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Abstract 

An enterprise network is analyzed from the viewpoint of an end-product manufacturer who 

receives customer orders and organises his production and supply policy so as to minimize the 

sum of his average holding cost and average stock-out cost. For each main component to be 

ordered, the producer has several possible suppliers. The arrivals of customers’ orders are 

random and delivery times from suppliers are also supposed random. This supply system is 

represented as a queuing network and the producer uses a base-stock inventory control policy 

that keeps constant the position inventory level (current inventory level + pending 

replenishment orders). The decision variables are the reference position inventory level and 

the percentages of orders sent to the different suppliers. In the queuing network model, the 

percentages of orders are implemented as Bernoulli branching parameters. A close-form 

expression of the expected cost criterion is obtained as a complex non-linear function of 

decision variables. A decomposed approach is proposed for solving the optimization problem 

in an approximate manner. The quality of the approximate solution is evaluated by 

comparison to the exact solution, which can be computed numerically in some simple cases, 

in particular in the two-supplier case. Numerical applications show the important economic 

advantage for the producer of sending orders to several suppliers rather than to a single one.  
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1. Introduction 

A major difficulty in supply chain organisation and management is to conciliate global 

efficiency with local autonomy. When considering a network of cooperating enterprises, a 

basic objective is to organize integration in a non-compulsory manner, so as to maintain the 

autonomy of partners. A possible approach for combining integration and autonomy is 

through partly automated negotiation processes (Jennings et al, 2001, Besembel et al., 2002). 

Once the negotiation has started, parameters can be updated and other criteria can enter into 

play, such as costs (fixed and variable ordering costs), quality and non-formalized preference. 

In such a way, the system complexity inherently attached to supply chain organization, can be 

managed through negotiation between the main actors, each one of them basing his decision 

upon a local optimization process. Such a scheme seems appealing by preserving the 

autonomy and decision optimization among the partners of an Enterprise Network. However, 

it has been shown to be globally sub-optimal (see e.g. Cachon and Zypkin, 1999), by driving 

the system to a Nash equilibrium which can globally perform very poorly with respect to the 

minimal total cost criterion. Several corrective actions have been proposed to compensate for 

this bias. They mainly consist in sharing risks and costs among partners and this can be 

implemented through contracts modifying local criteria in a globally more efficient manner 

(Cachon and Lariviere, 2001, Chen et al., 2001).  

Another well-known factor of inefficiency in supply chains is the so-called “bullwhip effect”, 

which tends to propagate and amplify disturbances upward along the supply chain. A supply 

chain generally involves several sources of disturbances, and coordination of product flows is 

fragile since variations in external supply and demand may be amplified through 

interconnections between partners. Some typical causes for such amplification are capacity 

limitations and the use of different batch sizes between partners (Lee and Billington, 1992).  
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The study analyzes one of the basic elements of a supply chain: the operational relationships 

between an end-producer and his direct suppliers. A simple queuing model is constructed, 

based on the assumptions of a Poisson external demand for end-products, instantaneous 

delivery to the customer from the producer’s stock and an exponentially distributed service 

time for each supplier. Only one basic component of the end-product is considered and 

suppliers are supposed equivalent in terms of quality and cost. They only differ by their 

average service time. In spite of its simplicity, such a model grasps the main issues for the 

producer: should he use only one supplier, the best one in terms of a relevant performance 

index, or should he dispatch his orders between different suppliers? In the latter case, what 

suppliers should be selected and for what percentage of the demand? 

The potential usefulness of the model for the supplier is in the a-priori determination of his 

“optimal” inventory level and of the volumes (or frequency) of his orders to suppliers, based 

on a-priori evaluation of their average delivery time. In practice, this a-priori knowledge can 

be considered as a starting point in the negotiation process that will be undertaken with the 

suppliers. By assuming unitary demands and orders and memoryless arrival, dispatching and 

service processes, we get rid of the bullwhip effect in the model, to concentrate on the mean 

performance analysis. From the literature on the bullwhip effect, it is assumed that it can be 

treated separately, through a more detailed model, either through synchronous scheduling 

(Cachon, 1999) or/and through an adequate choice of batch sizes (Riddalls and Bennett, 

2001).  

To optimize the producer’s inventory level and the order dispatching proportions, it is 

essential to combine the effects of random fluctuations on demand flows, and delays of 

deliveries from suppliers. Random demands have often been considered in the existing 

models of inventory control, specially the ones based on the “newsvendor” paradigm (Arrow 

et al., 1951, Porteus, 1990). On the contrary, random delays in part deliveries have not often 

been integrated in models explicitly. An exception is the work of Dolgui and Louly (2001), in 

which several suppliers with random delivery delays are considered. In their work, the 

different suppliers provide different parts to be assembled by the producers. Then, there is 

interdependency between the inventory positions of the end product and of its components. 

However, the inventory positions of the different components can be independently controlled 

through the information and ordering system. On the contrary, the case of a centralized 

inventory of a single component does not offer the same possibility of decomposition. 

In this paper, a centralized inventory control model is constructed to combine supply and 

demand randomness. The objective of the producer is to minimize his average cost by 

13th Intl Working Seminar on Production Economics (WSPE), Igls, Autriche, pp.51-62



 

 - 4 - 

constructing an ordering policy, defined by an optimal reference inventory position and a rule 

for selecting the supplier of each inventory replenishment order.  

Section 2 formulates the optimal inventory and ordering problem for one producer and several 

suppliers. Then section 3 solves optimally the order dispatching problem in the particular 

“make – to – order case, and an approximate resolution technique is presented in section 4 for 

the make – to – stock case. The performance of the approximate solution is comparatively 

evaluated on simple examples in section 5. Finally, some conclusions and perspectives are 

presented. 

2. The optimal inventory and ordering policy 

The current inventory level of the product considered at time t is denoted I(t). It is defined as 

the difference between the on-hand inventory and the amount of backorders. In general, an 

ordering decision should not be based only on the inventory level. One should also consider 

the number of replenishment orders which have been placed earlier and not yet been 

delivered, denoted u(t). The global state of the system can then be characterized by the 

inventory position, denoted P(t) defined by: 

P(t) = I(t) + u(t)           (1) 

Depending on the information system available, an inventory position may be controlled at 

any time through a continuous review policy, or at periodic times through a periodic review 

policy. Then, the control policy determines when and how much to order. Different control 

policies may be applied, within the limits of the legal agreements between producer and 

supplier. 

One of the most popular continuous review policy is the (s,S) policy, in which s stands for the 

inventory position order point and S for the inventory position replenishment level. The base-

stock policy can be seen as a variant of the (s,S) policy, for which an order is placed whenever 

a demand comes, so as to permanently maintain the inventory position S. This type of a policy 

has been shown to be optimal under constant average demand rates or unitary demands with 

independent identically distributed (i.i.d.) arrival dates, whenever the cost criterion only 

depends on the inventory position (Axsater, 2000). Moreover, under unitary demands with 

(i.i.d.) arrival dates, the optimal base stock policy reduces to the policy (s,S) with s = S-1. 

This policy is denoted the reference inventory policy. It will be studied in the sequel, in the 

multi-supplier case.  
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In the “make-to stock” context, when an order comes to the producer, it is immediately 

satisfied if its amount is available in the stock. If not, it has to wait until the inventory has 

been sufficiently replenished by the arrival of products from suppliers. In both cases, an order 

is placed from the producer to the supplier whenever a demand comes and has the same 

amount (1 in the unitary case). As shown in (Bollon et al., 2000), such a base stock control 

policy can also be interpreted as a Kanban mechanism After an initial inventory 

replenishment stage, the reference inventory policy maintains constant the inventory position 

of the producer: 

0   )( ttStP ≥∀=          (2) 

If the random processes of demand arrivals and supply deliveries are stationary, then, under a 

stationary (S-1,S) base stock policy, the system (producer + suppliers) reaches stationary 

conditions characterized by stationary probabilities of the number of orders placed by the 

producer and not yet delivered by the suppliers. In the sequel, these probabilities will be 

computed in the case of exponential distributions of demand arrivals and supply lead times.  

From the producer viewpoint, the cost function to be minimized is the sum of the average 

holding cost and the average stock-out cost. Consider the following notations: 

I  is the random variable representing the producer inventory level in stationary 

conditions 

u  is the random variable representing the number of uncompleted orders from the 

producer to the supplier in ergodic conditions 

h  is the unit holding cost, 

b  is the unit stock-out cost. 

In stationary conditions under the (S-1,S) base stock policy, random variables I and w are 

related by the following equality, derived from (1) and (2): 

I=S-u            (3) 

Using notation (x)+ for max(x,0) and (x)- for max(-x,0), the average cost criterion takes the 

form: 

]b (I)E [ h (I)C(S) −+ += .         (4) 

Demands are assumed unitary. They enter the system as a Poisson process with rate λ > 0.  

When a unitary demand arrives at time t, the producer serves it immediately if I(t)≥0. He 

waits if I(t)<0. In both cases, he applies the (S-1,S) ordering policy by sending a 

corresponding order to supplier i with probability αi satisfying 10 ≤≤ iα  and ∑
=

=
N

1i
i 1α . Such 
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unitary orders can be seen as a limit case that maximizes the information efficiency of order 

transfer from the producer to the suppliers and minimizes the “bullwhip” effect by avoiding 

transmission distortions due to differences in batch policies. Each supplier is supposed to have 

an exponential service rate and treats the requests in the FIFO (First In First Out) order. Let μi 

denote the mean service rate of supplier i = 1,…,N , with μi ≠ μj for j ∈ (1,…,i-1,i+1,…,N).  

Such an order dispatching policy from the producer to the supplier is known as a Bernoulli 

splitting process. A well known property of this process is {Ni(t), t ≥ 0} i = 1,…,N are Poisson 

processes with rates piλ. Moreover, these processes are mutually independent.The proof of 

this property can be found, in particular, in (Ross, 2000). As a consequence, each supplier can 

be modelled as an M/M/1 queue with arrival rate αiλ and service rate μi. The set of suppliers 

is represented as a network of N independent M/M/1 queues in parallel. The probability of 

having ki orders in queue i is given by: 

{ }  
μ
λα

μ
λα

i kkP
i

i
k

i

i
ii

i

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
== 1in  orders  Pr)(       (5) 

The necessary and sufficient condition for stability of queue i is αi ρi < 1, with ρi = λ / μi. The 

probability for the network of queues to be in state { }Ni ,...,k,...,k,kkK 21=  is given by the 

product-form expression (Baskett et al, 1975): 

)1()( ),...,( ii
1

k
ii1 ραρα∏

=

−=
N

i
NkkP         (6) 

In the order dispatching problem, Bernoulli parameters α1, α2… αN are decision variables. 

Their optimal values express the optimal assignment probabilities in steady state. The 

considered optimization criterion is the sum of the mean holding cost and the mean stock-out 

cost per time unit. The objective of the study is to compute the optimal Bernoulli parameters 

and the optimal base stock value, S* minimizing the average cost criterion. 

In the case of N suppliers, the number of orders not yet delivered to the producer is equal to 

the total number of orders in the open queuing network composed by the queues of orders 

coming from the producer. Let Ki denote the number of orders sitting in the ith supplier 

queue. P(ki) = Pr{Ki = ki} is defined by equation (5). Then, the probability of having w orders 

waiting in the suppliers queue is given by 

{ } w...K Pr 21 =+++= Nw KKP            

Probability Pw can be obtained by composition of the probabilities related to the N queues. 

Such a composition can be computed from the probability generating function. Assuming 
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ji ραρα jjii ≠∀≠ , the product form (21) can be transformed into a sum as in (Kleinrock, 

1975). Then one obtains (Arda and Hennet, 2003) 

  ρ )(
N

1

1-wN
i

1-wN
N

1
∑ ∏
=
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≠
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⎜
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⎛
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ijw bNHP α with ∏
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1
1 ,
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kj ραρα

b
−

=
1 .(7) 

The mean value of the number of pending orders is denoted Z, with  

∑
∞

=

==
0

][
w

wwPuEZ .          (8) 

Criterion (4) can be re-written: 

S )b ( Z(S-w)Pb) (hC(S)
S

w
w −++= ∑

=0
       (9) 

and the following expression is obtained: 
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 (10) 

Convexity of criterion (10) with respect to variables α1,…, αN, S is not guaranteed in general. 

Therefore, minimization of criterion (10) subject to constraints 10 ≤≤ iα  for i=1,…, N and 

∑
=

=
N

1i
i 1α  appears to be a hard optimization problem. 

3. The optimal solution in the MTO case 

In the “Make-to Order” case, the base stock level is supposed equal to zero. Then, the cost 

function reduces to the backorder cost :  

λμ
λ

  bZ ),...,,C(
ii

i
N

1i
N21 α

α
ααα

−
== ∑

=

b         (11) 

Minimizing the backorder cost (11) is equivalent to minimizing the number of unsatisfied 

orders or equivalently, from Little formula, minimizing the expected waiting time E[T] = Z / 

λ. Without loss of generality, the N suppliers can be ranked in the decreasing order of their 

service rate : 0μ...μμ N21 >>>> . The problem constraints are based on the following 

conditions: 

 - Bernoulli parameters should be feasible. This condition requires the following constraints: 
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N1,...,i               10 i =≤≤α          (12) 

∑
=

=
N

1i
i 1α            (13) 

- Stability of the queuing network requires the following conditions : 

N1,...,i                   1
μ
λ

i
=<iα

        (14) 

 

 - Moreover, a necessary and sufficient condition for the existence of a set of Bernoulli 

parameters, (αi ; i = 1,…,N) satisfying constraints (12), (13), and (14) is : 

∑
=

<
N

1i
iμλ              (15) 

Suppose that condition (15) is satisfied by the problem data. Then, the “Make-to Order” 

optimization problem, denoted problem (P1) takes the following form : 

 

λμ
 inimize

ii

i
N

1i,...,1 α
α

αα −∑
=N

m           (16) 

under constraint (13), and constraint (17) which replaces (12) and (14) : 

N1,...,i                 )
λ
μ

1,min(0 i =≤≤ iα         (17) 

All the constraints are linear and in the feasible domain, criterion E[T] is convex: 

3
ii

i
4

ii

iii
2

ii

i
2

2

λ)(μ
λ2μ

 
λ)(μ

λ)λ(μ2μ
λ)(μ

μ][ 
αα

α
ααα −

=
−

−
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
=

ii d
d

d
TEd . 

Non negativity of 2

2 ][ 

id
TEd

α
 is always guaranteed under constraint (14). Therefore, problem 

(P1) is convex and has a unique minimum defined by the first order optimality conditions: 

0][ 
=

id
TEd

α
 for i=1,…,N under constraints (13), and (17). 

3.1 Resolution of a relaxed problem 

Consider now the case when the optimal solution of the problem defined by (16) and (13) 

naturally satisfies condition (17). Then, this solution is optimal for problem (P1). The 

Lagrangean of the relaxed problem can be written :  
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==
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i
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i
N

1i
1 

λμ
 L α

α
α

p           

with p the Lagrange parameter associated with the equality constraint : ∑
=

=
N

1i
i 1α . Let *

iα  be 

the optimal value of the Bernoulli parameter iα  for i = 1,…,N. Then, the optimal solution of 

the relaxed problem satisfies the following set of conditions: 

N1,...,i               0
λ)(μ

μL 
2*

i

i ==−
−

= p
d
d

ii αα
      (18) 

∑
=

=
N

1i

* 1iα            (19) 

For any pair ( *
iα , *

jα ), condition (18) can be re-written :  

i

*
ij*

j μ 

λ)(μ  μ 
λμ

i
j

α
α

−
=−          (20) 

By summing over j both terms of equation (20), one obtains: 

∑∑
==

−
=−

N

j

iN

j
j

1 i

*
ij

1

*
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λ)(μ  μ 
λ)(μ
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Under constraint ∑
=

=
N

1i

* 1iα , this equation becomes : ∑∑
==

−
=−

N

j

i
N

j 1
j

i

*
i

1
j μ   

μ 
λμ 

λμ
α

 and thus,  

the following result is obtained. 

Property 1 : 

The optimal values of Bernoulli parameters with respect to the relaxed problem, are defined 

by the following expressions: 

N1,...,i                 )μ τ(μ
λ
1

iNi
* =−=iα        (21) 

where τN is defined by : 

  
μ 

λμ 
τ

N
1j j

N
1j j

N
∑
∑

=

=
−

=            (22) 

If the optimal values (αi*) satisfy constraints (17), then the minimum of the relaxed problem 

is feasible and therefore optimal for problem (P1). The feasibility condition is re-written: 

N1,...,i                 )
λ
μ

min(1,)μ τ(μ
λ
10 i

iNi =≤−≤      (23) 
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From condition (13), τN > 0. Therefore, inequalities (23) can be replaced by : 

N1,...,i                                       λμ τμ0 iNi =≤−≤       (24) 

meaning 10 * ≤≤ iα . The left-side inequality can be re written : 

N1,...,i                                                           τμ 2
Ni =≥      (25) 

And, using ∑
=

=
N

1i

* 1iα , the right-side inequality becomes satisfied. 

3.2 The restricted choice problem 

From the ranking of service rates in the decreasing order 0μ...μμ N21 >>>> , if. inequality 

(25) is not satisfied for i0, with Ni ≤≤ 01 , then, it is also violated for i = i0 +1,…,N. In this 

case, the “restrictive choice problem” is obtained by imposing 0* =iα  for i = i0,…,N To show 

the relevance of the restricted choice problem, the following parameter is defined for 

m=1,…,N+1, under the convention μN+1 = 0: 

  
μ 

λμ 
τ

m
1j j

m
1j j

m
∑
∑

=

=
−

=            (26) 

The evolution of τm satisfies the following properties. 

Property 2  

For positive values of parameters τm et τm+1 (m ≤ N-1), the evolution of τm  satisfies the 

following rules : 

(1)   
⎪
⎩
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<⇔

<⇔
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τ τ
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⎪
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⎪
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=⇔
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⎪
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>⇔
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+

2
1m1m

2
m1m

m1m
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τ τ

 

Proof 

From (26), one obtains 

  λμμμ τμ τμ τ
1m

1i
1mi

m

1i
im1mm

1m

1i
im ∑∑∑

+

=
+

=
+

+

=

−−==−      (27) 

  λμμμ τμ τμ τ
m

1i
1mi

1m

1i
i1m1m1m

m

1i
i1m ∑∑∑

=
+

+

=
+++

=
+ −+==+     (28) 

this implies : 
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∑
+

=
+++ =−

1m

1i
im1m1mm1m μ )τ-(τμ τμ        (29) 

∑
=

++++ =−
m

1i
im1m1m1m1m μ )τ-(τ μ τμ        (30) 

The rules of property 2 directly derive from these two equalities.   � 

 

 

Property 3 :   

Parameter τm increases with m for 1 ≤ m ≤ m*. Then, parameter τm monotonously decreases 

with m for m* < m ≤ N. The maximal value of parameter τm is obtained for m* (1 ≤ m* ≤ N), 

which is the unique index satisfying:  

*m
2

*m1*m

*m

1i
i μ  τμ    and    λμ <≤> +

=
∑        (31) 

Proof : 

The proof is presented in two parts. 

i) Existence of the index m* : 

For any set of parameters  (λ, μ1,…, μN), condition (26) implies τN > 0. Let n be the smallest 

index satisfying  λμ
n

1i
i∑

=

> . Replacing m + 1 by n in equation (31), one obtains:  

∑
=

=−
1-n

1i
i1-n μ )τ-(τ μ τμ nnnn         (32) 

From τn > 0 and τn-1 ≤ 0, equation (33) implies  τμ 2
n>n . If  τμ 2

n1 ≤+n , then m* = n. If not, 

relation  τμ 2
n1 >+n  implies 2

1n1n τμ ++ >  and n1n ττ >+  by the third rule of Property 2. And so, 

the process is iterated for m = n + 2,…,N. 

Then, starting from μN+1 = 0, we obtain  τμ 2
N1 ≤+N .  Then, if  2

NN τμ > ,  m* = N. If not, 

relation 2
NN τμ ≤  implies 2

1-NN τμ ≤  et 1-Nττ ≤N  from the first rule of Property 2. Thus, there 

exists a unique index m*, with 1 ≤ m* ≤ N, that satisfies relations (31). Note that in the case    

n = N, equation (32) implies  τμ 2
1N+>N and thus m* = N.  

ii)  The evolution of parameter τm follows property 3. 
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For indices m=m*,…,N, relation  λμμ *m
1i i

m
1i i ∑∑ ==

>>  implies τm > 0.Then, from 

2
*m1*m τμ ≤+ , we can derive from Property 2,  τm*+1 ≤ τm* and 2

1*m1*m τμ ++ ≤  Therefore,  relation 

2
1*m1*m2*m τμμ +++ ≤<  implies τm*+2 < τm*+1. Applying the same reasoning for m = 

m*+3,…,N, shows that parameter τm monotonously decreases with m for m* < m ≤ N. 

According to equations (29) and (30), parameter τm increases with m for 1 ≤ m ≤ n-1, since μi 

> 0 for i = 1,…,N. Then, knowing that τm > 0 for m = n,…,m* and that 2
*m*m τμ > , one can 

write   τm* > τm*-1 and 2
-1*m*m τμ >  from Property 2. Consequently, relation 2

-1*m*m1*m τμμ >>−  

implies τm*-1 > τm*-2. The same reasoning can then be applied to     m = n,…,m*-3. And thus, 

the value of parameter τm increases with m for 1 ≤ m ≤ m* and finally, the maximal value of 

parameter τm is obtained for m*.        � 

If condition (25) is not satisfied, the constrained problem can be solved using the following 

property : 

Property 4 : 

Suppose that condition (13) is satisfied and consider the index m* (1 ≤ m* ≤ N) which satisfies 

relations (31). Then, the optimal values of Bernoulli parameters are given by: 

⎪⎩

⎪
⎨
⎧

+=

=−
=

N1,...,*mifor                        0

*m1,...,ifor       )μ τ(μ
λ
1  im*i*

iα        (33) 

Proof : 

(i) Feasibility of policy *)(* mα  defined by property 4 : 

The set of Bernoulli parameters ( *
iα  ; i = 1,…,N) defined by (33) satisfies constraint (13) : 

1)μ τμ(
λ
1)μ τ(μ

λ
1 *

1i
i*m

*m

1i
i

*

1
i*mi

1

* =−=−= ∑∑∑∑
====

mm

i

N

i
iα . 

If m* = 1, the set ( 0,1 **
1 == iαα  for i = 2,…,N) is feasible. If m* > 1, since μi > μm* for i = 

1,…m*-1 and 2
*m*m τμ > , then 2

*m*mi τμμ >>  which implies i*mi μ τμ >  for i = 1,…m*. 

From expression (33), it follows 0* >iα  for i = 1,…m*. Moreover, the right side inequality of 

constraint (15) is satisfied since τm* > 0. Thus, property 4 defines a feasible policy. 

(ii) Optimality of policy  *)(* mα  : 
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From property 4, the policy *)(* mα  is optimal if m* = N. For m* < N, from the convexity of 

problem P1 with respect to parameters ,,...,1for  , Njj =α , it suffices to show that the set of 

values ( 0,...,0,,...,, *
*

*
2

*
1 mααα ) is locally optimal. So, consider an increase  ∂αj > 0 with m* < j 

≤ N. from policy *)(* mα . Then, constraint (13) implies a decrease of *
iα  for some  i = 

1,…,m* (∂αi < 0) under the following feasibility constraint: 

0
*

1
=∂+∂ ∑

=

m

i
ij αα           (34) 

The criterion  variation then takes the following form : 

λ μλμ)λ(μ
][ 

*

**

1
*

*

jj

j

ii

i
m

i iii

iiTE
α

α

α
α

αα
αα

∂−

∂
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

∂+−

∂+
=∂ ∑

=

     (35) 

or, equivalently,  

λ μλ)μ)()λ(μ(
μ  

][ 
*

1
**

jj

j
m

i iiiii

iiTE
α

α

ααα
α

∂−

∂
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−∂+−

∂
=∂ ∑

=

      (36) 

From relations ∂αj > 0, ∂αi < 0, and expression (33), the following inequality is obtained. 

j

j
m

i
i

j

j
m

i

i

j

j
m

i ii

iiTE
μτ

1
μτμλ)μ(

μ  
][ 

*

1
2

*m

*

1
2

*m

*

1
2*

α
α

ααα

α
α ∂

+∂=
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∂
=

∂
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

∂
>∂ ∑∑∑

===

   (37) 

Then, using equation (34), ∑
=

α∂
*m

1i
i can be replaced by - jα∂  in inequality (37). And from 

2
*mj τμ ≤  for j = m*-1,…,N, we obtain :  

0
τ
1

μ
1][ 

2
*m

>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∂>∂

j
jTE α         (38) 

Therefore, the policy defined by parameters (33) is optimal.   

4. An approximate solution in the “make-to-stock” case 

The “make-to-stock” case corresponds to the general case, including the “make-to-order” 

case, which can be characterized by a null base-stock level (S=0). Due to the complexity of 

the cost function (10), it is proposed to decompose the problem into two parts. In the first part, 

Bernoulli parameters are the decision variables while the base stock level is supposed to take 

the zero value. These assumptions are the same as for Problem (P1). They correspond to the 

MTO (Make to Order) case solved at the preceding section. In the second part of the problem; 
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denoted (P2), the values of Bernoulli parameters are supposed given and the only decision 

variable to be determined is the base stock level. In this second part, the Bernoulli parameters 

values obtained in (P1) are used as input data for problem (P2) and the optimal value of the 

inventory capacity, S*, is computed using the discrete version of the “newsvendor” problem.  

4.1 Computation of the dispatching parameters 

Problem (P1) is solved as described in section 3. The value of m* is calculated by Property 3. 

Then, the reference values of Bernoulli parameters are directly computed by explicit 

expressions (33). The error derived from the application of this approximation scheme will be 

evaluated in section 5.  

4.2 Determination of the base stock level 

From criterion expression (9), consider the incremental function )()1()( SCSCSG −+= . One 

obtains: .Prob S) -b (ub) (hG(S) ≤+=  The PDF F(S) = Prob{ u ≤ S } being a monotonous 

increasing function, so is G(S). Then, the value S* for which C(S*) is optimal satisfies: 

⎩
⎨
⎧

>⇔+<
≤−⇔−≤

. 0)()1()(
0)1()1()(

***

***

SGSCSC
SGSCSC        (39) 

Therefore, a necessary and sufficient condition for optimality is given by the condition:  

∑∑
=

−

=

<
+

≤
**

0

1 

0
     

S

w
w

S

w
w P

bh
bP .         (40) 

For the order dispatching policy *)(* mα , expression (7) of wP  leads to evaluation the 

following quantity, from which the solution S* of Problem (P2) can be computed from (40): 

  
ρ1

)ρ(1ρ )(
m*

1 i

1S
i

1
i

1m*
i

1m*
i

m*

10
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⎛
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⎟
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⎠

⎞

⎜
⎜
⎜

⎝

⎛
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i i

S

ij
j

ij

S

w
w bNHP

α
αα . 

5. Evaluation of the Approximate Method 

The approximation scheme described in section 4 relies on two simplifications. The first one 

consists in replacing the global optimisation problem, with variables Nαα ,...,1 and S by an 

independent problem (problem P1) in Nαα ,...,1 , followed by a problem in S (problem P2). 

The second simplification consists in solving problem (P1) for a value of S (S=0) which is 

not, in general, the optimal one. It can be noted that with the value of S imposed in problem 
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(P1), it is not possible to iterate the approximation scheme by updating the value of S. As a 

consequence, the quality of the approximate solution is not guaranteed and there is a 

possibility to identify some bias in the method. The approximate scheme has been evaluated 

in the particular case of one producer and two suppliers. In this case, the global optimal 

solution can be easily computed by exploration of the feasible domain (Arda and Hennet, 

2003). Numerical evaluations reported on table 1, show an economic advantage for the 

producer of sending orders to several suppliers rather than to a single one, even when the 

second one is clearly less efficient than the first one.  They also show that the approximation 

method is satisfactory with an average deviation of less than 8% from the optimum, but a 

strong tendency (more than 12%) to over-evaluate the dispatching parameters associated with 

the most efficient suppliers. 
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α1 α2 S Criterion
Optimal solution with 1 supplier 1,000 0,000 30,000 30,957
Optimal solution with 2 suppliers 0,740 0,260 15,000 14,494

Sub-optimal solution with 2 suppliers 0,791 0,209 16,000 15,501
Optimal solution with 1 supplier 1,000 0,000 30,000 30,957
Optimal solution with 2 suppliers 0,698 0,302 14,000 13,275

Sub-optimal solution with 2 suppliers 0,748 0,252 14,000 13,969
Optimal solution with 1 supplier 1,000 0,000 30,000 30,957
Optimal solution with 2 suppliers 0,660 0,340 13,000 12,290

Sub-optimal solution with 2 suppliers 0,707 0,293 13,000 12,727
Optimal solution with 1 supplier 1,000 0,000 30,000 30,957
Optimal solution with 2 suppliers 0,626 0,374 12,000 11,449

Sub-optimal solution with 2 suppliers 0,667 0,333 12,000 11,726
Optimal solution with 1 supplier 1,000 0,000 30,000 30,957
Optimal solution with 2 suppliers 0,596 0,404 11,000 10,738

Sub-optimal solution with 2 suppliers 0,628 0,372 11,000 10,908
Optimal solution with 1 supplier 1,000 0,000 30,000 30,957
Optimal solution with 2 suppliers 0,632 0,368 8,000 7,906

Sub-optimal solution with 2 suppliers 0,667 0,333 8,000 8,049

Optimal solution with 1 supplier 1,000 0,000 9,000 9,955
Optimal solution with 2 suppliers 0,845 0,155 9,000 8,614

Sub-optimal solution with 2 suppliers 1,000 0,000 9,000 9,955
Optimal solution with 1 supplier 1,000 0,000 9,000 9,955
Optimal solution with 2 suppliers 0,825 0,175 8,000 8,280

Sub-optimal solution with 2 suppliers 0,966 0,034 9,000 9,438
Optimal solution with 1 supplier 1,000 0,000 9,000 9,955
Optimal solution with 2 suppliers 0,790 0,210 8,000 7,992

Sub-optimal solution with 2 suppliers 0,932 0,068 9,000 9,051
Optimal solution with 1 supplier 1,000 0,000 9,000 9,955
Optimal solution with 2 suppliers 0,760 0,240 8,000 7,780

Sub-optimal solution with 2 suppliers 0,897 0,103 8,000 8,673
Optimal solution with 1 supplier 1,000 0,000 9,000 9,955
Optimal solution with 2 suppliers 0,730 0,270 8,000 7,627

Sub-optimal solution with 2 suppliers 0,863 0,137 8,000 8,256
Optimal solution with 1 supplier 1,000 0,000 9,000 9,955
Optimal solution with 2 suppliers 0,710 0,290 7,000 7,356

Sub-optimal solution with 2 suppliers 0,828 0,172 8,000 7,953

Example 1  
μ1=1.25 
μ2=0.5

Example 2  
μ1=1.25 
μ2=0.6

Example 3  
μ1=1.25 
μ2=0.7

Example 4  
μ1=1.25 
μ2=0.8

Example 5  
μ1=1.25 
μ2=0.9

Example 6  
μ1=1.25 
μ2=1

Example 7  
μ1=2  μ2=0.5

Example 8  
μ1=2  μ2=0.6

Example 9  
μ1=2  μ2=0.7

Example 10  
μ1=2  μ2=0.8

Example 11  
μ1=2  μ2=0.9

Example 12  
μ1=2  μ2=1

 

Table 1 Comparative Results 

6. Conclusions 

Cooperation between the actors of a supply chain is a difficult problem due to the distributed 

nature of the system and the associated degrees of decisional autonomy of the actors. 
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Negotiation can be seen as a basic tool to combine autonomy and integration. However, at the 

present time, there is a lack of decision support tools for negotiation. In the particular case of 

a negotiation between one producer and N suppliers, the producer needs to have a clear vision 

of his own interest in terms of costs and delay. The study has shown that in the case of a 

random demand from customers and random delivery delays from suppliers, it is generally 

profitable to dispatch the orders between several suppliers rather than to direct all the 

replenishment orders toward a single one. More specifically, the addressed problem was to 

determine the percentages of orders to be directed toward each supplier and the base stock 

level. An approximate technique has been proposed to solve this problem. Even if the quality 

of this technique is satisfactory, an on-going research is devoted to its improvement.  
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