
 1

   Integrating Gap Analysis  

       and Utility  Theory  

      in Service Research  

                                                    By Robert F. Bordley 

                                                        MC482-D30-B24 

                                                       General Motors Corporation 

                                                       P. O. Box 100 

                                                       Renaissance Center 

                                                       Detroit, Michigan 48265-1000 

                                                       (313)667-9162(Work) 

                                                       (313)667-9598(Fax) 

                                                       (248)619-9699(Home) 



 2

             Integrating Gap Analysis and  

  Utility Theory in Service Research 

                                                      Abstract 

 
                Conventional utility theory models customer preferences in terms of actual 

           performance and does not use benchmarks. But empirical work in gap analysis 

           shows that customer preferences clearly depend upon the disparity between  

           performance and some benchmark.  

                   To resolve this apparent discrepancy between theory and experiment, this 

           paper shows that a simple reinterpretation of  utility makes utility a function of  

          the uncertainty-discounted gap between actual performance and a benchmark. 

          We interpret  the benchmark as reflecting customer product expectations. 

                   The resulting formulation is used to derive a consumer choice model where 

           customer choice depends upon how perceived performance compares to 

           expectations and upon customer uncertainty about performance and expectations. 

           In this model,   increasing information on a product or service `tends' to increase 

           its sales if   its performance is above customer expectations and to decrease its 

           sales if  its performance is below customer expectations. 
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1. Utility Analysis and Gap Analysis 
 

(1.1) Modeling Customer Demand using Gap Analysis   

Since Oliver's early work(1980), it's become widely recognized that customer satisfaction 

depends upon the individual's prior expectations.  As a result, both service quality and 

customer satisfaction are now defined relative to benchmarks.  Thus Parasuram,Zeithaml 

and Berry(1985) write: 

"Service quality as perceived by consumers stems from a comparison of what they feel 

service firms should offer (i.e., from their expectations) with their perception of the 

performance of  firm providing the services.  Perceived service quality is therefore 

viewed as the degree and direction of discrepancy between consumer’s perceptions and 

expectations….In the service quality literature, expectations are viewed as desires and  

wants of consumers, i.e., what they feel a service provider should offer  rather than would 

offer"(pg.16-17) 

Their views are strongly supported by many other studies(Gronroos,1982; Sasser,1978; 

Parasuraman, Zeithaml and Berry,1988). 

          This work has led to gap analysis. Gap analysis defines service quality in terms of  

the gap between what the service should provide and the customer’s perception of  what 

the service actually  provides(Boulding, Kalra, Staelin and Zeithaml,1993). It assumes 

the smaller the gap, the higher the quality of  service.   

         This notion of  gap also describes customer satisfaction. As Tse and Wilton(1988) 

write: 
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"Postconsumption customer satisfaction/dissatisfaction(CS/D) can be defined as the 

consumer’s response to the evaluation of  the perceived discrepancy between prior 

expectations(or some other norm of  performance) and the actual performance of the 

product as perceived after its consumption…Three approaches to conceptualizing a  

pre-experience comparison have been suggested in CS/D literature: 

(1) Equitable performance…represents the level of  performance the consumer ought to 

receive, or deserves, given a perceived set of  costs…The construct is likely to be 

affected by the price paid, effort invested and previous product experiences.           

(2) Ideal product performance represents the optimal product performance a consumer   

ideally would hope for…It may be based on previous product experiences, learning 

from advertisement and word-of-mouth communication 

(3) Expected product performance represents a product’s most likely performance …It is 

the most commonly used postconsumption standard in CS/D research…It is affected 

by the average product performance and advertising effort".(pg.204-205). 

This perspective is likewise supported by considerable empirical research. As Rust and 

Oliver(1994) noted,  

"Research has shown that this paradigm is fairly robust across various contexts, including 

product experiences, interpersonal dealing with, e.g., salespeople and many services, 

including restaurant dining,  health care, security transactions and telephone  

service." 

Hence customer demand for both service equality and customer satisfaction is best 

modeled in terms of  the gap between actual performance and some benchmark 

performance.   As Boulding et al(1993) noted, 
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"Service quality and customer satisfaction/dissatisfaction(S/D)…Expectations and 

perceptions play an important role in both literatures.  Two main standards of 

expectations emerge. One standard represents the expectations as a predictor of future 

events. This is the standard typically used in the satisfaction literature. The other standard 

is a normative expectation of future events operationalized as either desired or ideal 

expectations. This is the standard typically used in the service quality literature 

…Expectations and perceptions in both literatures are usually linked via the 

disconfirmation of expectations paradigm. This paradigm holds that the predictions 

customers make in advance of consumption act as a standard against which customers 

measure the firm's performance."  

(1.2) Utility Analysis as Implicit Gap Analysis  

Economics commonly models individuals as maximizing utility with utility defined as a 

function of  a product’s actual performance, and not as an explicit  function of  a gap 

(Rust, Inman, Jia and Zahorik(1999), Anderson and Sullivan(1993),Thaler(1985) ).   But 

as this paper shows: 

(1) The utility function can be reinterpreted as describing the gap between the value of  

that consequence and a random variable.  Hence utility analysis can be viewed as a 

special form of  gap analysis with the random variable implicitly representing 

customer expectations 

(2) Reinterpreting the utility function in terms of  gap analysis motivates our replacing 

the conventional concave utility function commonly used in economic analysis by an 

S-shaped utility function.  
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(3) The resulting form of  utility analysis differs from conventional gap analysis in 

discounting the gap between actual performance and customer expectations by the 

degree of  uncertainty in actual performance and the individual's risk-sensitivity.  

Hence utility-based gap analysis has certain empirical implications going beyond 

conventional gap analysis. 

We will illustrate the advantages of  using this gap-based utility analysis, or  a utility-

based gap analysis, in modeling customer demand for service. 

         The next section of  this paper develops the mathematical equivalence between 

utility analysis and utility-based gap analysis.  The third section discusses interpretations 

of  the utility-based gap.   The fourth section motivates certain normality assumptions 

leading to a particularly simple formula for utility-based gap analysis.   The fifth section 

couples this formula with standard random utility model assumptions to develop a 

formula for customer demand as a function of   service performance, customer 

expectations, uncertainty in service performance and risk-sensitivity. The sixth section 

applies this formulation to service  research. 

  

 

2. A New Interpretation of  Utility  

This section shows that the utility of  actual performance can always be reformulated 

explicitly in terms of  a gap between actual performance and some benchmark 

performance.  We first define a value function,v, as any function that describes an 

individual's preferences over known consequences.  Thus if  the individual prefers 
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consequence x to consequence x*,  then v(x)>v(x*).   Note that if  v is a value function, 

then any monotonic function of  v  will also be a value function preserving an individual's 

preference ordering over consequences. 

         The utility function is a special form of  value function which describes an 

individual's preferences over all possible gambles involving known consequences.  The 

utility function is further specified so that the utility of  a gamble is the expected utility of  

its consequences.  We now prove the following Lemmas: 

Lemma 1: For any value function v, there exists a random variable T such 

that, for any consequence, the utility of  the consequence is the probability 

that the value of  that consequence exceeds T. 

Proof:  See Appendix 

In many service problems, the individual isn't sure about the kinds of  benefits which a 

product might provide.  To represent this uncertainty, let  X   be a random variable where 

the probability Pr(X=x) describes the likelihood of  getting x as our level of  service.  Let 

V  be a random variable describing the value of  the possible  levels of  service where the 

probability that V=v is the probability of  getting a service level x  whose value, v(x ), is 

equal to v. 

Lemma 2: Suppose that V and T are independent.  Then the expected utility 

of  X is the probability that V exceeds T. 

Proof: See Appendix 

If  we define the gap as the difference between the value of  a consequence and some 

random variable,T,  then the utility of  a consequence becomes the probability of  the gap 



 8

being nonzero.   Hence any utility function can be reformulated as the probability of  a 

gap being nonnegative. 

 

       3. Interpreting this Formulation 

       A critical question in applying this mathematical equivalence is properly interpreting 

the random variable,T.  To illustrate how to interpret  T,  we consider four different 

examples. 

(3.1) Interpreting T:  An Example involving  Long-run Objectives  

Consider an individual who hopes to achieve some performance objective, G, in the next 

twelve months.   Suppose the individual needs to make a decision now whose 

consequences x,  will be known by the end of   this first month.  Let  V(x) be a random 

variable representing how much consequence x contributes toward the attainment of  the 

goal.   But in the second through twelfth months, there will be other uncertain factors 

which also contribute to the attainment of  the goal.  Let Y  represent the total 

contributions these other factors make toward the goal in the second through twelfth 

month.    

          Then the individual  will achieve the goal if  V(x)+Y exceeds G.  Unfortunately the 

individual doesn't know Y.   Hence the individual does not know whether or not getting x  

ensures attainment of  the goal.  The individual can only look for that decision d whose  

possible short-term consequences maximize the probability of   achieving the long-run 

goal.   In other words, the individual maximizes Pr(V(x)+Y>G) which is equivalent, if  T 

= G-Y, to maximizing   Pr(V(x)>T).  In this case, the random  variable T  is the uncertain 



 9

amount which the individual needs to achieve by the end of  the first month in order to 

achieve the long-run objective.    

(3.2) Interpreting T: An Example Involving  Uncertain Requirements 

As Rust, Zahorik and Keiningham(1995) noted, customers form expectations of  a 

product on the basis of  its attributes and observe the performance of  a product based on 

its attributes.   As an example, consider an individual who wants to buy a car which will 

satisfy all of  the family's performance needs for the next five years.  Suppose we let x 

denote the vehicle.  We also let v(x) denote the performance of  the vehicle, which is 

measured by how many miles the vehicle can travel in five years before breaking down.  

In order to determine whether this vehicle meets the family's performance needs, we need 

to assess the amount of performance that the family will require over the next five years.  

        Let T  be the amount of  performance which the family will require over the next 

five years.  Most families don't know how many trips---and thus how many miles---they 

will drive in the next five years.   Hence T will be a random variable.  Thus if the family 

is only interested in satisfying its performance requirements, it will choose that vehicle 

whose performance has the greatest chance of exceeding T.    

         The performance of  the vehicle is likewise a random variable.  Hence if  we 

replace v(x) by V, we conclude that the probability of  the vehicle meeting the family's 

requirements is Pr(V>T).  The family chooses that vehicle with the maximum value of  

Pr(V>T).    

(3.3) Interpreting T: Hedonic versus Concrete Attributes 

Most products are characterized by many (often hundreds) of  attributes(Griffin and 

Hauser(1993)).  The previous example focused on a case in which the attribute in 
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question---miles driven before the vehicle breaks down---is concrete and measurable.   

Suppose we consider a hedonic attribute, e.g., comfort.   Unlike mileage, how one 

individual may assess a vehicle's comfort may differ from another vehicle's assessment of  

comfort. As a result, we will define the comfort of  a specific vehicle, x, by arbitrarily 

picking some reference individual and specifying the comfort of  vehicle, x, as the 

comfort, v(x), which this reference individual assigns to vehicle x.   

        Because this reference individual was chosen arbitrarily, there will be some random 

deviation, Y, between the value which the reference individual assigns to the vehicle and 

the value which a randomly chosen individual would assign to the same vehicle.  (Hence 

Y reflects variation across individuals.)   Thus v+Y will reflect the comfort which this 

randomly chosen individual would assign to the vehicle.   If  we let G denote the 

threshold determining whether a vehicle is comfortable or not,  then the probability a 

randomly chosen individual finds vehicle x comfortable is Pr(v+Y>G). 

            Now vehicle x denotes a specific vehicle nameplate(e.g., Pontiac Grand Am.)  

Since there are generally tens of  thousands(or hundreds of  thousands) of  vehicles 

produced under the nameplate,  the reference individual's valuation v(x) is based on that 

individual's experience of  only one of  those Pontiac Grand Am's (a `test' vehicle).   If  

the reference individual had based on his valuation on a different Pontiac Grand Am,  his 

valuation may have been slightly different.  To reflect this variation across vehicles, 

let V  be a random variable with Pr(V=v) being the probability that the reference driver 

will assign a comfort level of  v to a randomly chosen vehicle.   Since the actual vehicle 

the driver buys will differ from the `test' vehicle, the driver, instead of getting a vehicle 
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whose comfort level is v(x),  will get a vehicle whose comfort level is described by the 

random variable V. 

           Thus the probability of  the driver being comfortable is the probability that V +Y 

exceeds G.   If  we define T=G-Y,  then the probability of  the driver being comfortable 

with the vehicle is Pr(V>T).   Since V and T are presumed independent, this implies that 

how a driver's comfort-sensitivity differs from the reference individual does not affect the 

comfort characteristics of  the vehicle he gets.  Since this assumption of  independence is 

not necessarily realistic, our next example discusses a way in which this independence 

condition can be dramatically relaxed.   

(3.4) Interpreting T: An Example Involving `Should'  Expectations 

Suppose an individual has `should' expectations, ES, i.e. expectations of what the product 

should provide(Boulding,Kalra, Staelin,Zeithaml(1993)).  These `should'  expectations 

partially reflect the individual's past experiences with similar products(denoted by Qj) 

and partly reflect underlying needs(or ideal expectations,I).   We write this as 

                     ESj =   kj Qj + (1-kj) I 

Suppose the customer wants to choose the product that has the maximum chance of   

exceeding his should expectations.  Then the customer maximizes  

                  Pr(V>ES) = Pr(V>kQ + (1-k)I) 

It's tempting to think that this objective function is equivalent to our target-based model 

with T=kQ+(1-k)I.   As we now show, this isn't generally true.  

       Suppose we view the performance of  a product, V, as differing from one's previous 

experience with the product, Q,  by some random deviation e.   Then we can write 
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V=Q+e.  In this case, V and (kQ+(1-k)I) are correlated.  However the equivalence with 

utility theory discussed in section 2 requires that T and V be uncorrelated.   Hence we 

cannot generally interpret T as describing `should expectations'. 

       Instead we need to define V*=(V-kQ)/(1-k) = Q  + e/(1-k).  If  we also define T=I, 

then the customer maximizes 

                                     Pr(V>ES) = Pr(V*>T) 

Thus our formulation can describe situations involving `should' expectations with 

appropriate transformations of  V and T.  

(3.5) The Appropriate Interpretation of T 

       Our previous section showed how maximizing expected utility was equivalent to 

maximizing the probability of performance exceeding some random threshold, T.   In this 

section, we showed that T  could generally be interpreted as what the customer must 

receive from the product in order to be satisfied with the product.  As we noted, T will 

usually be uncertain because the customer will not definitely know what is required in 

order to be satisfied. 

         When T is highly uncertain(e.g. when T is uniformly distributed), 

                           u(x) = Pr(x>T) = x 

i.e., the individual is risk-neutral and acts as if   he had no expectations.  Conversely 

when T  is not uncertain, u(x) is the probability that x exceeds those known expectations. 

  

         4. The Discounted Gap 
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(4.1) Specifying the Function  F       

         As section 2 noted, for every function, F, there exists a different random variable 

T=F[U*]  where U*  is a uniform random variable. If  we specify F  to be the inverse 

cumulative normal distribution, then T  will be normally distributed.  Specifying F also 

specifies how the value function v(x) is related to the utility, u(x), of  various 

consequences x.  The uncertainties associated with the consequences,X,  imply a 

probability distribution over u(x) and, likewise, a probability distribution, over v(x).  

Following common practice(e.g., Boulding, Kalra, Staelin,2000), we will assume that  V , 

which describes the probability distribution over v(x), is normally distributed.  

(4.2)  The Uncertainty-Adjusted Gap 

       If  we let: 

(1) Vi  denote the random variable associated with the value of  alternative i's payoff  

(1) EVi  denote the mean of  Vi 

(2) si denote the standard deviation of  Vi  

(3) s0 denote the standard deviation of  T 

then we can define the uncertainty-adjusted gap by: 

                         Gi = (EVi-ET)/[1+s
2
i/s

2
0]

1/2
 

As the Appendix shows: 

Lemma 3:   The utility of  product i exceeds the utility of  product j if  and 

only if  Gi>Gj. 

Proof: See Appendix  

Note that 
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                                Ri = [1+s
2
i/s

2
0]

1/2
 - 1 

could be interpreted as the variance in product performance, adjusted to reflect the 

individual's uncertainty about his expectations.   This adjusted variance is zero for a risk-

neutral individual (for whom s
2
0 is infinite) and is large for a very risk-averse individual 

(for whom s
2
0 is small.)   When there is no variance in product performance, Ri is zero 

regardless of  the individual's risk-preferences. 

          Given this definition, 

                                            Gi = (EVi-ET)/(1+Ri)  

and is just the standard formula for the gap discounted by this adjusted variance, Ri.     

 

 

   5.  Modeling Customer Choice 

(5.1) The Random `Gap’ Model 

Random utility models(Benakiva and Lerman,1986) are widely used  to relate the value 

of  an alternative to its probability of  being chosen.  Most random utility models assume 

that there is a double exponential error in the observer’s estimate of utility.  Suppose we 

assume, instead, that there is a double exponential error in the measurement of  `the gap’.  

In this case, the random utility model gives us a choice probability of 

                   Pi  = exp(Gi/s*)/{∑j exp(Gj/s*) } 

where s* is the scaling factor associated with the double exponential error term.  Hence 

the logarithm of  the relative probability of  choosing alternative i over alternative 1 is 
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                       ln(Pi/P1) = (1/s*){Gi-G1 } 

Note that 

(1) increasing the expected quality of  a product, EVi,, without changing anything else, 

always improves market share 

(2) reducing the uncertainty about a product’s quality, si,  will increase that product’s 

market share if  EVi>ET, i.e., if  the product is expected to meet customer 

requirements. Otherwise it will decrease market share.  

(3) increasing the customer’s benchmark, ET, will enhance the relative market share of  

products whose product quality is less certain(i.e. for which si>s1).  

(4) increasing the uncertainty about the benchmark, s0, will have a more complicated 

effect.  It will tend to favor those products with a smaller gap and a large 

uncertainty,i.e., it will favor product i if   

                             Gi /[1+(si/s0)]
2
 <Gj/[1+(s1/s0)]

2
 

An important special case of  this model emerges when sj=s1 for all j.  In this case, the 

model becomes 

            ln(Pi/P1) = { Gi -G1 }/s* = {EVi-EV1}/s*(1+R1) 

Note that mean ideal expectations becomes irrelevant  although the variance in those 

expectations still matter.  Increasing the variance in the ideal expectations(or equivalently 

decreasing the variance in each product's performance)  will cause the market share of  

the higher-value product to increase.   This, of  course, is intuitive.  When it's easier to 
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observe the higher performance product, the higher performance product's market share 

increases. 

(5.2) Comparisons with the Logit Model 

Equation(5.1) was derived by assuming that there was a double exponential error in the 

certainty equivalent.  In contrast, the conventional logit model is derived by assuming a 

double exponential error in the utility function.   Hence the logit model would write 

relative market shares as: 

                      ln(Pi/P1) = (1/s* ){EUi -EU1 } 

Making direct comparisons between the two models is difficult since our model is 

expressed in terms of  the value function and the logit model is expressed in terms of  the 

utility function.  

           But in many applications of  the logit model, the utility function is estimated using 

a value function.  In these cases, the logit model becomes equivalent to 

                     ln(Pi/P1) = (1/s* ){EVi -EV1 } 

which corresponds to our model when all alternatives have the same variance.  

          This model, unlike ours, implies that relative shares are independent of  changes in 

the customer's benchmark or  of  relative changes in the variance of  each product.   Since 

gap analysis shows that frequently choice is based on a comparison between actual 

performance and a benchmark,  we believe this model is frequently unrealistic. 

          Note that increasing the uncertainty about the benchmark, or decreasing the 

average variance of  each product,  decreases s* .  In the logit model, this increases the 

market share of  more highly valued products and decreases that of  less highly valued 
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products.   But our model gives more complicated predictions.  The previous section 

already discussed the implication of  changing the uncertainty about the benchmark.  

          In addition, since each product i's gap, in our model, is discounted by [1+s
2
i/s

2
0]
1/2
,  

a unit change in the variance of  each product will have a greater impact on products with 

smaller variance.   Thus consider two products whose expected performance exceeds 

expectations.  Suppose we reduce the variance of  both products by a unit and suppose 

this eliminates all uncertainty about the performance of  the less highly valued product.    

Then our model suggests that it's possible that the less highly valued product will see its 

market share increase more than the more highly valued product.     

              

 6. Customer Satisfaction Application 

(6.1) Extensions to Modeling Customer Satisfaction 

As in our model, Rust,  Inman,  Jia and  Zahorik(1999) supposed that the perceived 

quality of  a product, V, was normally distributed about EV, the brand's average quality, 

with variance s
2
.     But they further assumed that the customer was uncertain about 

average quality, EV.  They modeled this uncertainty by treating EV as normally 

distributed with mean µ and variance σ 2.    By doing so, they were able to describe how 

a customer's past experience with the product would update his beliefs about EV and thus 

alter his propensity to buy future products.  In this section, we now incorporate these 

extensions into our model. 

      We first define the certainty equivalent of  uncertain performance V as a product 

having a known level of  performance, C,  which is considered just as desirable as the 
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product with uncertain performance V.  If  EV is normally distributed with mean µ and 

variance σ 2, then V is normally distributed with mean µ and variance s2  +  σ 2.  Thus the 

certainty equivalent for the product is  

                      C=[µ-ET]/[1+(s2+σ2
)/s

2
0]

1/2
 

Now suppose the customer has just had one experience with one version of  the product.  

Let V  be the experienced quality.   Then the customer revises his estimate of  the mean 

of  EV from µ to  µ + w(V-µ)   where  

                         w= (1/s
2
)/[(1/s

2
)+(1/σ2

)] 

 (This corresponds to Rust, Inman,  Jia and Zahorik(1999) 's result if we scale s
2
+σ2

=1.)       

Similarly the customer's uncertainty about EV now changes from σ2
 to 1/[(1/s

2
)+(1/σ2

)] 

or σ2
(1-w).  

            Hence given one product experience, the certainty equivalent becomes 

            C' = [µ-ET + w(V-µ)]/[1+(s2+σ2
)/s

2
0 - wσ2

/s
2
0]

1/2
 

(6.2) How Information Affects the Certainty Equivalent 

Suppose we define the relative uncertainty about product quality by   

           k =   (σ2
/s

2
0)/[1+(s

2
+σ2

)/s
2
0]=σ2

/[s
2
0 + (s

2
+σ2

)] 

Likewise we define the relative discrepancy 

                                D=(µ -V)/(µ-ET)  

as  the deviation between experience and expected experience relative to the deviation 

between ideal expectations and expected experience 

              We can then rewrite the certainty equivalent as 
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                             C'=C[1-wD]/[1-wk]
1/2
 

Since k is always nonnegative, increasing w always decreases the denominator. 

           Now suppose that D is negative.  This means that either: 

(a) µ>ET and  V>µ, i.e., the product is expected to exceed ideal expectations and the 

information suggests the product is even better than the consumer expected. 

(b) µ<ET  and  V<µ, i.e., the product is expected to fall short of  ideal expectations and 

the information suggests the product is even worse than that consumer expected. 

In this case,  increasing w always increases the magnitude of  the numerator.  Hence 

increasing the weight,w, of  new information makes a negative certainty equivalent 

become more negative and a positive certainty equivalent more positive. 

      Now suppose that D is positive.  Then the information is either suggesting that an 

unacceptable product(i.e., µ<ET) is better than expected or that an acceptable 

product(i.e., µ>ET) is worse than expected.   We can rewrite the certainty equivalent as 

              C'=C[ 1 +  w (k-2D+wD)/(1-wk)  ]
1/2
 

First suppose that k>D(2-w).  This means that uncertainty about quality is large. Then 

increasing w always increases the absolute magnitude of  the certainty equivalent.  Since 

k<1 and w<1, this also implies D<1.   Since the numerator is proportional to 1-wD, this 

implies that increasing information can never make the certainty equivalent change sign. 

      Now suppose that k<D(2-w).   In this case, the effect of  reducing uncertainty is 

outweighed by the disconfirmation effect.  Hence increasing w tends to shrink the 

magnitude of  the certainty equivalent---as the disconfirmation effect outweighs the 
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reduction in uncertainty provided by the new information.  If   D>1, then eventually  w 

exceeds (1/D) and  the sign of  the certainty equivalent changes. 

(6.3) Comparison with Previous Work 

Rust, Inman, Jia and Zahorik(1999) 's original work focused only on concave utility 

functions.  But our model is only concave when V and µ  both exceed ET. Hence our 

model also makes predictions in cases not considered by Rust, Inman, Jia and Zahorik. 

      To illustrate these extensions, we first slightly generalize Rust, Inman, Jia and 

Zahorik(1999) 's formulation slightly by supposing that the customer, instead of  having 

one experience with the product, has n experiences with the product.  Let V denote the 

average quality in those experiences.  This provides an estimate of  average product 

quality which---assuming independent experiences----has variance (s
2
/n).  Hence our 

formula for w will increase as n increases. 

      We now compare the implications of  our formula with Rust et al.'s propositions: 

(1) If  a better than expected outcome is observed, they predicted that the probability of  

choosing the option will increase.  This holds in our formalism when the product is 

expected to exceed expectations.  Otherwise, it's possible that a better than expected 

outcome---by reducing our uncertainty about an outcome that is expected to miss 

expectations---could reduce the probability of  choosing the option. 

(2) If  an expected outcome is observed, they predicted that the probability of  choosing 

that option will increase.  In this case, D=0.  Our model predicts that the probability 

of  choosing that option will increase if   expected quality exceeds ideal 

expectations(i.e.µ >ET) and will decrease if   expected quality is less than ideal 

expectations. 
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(3) They predicted that a rational customer might choose an equally priced option for 

which the expected quality is worse.  This occurs in our model.  If  expected quality 

exceeds ideal expectations, we prefer options with lower variance.  If  expected 

quality falls short of  ideal expectations, we prefer options with higher variance. 

(4) They predicted that a worse than expected quality outcome may still increase the 

probability of  choosing that option.  (This postulate was not supported in their 

analysis.)  Our model predicts that this effect may hold only if  expected quality 

exceeds ideal expectations.  If  expected quality is less than ideal expectations, then a 

worse than expected quality outcome will always decrease the probability of  choice. 

(5) They predicted that a negative disconfirmation would evoke a greater relative chance 

in preference than a positive disconfirmation of  equal magnitude.   This will only 

happen in our model if  expected quality exceeds ideal expectations.  On the other 

hand, if  expected quality falls short of  ideal expectations, the reverse will happen.  

(6) Given diffuse priors and an equal historically observed mean and variance, they 

predict that a sufficiently large negative disconfirmation will cause a greater 

preference shift in a less experienced customer.  This is consistent with our model 

where we can model a less experienced customer by assuming a larger value of  w.       

Thus some of  Rust, Inman, Jia and Zahorik's results extend to the case of  initially 

convex and then concave utility functions.  In other cases, they are dramatically violated. 

(6.4) The Variance-Reduction Effect 

Rust, R. J. Inman, J. Jia and A. Zahorik(1999) emphasized that customer behavior, in 

response to new information or  experience with a product, depended upon the interaction 

of   the disconfirmation effect which measures, how the mean estimate of  product quality 
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was changed and the variance-reduction effect which measures how uncertainty about 

product quality changes.    In our model, the variance-reduction effect always serves to 

amplify the value of  the certainty equivalent.  Hence if  expected performance, given the 

new information, exceeds ideal expectations, then the variance-reduction effect amplifies 

this positive certainty equivalent and makes the product even more attractive.  

Conversely if  expected performance given the new information, falls short of  ideal 

expectations, the variance reduction effect amplifies the negative certainty equivalent and 

makes the product even less attractive.  

 

        7. Managerial Implications 

       This paper highlights the importance of  knowing how well the product or  service 

meets ideal expectations.    Suppose that the performance of  our product is consistent 

with current customer expectations.   Then encouraging individuals to try our product 

will: 

(1) Enhance their view of  the product if  they currently feel the product exceeds their 

     target expectations.  (This was consistent with the original Rust et al. model.) 

(2) Degrade their view of  the product if  they currently feel the product falls short of  

      their target expectations. (This differs from what the original Rust et al model 

      suggested.) 

Thus if  our service is good---and people generally believe it is good---encouraging 

individuals to try our service will only confirm those expectations and increase their 

willingness to try our service in the future.  On the other hand,  if  our service is 
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inadequate---and if  people generally believe it is inadequate----encouraging individuals 

to try our service will only confirm those expectations and reduce their willingness to try 

our service in the future.   (In other words, `better to be silent and thought a fool than to 

open one's mouth and remove all doubt.') 

           This finding complements earlier results from Mittal, Ross & Baldarasar(1998) 

and DeSarbo, Huff, Rolandelli and Choi(1994) which show that negative performance on 

an attribute has a greater impact on repurchase intentions than positive performance on 

the same attribute.  Like these earlier results, our finding is an application of  prospect 

theory, which observed that individuals were risk-averse for gains and risk-prone for 

losses. 

        Since information tends to reduce the riskiness of  a gamble, their results imply that 

information will tend to enhance the attractiveness of  gambles involving gains and will 

tend to degrade the attractiveness of  gambles involving losses.  In our formulation, a 

product whose performance is expected to exceed expectations is offering customers a 

potential gain while a product whose performance is expected to fall short of   

expectations is offering customers a potential loss.    Hence, not surprisingly, we found 

that information tends to enhance the attractiveness of  products expected to exceed  

expectations and reduce the attractiveness of  products expected to fall short of  those 

expectations.           

     

      8. Discussion and Conclusions 
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       It's common to specify a customer's utility function as a linear or concave function.  

In part, this reflects the lack of  information on customer preferences.  But as this paper 

showed, a customer's utility can be interpreted as the probability distribution over a 

customer's ideal expectations.  Since managers often have considerable information about 

customer expectations, it becomes critical to specify a utility function, which reflects this 

information. 

        When we focus on a more general class of  S-shaped utility models, we find that the  

conventional concave utility function commonly used in applications is only appropriate 

when products and services are expected to exceed customer ideal expectations.  As this 

paper showed, the predictions of  our models can change dramatically when we move to 

a more general S-shaped utility model.   

           Upon making normality assumptions, we find that this formulation will rank 

alternatives according to how much expected performance exceeds expectations 

discounted by the uncertainty in that performance and those expectations.   Uncertainty in 

expectations serves to reduce the effective uncertainty in performance.   We couple this 

result with standard random utility models to develop a new choice model which, unlike 

the logit model, makes choice an explicit function of   

(1) Expected performance 

(2) Expectations about How the Product Should Perform (Performance Benchmarks) 

(3) The uncertainty in perceived performance 

(4) The uncertainty about those benchmarks(which can be interpreted as a measure of  

risk-neutrality.) 
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This immediately leads to a number of  testable propositions about how changes in 

expectations and performance uncertainty should impact a consumer's likelihood of  

purchasing a product. 
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                                   APPENDIX 

Proof  of  Lemma 1:  Suppose we denote the utility function as u  and rescale it to lie 

between zero and one.  Also consider an arbitrary value function v.  Let C  denote the set 

of  possible consequences and let x denote a typical consequence in C.   Since v and u are 

both consistent with the same ordering of  consequences x,  there exists a strictly 

monotonic function F such that v(x)= F[u(x)].  Let  U*  be a uniformly distributed  

random variable. Then  u=Pr(u>U*).  If  we define the random variable T by T=F[U*], 

then we also have  u=Pr(v>T).  Thus the utility of  a consequence x can be viewed as the 

probability that the value of  that consequence V(x)  exceeds some random threshold, T. 

 Proof of  Lemma 2:  By definition, u(X) = ∑x u(x) Pr(X=x) = ∑vPr(v>T)Pr(V=v).  

Since V and T are independent, we can then write  ∑vPr(v>T)Pr(V=v)  = Pr(V>T).  This 

proves the result.  (This result was originally proven for Von Neumann-Morgenstern 

utilities by LiCalzi and Castiglione(1996) and extended to Savage utilities by Bordley 

and LiCalzi(2000).) 

Proof of  Lemma 3: Let N(x)  denote the probability that a standard normal variable is 

less than x.  Let si0 be the standard deviation of  Vi-T.  Then  

       Eu(Xi)=Pr(Vi>T) = Pr(Z< (EVi-ET)/si0)=N{(EVi-ET)/si0} 

Thus the expected utility is a function of  the ratio (EVi-ET)/si0.   

      Now the certainty equivalent,c, of  any uncertain quantity V  can be interpreted as the 

price for which the individual would be willing to see the quantity.   Thus an individual 

would be willing to exchange a product with uncertain performance V  for a product 

whose performance was known to be exactly equal to c .  Then 
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                                               u(c) = Eu(X) 

 Since 

                            u(c)=Pr(c>X) = N{(v(c)-ET)/s0} 

equating u(c) and Eu(X) gives 

                 N{(v(c)-ET)/s0}= N{(EVi-ET)/si0} 

 Since N  is monotonic, we have 

                         v(c) = (EVi-ET) s0/si0 + ET  

Since T and V are independent, si0 =[s
2
i + s

2
0]

1/2
.   If  we define the gap between Vi and 

the individual’s expectations by  

                           Gi = (EVi-ET)/[1+s
2
i/s

2
0]

1/2
 

then ranking uncertain quantities by the certainty equivalent gives us the same result as 

ranking uncertain quantities using the gap. 
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