasonable data is usually not as critical
for each step, though you may want to implement
these types of verification testing at specific transi-
tion points.

Step-by-step validation is particularly useful for
identifying where in the overall data infrastruc-
ture a problem was introduced. However, it is
targeted toward technical users who have a good
understanding of the complete system. It may not
work well for business users, who are often less
concerned with where the problem occurred than
the end result. Operations people do find the finer
grained approach beneficial.

Step-by-Step Validation
Identify transition points for your data
and test these points.

End-to-End Validation
Compare the starting values in your source
systems to the final values in reporting data
structures, reports and dashboards.

END-TO-END

End-to-end verification focuses comparing the
starting values in your source systems (one end)
with the final values in your reporting data struc-
tures, reports and dashboards (the other end).
The goal of this validation is to look at the macro
level and major end points of the system, without
considering the individual transition points. End
points are usually the places where the data cross-
es the boundaries of your data-centric systems.
End points can be originating, where data enters
your data-centric system, or terminating, where
data flows outside the control of your data-centric
system. In some cases, an end point might function
as both.

Some data-centric systems may have many end
points. For example, systems that include point-
of-sale applications may have hundreds or even
thousands of end points. In this case, you have to
identify a reasonable place to start the testing. If
there is an easy way to replicate the tests over mul-
tiple end points, that may be an option. If not, you
may consider working a little further up the flow
of data to a point where the systems are combined
into a common store.

Out of the three R’s, end-to-end tests usually focus
on reconciliation and reasonableness. You will
typically want to reconcile the data at your end
points, and verifying the reasonableness of the data

in your end points is critical to having confidence
in the data. Relationships can be validated in these
verifications too, but it’s more commonly found in
the step by step verification.

End-to-end verification works very well as a way
of report system status for business users, who are
generally more interested in the high level picture.
Often, the business user really wants to know “Can
I run my reports this morning and have confidence
in the results?”. An end-to-end test that reconciles

the source system totals to the values in the data
warehouse can fill this need nicely.

End-to-end tests are also useful as quick smoke
checks. Because end-to-end verification usually
has less test cases and focuses on high level
aggregates, they can be run more quickly than the
step-by-step verifications. Many organizations
benefit from having both – they run the end-to-end
verifications to determine if there are any major
issues, and then run the step-by-step validations to
identify specific problem areas.

RECONCILED RELATED REASONABLE

Order Processing to Stage • •*
CRM to Stage • •*
Stage to DW • • •
DW to OLAP • •
DW to Reports •
OLAP to Reports •

*Optional, but recommended for most scenarios
Table 1 - Transition Point Verification

Data Verification Example
For an idea of how you might apply this to a real life system, consider the following
example. You are working on a data infrastructure that contains the following systems:

• An OLTP order processing system

• An OLTP customer relationship management (CRM) system

• A star-schema data warehouse (DW), which includes a staging area (Stage)

• An OLAP analysis repository

• A series of reports and dashboards that report on information from the data
warehouse and OLAP repository

TRANSITION POINTS

The transition points where data is moving or being transformed in this system are listed
below, with details on example verifications for each.

Order Processing to Stage

Very little transformation is done at this point. The
primary goal is to move the data to the staging area
for additional processing.

To validate accurate data movement, you would
implement reconciliation that compared the key
metrics from the order processing system to the
staging area. This would include total orders, total
sales amounts and current inventory levels. The
queries for retrieving this information would be
very similar, since there aren’t significant changes
to the data structure in this step.

Relationship and reasonableness verifications are
optional at this step. In many scenarios, it would
be beneficial to implement some reasonableness
verification that looks at the count and total of
the data transferred to determine if it matches the
historical trends.

If the data movement is done incrementally, the
verifications should be filtered so that they look
at the current increment. For example, if the sales
information for the previous day is being moved
to the staging area, you would want to ensure that
your queries were filtered to include only that day’s
information. That helps narrow the scope of any
identified data mismatches.

CRM to Stage

Much like Order Processing to Stage, this transition
is focused on movement of data, not transforma-
tion. The validation logic is very similar, but you
would focus on customer counts, total amounts for
quotes, etc.

Stage to DW

Stage to DW is primarily a transformation step.
As part of this transition, the data is restructured
to fit the data warehouse data, existing values are
summarized and new values are created. Data that
is determined to be invalid would also be excluded
at this step.

You would implement all of the three R’s at this
transition point. Reconciliation verification would
be used to ensure that totals and counts were not
impacted by the transformations being applied.
Relationship verification would be applied to
validate that categorization of the data hadn’t been
impacted as facts were related to dimensions.
Finally, reasonableness verification would compare
the loaded values to ensure that they matched the
historical trends and that there weren’t unusual
data scenarios encountered during the data trans-
formation processing.

Validation of this step involves a good understand-
ing of the business requirements. To implement the
validation, you need to understand the data scenar-
ios that may be encountered, as well as how they
are expected to be handled. The validation would
still be focused on the key metrics identified in the
previous steps (total orders, sales amounts, custom-
er counts), but the queries might be more complex,
as the data has changed during the transition.

For example, you may have sales that are filtered
out for missing or invalid data during processing.
Validation would ensure that all totals from the
original staging tables is compared to totals that
include both the data inserted into the data ware-
house, as well as any data that has been excluded
as invalid.

DW to OLAP

This transition point is primarily focused on chang-
ing the storage of the data, rather than modifying
it. Typically, the data is retrieved from a relational
store and written to a multidimensional store with
different physical storage properties. As part of
the OLAP storage, additional calculations may be
provided.

Since the data and business rules aren’t typically
coming into play, the verification for this transition
point is focused on reconciliation and relationships.
The total amounts and counts should not change,
and the data categorization should remain the
same. Your verification tests should focus on
ensuring that the totals match, that the associated
facts and dimensions are still aligned, and that any
new calculations implemented in the OLAP store
return correct values.

DW to Report

This transition point enables the visualization of the
data for end users. Normally, the data isn’t heavily
transformed in this step, though it is often aggre-
gated and summarized differently for reporting

purposes. Many times there are additional calcula-
tions implemented in the reporting tool.

As you implement verification for this transition
point, your primary concern should be reconciling
that the totals displayed on the reports match the
totals from the data warehouse. Relationships are
not typically modified in the reporting step, and the
reasonableness of the data should be verified in a
previous step.

If the reports are simple and straightforward, with
direct pass through to the underlying storage,
verification tests may not be necessary at this step.
However, new calculations and transformations
for display purposes are frequently implemented
in the reporting layer. In these cases, reconciliation
verification is important to ensure that the report-
ing layer isn’t presenting an invalid display of the
source data.

OLAP to Report

The verification for this transition point matches
the DW to Report transition point. In this case, the
only difference is the data source for the reports.

END POINTS

End points are the places in your data-centric system where data is introduced from
outside, or where the data flows out of your system. The following items are the end
points for the example above.

RECONCILED RELATED REASONABLE

Order Processing • •
CRM • •
DW • •
OLAP •
Reports •

Table 2 - End Point Verification

Order Processing

Order processing is an originating end point. Data
flows into this system from users or other systems
interacting with the order processing system.
End point verification at this point would consist
of reconciliation steps, as well as reasonableness
verification.

For reconciliation, your primary goal for this end
point is to gather the totals, counts and balances
that will be used for reconciliation with other end
points. These values should be stored, so that you
have a history of the values. The reasonableness
verification should be based on these historical
values. For example, you might capture the total
order amounts and item counts for reconciliation.
Your reasonableness tests would compare those
totals to the historical trends, and if the variance
was greater than 15%, an alert would be triggered.

CRM

The CRM, like order processing, is an originating
end point. You would apply the same verification
steps to it. The metrics would be values for
customer counts, outstanding quotes, geography
breakdown of customers, etc.

DW

The data warehouse is considered a terminating
end point, as some users report directly from the
warehouse, and other applications and systems use
it as a source of data. For verification, your primary
concerns are reconciliation and reasonableness.

The reconciliation verification should compare
the amounts and counts with the originating end
points. In this case, that would mean comparing
the data warehouse total sales amount and item
counts with the values captured from the order
processing system, and the customer counts and
quote amounts with the CRM system.

This is another point where you will want to persist
the values for the recompilation verification, so that
you can test the reasonableness of the data. Even
though the data was tested for reasonableness at
the source, and the data reconciles, the processes
for loading the warehouse can be complicated, and
the reasonableness check in this case verifies that
the data matches trends, and that unusual scenar-
ios (like a single salesperson making all of the sales
for the day) are caught.

OLAP

Since the OLAP system is another point where data
is consumed by other systems and users, it is also
considered a terminating end point. In this case,
you would focus on reconciling to the CRM and
order processing systems, using the same metrics
as described above for the data warehouse.

Reports

Reports and dashboards are often the terminating
end point for users, though, thanks to the prev-
alence of Excel and the ease of exporting most
reports to it, the data may still flow to other down-
stream uses. For this end point, reconciliation to
source systems is the most important verification
step. Particularly since this may be the only aspect
of your data-centric system that end users interact
with, it is important to make sure that the values on
the report reconcile to the source systems and to
the data warehouse or OLAP store, as appropriate.

Infrastructure
As mentioned earlier, doing complete data verification can involve interacting with a
large number of systems and running a large number of queries against them. Whether
you choose to build your own or use a commercial package like LegiTest, there are some
key features you should look for:

Automated execution of
queries
As mentioned, there can be
a large number of queries
to execute, and if you want
to test regularly (which is
certainly recommended),
manual execution will get very
time-consuming, very quickly.

Support comparison of
results across disparate
systems
Your test framework should
handle the need to compare
data across different systems
that may treat the same
nominal data type differently.
For example, SQL Server,
Oracle and JSON all use
slightly different representa-
tions for date values. Your test
framework should be able to
account for this and still make
accurate comparisons.

Flexible query result
checking
Once you’ve run the query,
you need a way to verify that
it returned the expected data.
This should be part of the
automated execution, so that
you get a pass/fail message
for each test case. Bear in
mind that some queries may
return single values and some
may return tables of infor-
mation. Your test framework
should handle either.

Alerting
When tests fail, you will want
someone to be notified. Make
sure your test framework
supports this.

History
Storing a history of test
results is beneficial for report-
ing purposes, as well as seeing
trends in test results. It’s also
vital to doing effective reason-
ableness verification, so this is
a must have feature.

Support multiple types of
data stores
Very few organizations work
with a single application
interface or data storage tech-
nology. Your test framework
should support all the tools
you work with and be flexible
to handle future ones. Ideally,
it will support an extensibil-
ity model so that new data
providers can be added easily.

Dashboards/Reports
In addition to alerting, some
users will want the ability to
see current verification status
of their data-centric systems,
and to drill into details about
test failures and issues. Ideally,
this should be web-based or in
a format that is easy to share
with your users.

Having a proper framework in place means that you can
focus on implementing the business logic for your tests,
rather than worrying about how to run a query. While
you can do some level of data-centric testing without a
framework, it is strongly recommended.

http://pragmaticworks.com/products/legitest

With the examples provided, you should be able to
start implementing data verification testing in your
organization.

This series of whitepapers has focused on da-
ta-centric testing, both from a development stand-
point and for production data verification. You’ve
seen the new concepts involved defined, as well
as been presented with some of the benefits to be
gained by adopting a data-centric view of testing in
your organization. With examples of how to imple-
ment data centric testing at both the development
and production level, you have an introduction to
the approaches and techniques you can leverage.

Our goal for this series of whitepapers has been to
help you to evaluate your approach, tools and tech-
niques for dealing with the data-centric nature of
organizations today. Data is a vital part of business,
and is only becoming more important. We want to
enable you to be better equipped to deal with not
only today’s challenges, but to make sure you are
ready to face the challenges of tomorrow.

This whitepaper introduced data verification testing and
discussed how it differs from testing data centric applications
in development. The three R’s of data verification (reconciled,
related, and reasonable) were defined, as well as the
approaches for implementing data verification tests.

PRAGMATIC WORKS CAN HELP YOU BUILD A
MORE RELIABLE DATA-CENTRIC ORGANIZATION.
FOR MORE INFORMATION ON DATA-CENTRIC
TESTING AND TO REQUEST A DEMO OF
OUR PRODUCT LEGITEST, PLEASE VISIT
PRAGMATICWORKS.COM.

We believe that it’s necessary to go beyond saying
that your data is good – you should be able to
prove it. If you can show, through repeatable tests
and verification, that your data is reconciled, relat-
ed and reasonable, it gives you confidence in your
work and it gives your users confidence to make
the decisions they need to make. And at the end
of the day, everyone working on your data-centric
systems will be happier and more productive. We
want to help you get there.

http://pragmaticworks.com/

