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Abstract

Researchers interested in measuring people’s underlying attitudes towards an object
(e.g., abortion) often collect Likert data by administering a survey. Likert data consist
of surveyees’ responses to statements about the object, where responses fall into or-
dered categories running from ‘Strongly agree’ to ‘Strongly disagree’ or into a ‘Don’t
Know / Can’t Choose’ category. Two examples of Likert data are used for illustrative
purposes. The first dataset was collected by the author from American and British
graduate students at Oxford University and contains items measuring underlying abor-
tion attitudes. The second dataset was taken from British and American responses
to the 1995 National Identity Survey (NIS) and contains items measuring underlying
national pride and immigration attitudes.

A model for Likert data and underlying attitudes is introduced. This model is
more principled than existing models. It treats people’s underlying attitudes as latent
variables, and it specifies a relationship between underlying attitudes and responses
that is consistent with attitudinal research. Further, the formal probability model for
responses allows people’s interpretation of the response categories to differ. The model
is fitted by maximising an appropriate likelihood.

Variants of the model are used to analyse Likert data in three contexts; in each, the
method using our model compares favourably to existing methods. First, the model
is used to visualise the structure underlying the abortion attitude data. This method
of visualization produces more sensible plots than analogous multivariate data visual-
ization methods. Second, the model is used to select the statements whose responses
(in the abortion attitude data) best reflect underlying abortion attitudes. Our method
of statement selection more closely adheres to attitude researchers’ stated aims than
popular methods based on sample correlations. Third, the model is used to investigate
how underlying national pride varies with nationality in the NIS data and also how
underlying abortion attitude varies with gender, religious status, and nationality in the
abortion attitude data. Unlike methods currently used by social scientists to model the
relationship between attitudes and covariates, our method controls for the effects of
differing response category interpretation. As a result, inferences about group differ-
ences in underlying attitudes are more robust to group differences in response category
interpretation.
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Chapter 1

Introduction

Researchers in the social sciences and marketing are often interested in measuring
people’s attitudes towards objects such as abortion, their nation, or a consumer brand.
Here, we use attitude to refer to an underlying construct hypothesised by psycholo-
gists, rather than to its observable manifestations which are referred to as attitudes in
common parlance. More specifically, we define an attitude as a ‘psychological ten-
dency that is expressed by evaluating a particular entity with some degree of favour or
disfavour’ (Eagly and Chaiken, 1998, p. 269). This definition implies that attitudes
can be represented as points on an evaluative continuum that runs from extremely anti-
object to extremely pro-object. Sometimes, researchers are interested in the locations
of people along this continuum for their own sake. However, more often, researchers
are interested in seeing how people’s attitudes vary with certain background and be-
havioural covariates.

People’s attitudes cannot be measured directly, and researchers disagree over whether
and how they can be measured indirectly using people’s emotions, thoughts, or be-
haviours, which are observable manifestations of attitudes (Bohner, 2001, p. 241).
Those researchers who believe attitude measurement possible have proposed numer-
ous techniques for doing so. Fishbein and Ajzen (1972 and 1975) provide a catalogue
of attitude measurement techniques existing at that time, whereas Churchill (1999,
Chapter 9) and Erwin (2001) provide excellent and recent overviews of attitude mea-
surement techniques. One caveat applies to all attitude measurement techniques: Since
an attitude is only a hypothetical construct, it can be measured at most at an interval
level. In fact, there is considerable disagreement over whether even interval-level mea-
surement is possible with some attitude measurement techniques.
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1. ‘I would rather be a citizen of [my country] than any other 
     country in the world.’ 
2. ‘There are some things about [my country] today that 
     make me feel ashamed of [my country].’ 
3. ‘The world would be a better place if people from other 
     countries were more like the people in [my country].’ 
4. ‘Generally [my country] is a better country than most other 
     countries.’ 
5. ‘People should support their own country even if the 
     country is in the wrong.’ 

How much do you agree or disagree with the following 
statements? 
 

       ‘Agree           ‘Agree’      ‘Neither agree   ‘Disagree’      ‘Disagree             ‘Can’t choose, 
        strongly’                         nor disagree’                           strongly’               don’t know’ 

NATIONAL PRIDE SCALE 

Figure 1.1: National Pride Scale. These Likert items were used to measure general
national pride in the National Identity Survey, which was administered in 1995 as part
of the International Social Survey Programme.

The attitude measurement technique on which we focus here is the Likert scale.
Likert data have their origins in the scale proposed by Likert (1932), an example
of which can be seen in Figure 1. Here, we use scale to refer to a relatively small
number of questions (or items) selected to measure people’s attitude towards a sin-
gle object. In the scale proposed by Likert, each item involves choosing a response
category— ‘Agree strongly,’ ‘Agree,’ ‘Neither agree nor disagree,’ ‘Disagree,’ or ‘Dis-
agree strongly’— to reflect one’s level of agreement with a statement about the object.
Today, some scales contain variations of the items proposed by Likert. These varia-
tions, all of which we term Likert items, may have more or fewer than five response cat-
egories spanning the agreement continuum, and might also have a ‘Don’t Know/Can’t
Choose’ category. We refer to any scale containing Likert items as a Likert scale, re-
gardless of the way in which those items are selected. Last, we use the term Likert

data to refer to responses to Likert items, regardless of whether those items belong to
a (final) scale or to an initial pool.

In this thesis, we propose new methods for the statistical analysis of Likert data.
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Unlike existing methods, ours take a principled approach.

1.1 Requirements for methods of analysing Likert data

The method used to analyse Likert data will depend on the questions being asked.
However, every method involves (albeit sometimes only implicitly) a measurement

model, which is a model for the relationship between the Likert data and attitudes.
Coombs (1964) stresses that a measurement model is “actually a theory about be-
haviour, admittedly on a miniature level” (p. 5). Further, he insists that “while building
theory about more complex behavior it behooves us not to neglect the foundations on
which the more complex theory rests.” We share Coombs’ view that the measurement
model should reflect an appropriate theory. In the context of Likert data on attitudes,
this means that the measurement model should reflect current theories of attitudes and
attitude formation in several ways that we now enumerate.

A measurement model for Likert data should represent attitudes appropriately. The
way we define an attitude implies that it can be represented as points along an (unob-
served, underlying) evaluative continuum. Thus, in our measurement model, a person’s
attitude towards an object should be represented by a single parameter that takes one
of a continuous set of values and affects the person’s Likert responses.

The measurement model should also represent the statements appropriately. Stud-
ies investigating how attitude statements are processed (e.g., Judd and Kulik, 1980;
Pratkanis, 1989) suggest that, in a person’s mind, the statements fall along a contin-
uum which is bipolar, at least when the attitude object is controversial (see Bohner,
2001, p. 244). Thus, in a measurement model, the statements about a particular object
should be located along the relevant evaluative continuum. Further, the statements’
locations should be consistent with their content.

Next, the measurement model should appropriately model the relationship between
a person’s attitude and his responses to the statements. It seems reasonable to model
agreement as an (inverse) function of the distance between a person’s attitude and a
statement location that is assumed to be constant across all persons. We will refer
to this type of relationship as an “unfolding model” because it has its origins in the
unfolding process (a.k.a. ideal point process) proposed by Coombs (1964) as a de-
scription of how subjects arrive at preference orderings of stimuli. In an unfolding
process, each person is represented as a point, each stimulus is represented as a point
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that is perceived the same by all persons, and each person prefers (perhaps with some
error) stimuli less distant from him.

Last, the measurement model should be appropriate for the way in which Likert
data measure a person’s responses to the statements. In Likert data, responses are ex-
pressed using categories that have three characteristics: they are mostly ordinal, possi-
bly contain a ‘Don’t Know / Can’t Choose’ category, and may be interpreted differently
by different people. As an example of this last characteristic, some people may use the
‘Disagree strongly’ category to reflect only anathema towards a statement, whereas
others might use it to reflect anything less that whole-hearted agreement. We will refer
to this phenomenon as differing response category interpretation.1 A measurement
model—in addition to being intended for responses that are ordinal and may contain a
‘Don’t Know / Can’t Choose’ category—should allow for differing response category
interpretation. This is a particular concern when the data include persons from differ-
ent cultures since there is considerable evidence that response category interpretations
differ considerably between different cultures (Churchill, 1999, p. 450-451).

1.2 Overview of the thesis

Existing methods of analysing Likert data are not entirely appropriate for the task, in
large part because the measurement models they employ do not meet the aforemen-
tioned requirements. In Chapter 2, we describe some of the measurement models used
in these existing methods, and we explain how each fails to address some of the afore-
mentioned requirements, or else does so in an unprincipled and ad hoc manner.

In Chapter 3, we introduce a new measurement model that addresses, in a prin-
cipled manner, all (but one) of the above requirements for measurement models. In
particular, our model allows for differing response category interpretation, which ex-
isting measurement models do not.

In Chapter 4, we describe how a variant of our measurement model can be em-
ployed to visualise the structure underlying Likert data. We use this method to visu-
alise synthetic Likert data and Likert data on abortion attitudes, and we compare the
results to those produced by an analogous multivariate data visualization method.

In Chapter 5, we describe how another variant of our model can be employed to
select items (from an inital pool) for inclusion in a scale. We use this method to

1Rossi et al. (2001) refer to this phenomenon as “scale usage heterogeneity.”
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perform item analysis on a simulated dataset and on the abortion attitude data, and we
compare the results to those produced by a popular method of item analysis.

In Chapter 6, we describe how a third variant of our model can be employed to
investigate how attitudes vary with background and behavioural covariates, while con-
trolling for the effects of differing response category interpretation. We conduct several
simulation experiments to compare the performance of this method to that of a sim-
ple but popular method that does not allow for differing response category interpre-
tation. We then use our method to investigate how national pride varies with (British
or American) nationality, while adjusting for national differences in response category
interpretation. Finally, we use our method to investigate how abortion attitudes vary
with (British or American) nationality, gender, and religious status, while adjusting for
national and gender differences in response category interpretation.

1.3 Description of datasets

The methods we propose are intended for Likert data with items that all share the same
response categories. Here, we analyse two examples of data fitting this description.

1.3.1 Abortion attitude dataset

The abortion dataset is taken from a survey of 141 students. The surveyees were re-
quired to be (i) either British or American, (ii) raised primarily in Britain or the United
States (respectively), and (iii) graduate students at the University of Oxford during
the period April - May 2003. A random sampling mechanism was not used to select
surveyees from the population fulfilling these three requirements; thus, care should
be taken in generalizing the surveyees’ abortion attitudes to all American and British
graduate students at Oxford.

The surveyees responded to an interactive web-based survey containing a large
number of questions related to abortion. These include five background questions,
nine questions regarding behaviours related to abortion attitudes, and 50 Likert items
on abortion attitudes. These fifty Likert items comprise an item pool from which a
finalized Likert scale on abortion could be developed. The 50 statements2 in this pool
can be viewed in Table 1.1. For each surveyee, the 50 statements were presented in a

2Many of these statements are taken (often after slight modification) from the abortion statement
pool tested on University of South Carolina undergraduates by Roberts et al. (2000).
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random order, with the spelling of certain words (e.g.,‘fetus’ or ‘foetus’) determined
by the person’s response to a background question on nationality. Further, the six re-
sponse categories (1 =‘Agree strongly,’ 2 =‘Agree,’ 3 =‘Neither agree nor disagree,’
4 =‘Disagree,’ 5 =‘Disagree strongly,’ 99 =‘Don’t Know/Can’t Choose’) were ar-
ranged vertically on the computer screen in either an ascending or a descending order
that varied randomly from statement to statement.

The abortion dataset contains 140 surveyees’ responses to the survey questions.
(We removed one surveyee with an abnormally high number of ‘Don’t Know/Can’t
Choose’ responses.) Some information on the composition of the 140 person sample
can be seen in Figure 1.2, which presents the marginal response category frequencies
for four background questions. Note that the dataset is, by accident, almost perfectly
balanced by gender and by nation. Summary information for the Likert items can be
seen in Figure 1.3, which presents their marginal response category frequencies.

1.3.2 National identity dataset

This dataset is taken from the National Identity Survey (NIS), which was admin-
istered in many countries in 1995 as part of the International Social Survey Pro-
gramme (ISSP). A description of the background and organizational aspects of the
ISSP can be found at http://www.gesis.org/en/data_service/issp/
introduction.htm. The ISSP website also contains the codebook for the 1995
NIS, which describes the sampling mechanism used in each country, lists the questions
asked and possible responses, and presents the marginal response frequency (by coun-
try) for each question. Although the survey contained over twenty Likert items, we
include in our NIS dataset only eleven Likert items measuring general national pride
and immigration attitudes; these items can be seen in Table 1.2. Further, we include
only British and American surveyees in our dataset, more specifically the 807 British
and 998 American surveyees who had no missing or ‘Don’t Know / Can’t Choose’ re-
sponses to the national pride and immigration items. Figure 1.4 presents the marginal
frequencies for these surveyees, by nation, for each of the national pride and immigra-
tion items.
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Table 1.1: Fifty statements pertaining to abortion attitudes

S-1: ‘No man or woman has the right to decide if a fetus should be aborted.’
S-2: ‘Abortion is a threat to our society.’
S-3: ‘Abortion is inhumane.’
S-4: ‘Abortion is murder.’
S-5: ‘There is no situation in which abortion is justified.’
S-6: ‘Abortion is immoral.’
S-7: ‘Abortion violates the unborn child’s fundamental right to life.’
S-8: ‘Abortion involves taking a life unjustly.’
S-9: ‘Abortion could destroy the sanctity of motherhood.’

S-10: ‘Abortion is the destruction of one life for the convenience of another.’
S-11: ‘Abortion is a sin against God.’
S-12: ‘Having the option to legally terminate a pregnancy encourages promiscuous

behavior.’
S-13: ‘Having an abortion is far worse than having an unwanted child.’
S-14: ‘Having an abortion is a risk to a woman’s physical health.’
S-15: ‘Having an abortion is a risk to a woman’s mental health.’
S-16: ‘Even if one believes that there may be some exceptions, abortion is still

generally wrong.’
S-17: ‘Abortion is basically immoral, except when the woman’s physical health is

in danger.’
S-18: ‘Abortion should be illegal except in extreme cases involving incest or rape.’
S-19: ‘Abortions after the first three months should be illegal.’
S-20: ‘Abortion is unacceptable, except when there is evidence that the fetus has

severe defects.’
S-21: ‘Partial birth abortions should be illegal.’
S-22: ‘Abortion, if legal, should be strictly regulated.’
S-23: ‘I believe that abortion is wrong in some or all situations, but I still

think that it should be a matter of personal choice.’
S-24: ‘Abortion should be permitted, but should never be used simply due to its

convenience.’
S-25: ‘Abortion, in general, should be legal, but should never be used as a

conventional method of birth control.’
S-26: ‘There are some cases where abortion is justified, but there are also some

cases where it is not.’
S-27: ‘It’s impossible to make an airtight case either uniformly for or uniformly

against abortion.’
S-28: ‘My feelings about abortion are very mixed.’
S-29: ‘I find myself agreeing with arguments both for and against abortion.’

continued on following page
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Table 1.1: Fifty statements pertaining to abortion attitudes (continued)

continued from previous page

S-30: ‘I personally have not resolved how I feel about abortion.’
S-31: ‘If abortion were not legal, (illegal) abortions would still be performed.’
S-32: ‘Sometimes I am in favor of a woman’s right to abortion, but at other times I

am not.’
S-33: ‘I cannot wholeheartedly support either side of the abortion debate.’
S-34: ‘Abortion should generally be a woman’s prerogative, but it should not be

permitted in every case.’
S-35: ‘Regardless of my personal views about abortion, I do believe that others should

have the legal right to choose for themselves.’
S-36: ‘A woman should have control over what is happening to her own body by having

the option to choose abortion.’
S-37: ‘Only the woman who is pregnant can decide whether an abortion is warranted.’
S-38: ‘Abortion is a matter of personal choice.’
S-39: ‘Abortion should be legal under any circumstances.’
S-40: ‘The government should never prohibit a woman from having an abortion.’
S-41: ‘Restrictions should never be placed on a woman’s right to an abortion.’
S-42: ‘Outlawing abortion violates a woman’s civil rights.’
S-43: ‘Legal abortions pose less risk to the woman’s mental and physical health

than illegal abortions.’
S-44: ‘I believe that abortion is generally wrong, but I think that it is necessary

for it to be legal in today’s society.’
S-45: ‘If abortion became illegal, there would be negative consequences for society.’
S-46: ‘It is better to have an abortion than an unwanted child.’
S-47: ‘Abortion should be a socially acceptable method of birth control.’
S-48: ‘Abortion is an acceptable means of dealing with an unwanted pregnancy.’
S-49: ‘Abortion is a reasonable alternative if a woman feels that having a baby might ruin

her life.’
S-50: ‘Abortion should be available on demand.’

N.B.: American spelling is used in the above statements.
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Table 1.2: Eleven statements pertaining to national pride and immigration attitudes

S-1: ‘I would rather be a citizen of [my country] than of any other country in the world.’
S-2: ‘There are some things about [my country] today that make me feel ashamed of

[my country].’
S-3: ‘The world would be a better place if people from other countries were more

like the people in [my country].’
S-4: ‘Generally [my country] is a better country that most other countries.’
S-5: ‘People should support their own country even if the country is in the wrong.’
S-6: ‘Immigrants increase crime rates.’
S-7: ‘Immigrants are generally good for [own country’s] economy.’
S-8: ‘Immigrants take jobs away from people who were born in [own country].’
S-9: ‘Immigrants make [own country] more open to new ideas and cultures.’

S-10: ‘Refugees who have suffered political repression in their own country should
be allowed to stay in [my own country].’

S-11: ‘[Own country] should take stronger measures to exclude illegal immigrants.’
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Figure 1.4: Responses for National Pride and Immigration Items. Each plot contains two stacked bars showing the marginal
response category frequencies, by nation, for one of the national pride or immigration items in the NIS dataset.
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Chapter 2

Existing measurement models for
Likert data

Although the simple measurement model proposed by Likert remains popular, both
multivariate data visualization type models and latent variable models have been em-
ployed as measurement models more recently. In this chapter, we overview several of
the most frequently used models. Among these are Likert’s model and a model devel-
oped for visualizing multivariate data; the remainder are latent variable models, which
represent attitudes as underlying, continuous variables. In addition to describing each
model, we note how it fails to meet some of our requirements, or else does so in an
unprincipled manner.

We note that although Likert data are generated as ordinal direct response data, they
are not treated as such by all of the following measurement models. Direct response

data is generated by asking the respondent to indicate how much he endorses each of a
number of stimuli. With Likert data, endorsement of (i.e., agreement with) the stimuli
(i.e, statements) is measured at an ordinal level. Some of the following measurement
models (e.g., latent trait models for ordinal variables) do treat the data as ordinal direct
response data. However, some of the other measurement models (e.g., factor analysis,
principal components analysis, and Likert’s model) treat the data as quantitative direct
response data. Last, one model (the unfolding model for rank data) treats the data as
rank order data, which is generated by presenting the respondent with all stimuli at
once and asking him to rank them in terms of descending or ascending endorsement.

Before describing these models, we introduce some notation. We begin with the
Likert data, which consist of n persons’ responses to J Likert items. We use Y to refer
to the matrix containing the Likert data. Similarly, Yi refers to the vector of person
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i’s responses to the J items, and Yij , which we term an observed response, refers to
person i’s response to item j. For the data we consider, Yij falls into one of K ordered
agreement categories or into a ‘Don’t Know / Can’t Choose’ category. The items in
Y can be partitioned into S mutually exclusive and exhaustive item sets, where a set
contains all items intended to measure attitudes towards one particular object. Is will
refer to item set s, where s = 1, ..., S. Further, S(j) will be used to indicate the index
of the set to which item j belongs, and J s will refer to the number of items in Is. From
now on, we will use θs

i to refer to person i’s underlying attitude towards object s, and
the vector Y s

i will refer to person i’s responses to the items in set s.

2.1 Likert’s measurement model

The earliest and simplest measurement model for Likert data is the one proposed by
Likert (1932). It requires that, first, each item in Is be classified as either favourable
or unfavourable towards object s. Then, the response categories must be quantified
using consecutive integer scores,1 with the scores running in opposite directions for
favourable and unfavourable statements. We refer to the quantified data as Y

∗. The
relationship between θs

i and person i’s (quantified) responses to the items in Is is then

θ̂s
i =

∑

j∈Is

Y ∗
ij , (2.1)

where θ̂s
i is referred to as the total score.

The ease of implementing Likert’s model makes it an appealing choice. Further,
the model does meet some of our requirements for a measurement model. It represents
attitudes appropriately, and, by reversing the direction of the scores for favourable and
unfavourable statements, implicitly reflects an unfolding process.

However, Likert’s model fails to meet our other requirements. First, the way that
it represents statements is not entirely appropriate. Likert’s model differentiates only
between favourable and unfavourable statements and assumes that they are all simi-
larly extreme. This is not appropriate for most sets of items, which typically contain
statements of varying extremity. Further, some sets contain moderate statements that
cannot be classified as unfavourable or favourable, making it impossible to use Lik-
ert’s model. Second, Likert’s model ignores the characteristics of Likert responses. It

1Most researchers would probably use the consecutive integers scores 1, . . . ,K, but the choice of
scores does not affect the ordering of people’s attitude estimates.
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assumes that they are measured at an interval (rather than ordinal) level, does not allow
for ‘Don’t Know / Can’t Choose’ responses, and assumes that all people interpret the
response categories identically. Some researchers attempt to address this final short-
coming by normalizing the quantified responses for a person before summing them;
we refer to the resulting sum as the adjusted total score. However, when there is only a
small number of items available, the mean and standard deviation estimates on which
the normalization relies will not have the desired statistical properties. Further, this ad

hoc approach to dealing with differences in response category interpretation assumes
that the response data are continuous and from an elliptically symmetric distribution
(Rossi et al., 2001). For Likert data, the first assumption is obviously untrue, and the
second assumption is likely to be untrue.

Aside from failing to meet many of our requirements, Likert’s model suffers from
other limitations when used to perform certain types of analysis, due to the fact that it
is not a formal probability model (see Chapter 6).

2.2 Unfolding model for rank data

This model belongs to the class of multivariate data visualization techniques. In the
context of Likert data, the model seeks to locate the persons and statements in an un-
derlying Euclidean space so that the order of the distances between them best matches
the order of the Yijs within rows of Y. Despite being intended for rank data, the model
does meet almost all of our requirements for a measurement model. Unfortunately, as
we discuss in Chapter 4, the way it is formulated leads to performance problems, es-
pecially when the number of items is small. In addition, the model is not a formal
probability model, which means it is not appropriate for some types of analysis per-
formed here (e.g., scale development and modelling the relationship between attitudes
and covariates).

2.3 Using factor analysis and principal components anal-
ysis

Both factor analysis and principal components analysis (PCA) are frequently used
to analyse Likert data. We focus here on the former, specifically on using the one-
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dimensional normal linear factor model (NLFM)2 as a measurement model for Likert
data after they have been quantified:

Y s∗
i = Λθs

i + ξi, (2.2)

where Y s∗
i is person’s i’s (quantified) responses to the items in Is; where Λ is a J

by 1 matrix of parameters pertaining to the items; where θs
i has a standard normal

distribution; and where ξi contains the J error terms for person i, is orthogonal to θs
i ,

and has a N(0,Ψ) distribution, with Ψ a diagonal matrix of specific variances.
Although this model does represent attitudes as a continuous, underlying parame-

ter, it does not meet any of our other requirements (not surprisingly, since it was not
formulated as an attitude measurement model). First, the one-dimensional NLFM does
not reflect an unfolding process because agreement with a statement either increases or
decreases with attitudes (depending on the sign of Λj,1). Second, in practice, Λ̂ does
not usually order the statements in a manner that seems consistent with their content.3

Third and finally, the NLFM is not intended for responses that have the three char-
acteristics of Likert responses. Although quantifying the ordinal Likert data makes it
possible to use the NLFM, the quantification process is ad hoc and arbitrary since the
spacing of categories for ordinal data is, by definition, unknown. Further, even after
the data are quantified, they remain categorical and still unsuited for the NLFM, which
is intended for continuous variables.

2.4 Using item response theory models

Within the past decade, researchers have developed item response theory approaches
to attitude measurement with Likert data.4 These approaches use latent trait models
that reflect an ideal point or unfolding process (Coombs, 1964). Unfolding models can
be distinguished from monotone models, which reflect a dominance process (Coombs,
1964). Latent trait models of either type represent items with a parameter that, for
Likert data, can be thought of as the statement’s location. However, the relationship
between the latent variable, statement locations, and responses takes different forms

2See Bartholomew and Knott, 1999, Chapter 3, for an overview of the NLFM.
3Oftentimes, a plot of the two-dimensional NLFM or PCA solutions will locate the statements

around a horseshoe in a manner consistent with their content. This empirical result accords with the
theoretical work of Davison (1977) on PCA with data generated from metric unfolding models.

4Roberts (1995) describes parametric approaches for data with K agreement categories. Johnson
(2001) describes parameteric and non-parametric approaches for data with two agreement categories.
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in the two types of models. In an unfolding latent trait model for ordinal variables,
the expected response function5 is unimodal in the latent variable and peaks at the
statement location (Luo, 2001). In a monotone latent trait model for ordinal variables,
the expected response function is monotonic in the latent trait.

2.4.1 Unfolding latent trait models for ordinal variables

These models, which were developed for attitude measurement with Likert data, in-
clude Andrich’s (1996) and Rost and Luo’s (1997) generalised hyperbolic cosine model
(GHCM), Roberts and Laughlin’s (1996) graded unfolding model (GUM), and Roberts
et al.’s (2000) generalised graded unfolding model (GGUM).6 All three are formal
probability models with one latent variable. Further, all three adopt the same approach—
that of unobserved response categories—to create an unfolding structure. In this ap-
proach, each item’s K observed, ordered response categories unfold into 2∗(K−1)+1

(or 2∗K) unobserved, ordered response categories according to a prescribed mapping.
Figure 2.1 illustrates how this mapping works for one of the national pride items in-
troduced in Chapter 1. The probabilities of the unobserved categories are modelled
(as a function of the latent trait) using a monotone model for ordinal variables. The
probability of each observed category is then obtained by summing the probabilities
of the corresponding unobserved categories.

These models fulfill almost all of our requirements. For one, they are designed to
reflect an unfolding process, as can be seen from their item category response functions

(ICRFs), which model the probability of category responses as a function of the latent
trait. The ICRFs for a five-category Likert item are presented in Figure 2.2. The
curve for ‘Disagree strongly’ clearly reflects an unfolding process: The probability
of strongly disagreeing with a statement increases as an individual is farther from the
statement’s location.

Unfortunately, however, these models do not allow for ‘Don’t Know / Can’t Choose’
responses, or differing response category interpretation. Moreover, the models’ structure—
specifically, the way in which they induce an unfolding structure—does not lend itself
to incorporating differing response category interpretation.

5Here, the expected response function for a particular item is a weighted sum of the item’s K cate-
gory probability functions; the weights equal consecutive integer scores, with the highest score used for
the ‘Strongly agree’ category.

6Luo (2001) developed a general framework for a class of probabilistic, unfolding, unidimensional
latent trait models for ordered data. This class includes the GHCM and GUM as special cases.
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  Agree strongly 

          Agree  

         Neither 

        Disagree  

Disagree strongly 

Disagree strongly: v. low pride 

    Disagree: low - v. low pride 

            Neither: low pride 

          Agree: med - low pride 

     Agree strongly: med pride 

        Agree: med  - high pride 

           Neither: high pride 

    Disagree: high - v. high pride 

  Disagree strongly: v. high pride 

Figure 2.1: Unfolding Mapping of Observed Response Categories. This mapping is
illustrated for a Likert item from the national pride scale. Five ordered, observed
response categories that span the agreement continuum unfold into nine ordered, un-
observed response categories that span the national pride continuum.

2.4.2 Monotone latent trait models for ordinal variables

Although these models were not developed for attitude measurement, they have been
used to analyse Likert data. They can be divided into two classes depending on the
approach they take to modelling the category probabilities. These classes are referred
to as divide-by-total models and difference models in Thissen and Steinberg’s (1986)
classification.

2.4.2.1 Difference models

A popular difference model is what we will term the Underlying Variable Model for

Ordinal Variables (UVMOV), which has logit and probit variants.7 This model can be
motivated from an ICRF perspective or from an underlying variable, factor analysis
perspective.8 In the underlying variable perspective, each observed ordinal response

7The ordinal-logit variant of the UVMOV with one latent trait also known as Samejima’s (1969)
Graded Response Model.

8These two perspectives result in different approaches to fitting the UMVOV. See Bartholomew et
al. (2002, Chapter 8), J oreskog and Moustaki (2001), and for the relationship and differences between
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Figure 2.2: Unfolding ICRFs. These ICRFs for a Likert item with K = 5 are generated
by an unfolding latent trait models for ordinal variables. The bottom axis represents
the evaluative continuum.

(Ys
i ) is a coarsened version of an unobserved continuous response, which we refer

to as Y
s∗
i . The Y

s∗
i s are then modelled in a manner similar to (2.2), except that the

error terms can have a logistic distribution (ordinal-logit variant) instead of a normal
distribution (ordinal-probit variant).

Although the UVMOV does represent attitudes appropriately and is intended for
ordinal responses, it fails to meet some of our other requirements. First, the model
cannot handle ‘Don’t Know / Can’t Choose’ responses, and it does not allow response
category interpretation to differ.9 Second, since the UVMOV is a monotone model, the
relationship between the latent variable (i.e., attitude) and the responses does not reflect
an unfolding process. Figure 2.3 shows how the UVMOV does model the relationship

the two perspectives.
9The model could be modified to incorporate differing response category interpretation, by allow-

ing people to have different thresholds (for coarsening their unobserved continuous responses). This
approach is used in the measurement model proposed in the next chapter.
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Figure 2.3: Monotone ICRFs. These ICRFs for a Likert item with K = 5 are generated
by a monotone latent trait models for ordinal variables. The bottom axis represents
the evaluative continuum.

between the latent variables and the category probabilities. Obviously, the relationship
depicted in this plot would be appropriate only when the statement is very extreme
compared to the population surveyed (e.g., if the statement were located off the right-
hand side of the plot).

2.4.2.2 Divide-by-total models

A popular divide-by-total model for ordinal variables is the partial credit model (PCM)
(Masters, 1982; Masters and Wright, 1984), alternatively known as the polytomous
Rasch model. Many other well-known divide-by-total models are variations on the
PCM. For instance, Andrich’s (1978) rating scale model (RSM) is a restricted version
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of the PCM, and Muraki’s (1992) generalized partial credit model (GPCM) generalizes
the PCM.

Following in this vein, we propose a new model that modifies the PCM for use
with Likert items that can be classified (a priori) as pro-object or anti-object. In this
model, the probability that a person with latent attitude θs

i selects category k of item j

is

P (Yij = k | θs
i ) =

exp [kθs
i + cjk]∑K

s=1 exp [sθs
i + cjs]

(2.3)

if statement j is anti-object and

P (Yij = k | θs
i ) =

exp [(K + 1 − k)θs
i + cjk]∑K

s=1 exp [(K + 1 − s)θs
i + cjs]

(2.4)

if statement j is pro-object. In both equations, k = 1 corresponds to greatest agreement
and k = K corresponds to greatest disagreement. In addition, we assume that local
independence holds for this model; thus, the probability of person i’s response pattern
is the product (across items) of the probabilities specified in (2.3) or (2.4).

Figure 2.4 shows how the category probabilities (for a pro-statement and for an
anti-statement) vary with θs

i in this model. Note that the ordering of the categories
along the evaluative continuum is reversed for the pro-object and anti-object state-
ments. Further, note that these plots represent realistic scenarios only for pro-object
and anti-object statements located to the right and left, respectively, of the population
surveyed.

An interesting property of this model is that the total score from Likert’s measure-
ment model is sufficient for θs

i . (It is easy to show that conditioning on the total score
removes θs

i from person i’s contribution to the likelihood.) In fact, the new PCM-like
model was specifically formulated to have this property. Its connection to Likert’s
measurement model, combined with the observations made in the previous paragraph,
give us insight into Likert’s measurement model, suggesting that it implicitly specifies
very extreme locations for the statements.

Unfortunately, as was the case for the UVMOV, the new PCM-like model would
not be appropriate for Likert data containing any non-extreme statements.

21



2.5 Conclusions

Clearly, existing methods of analysis are limited by their measurement models, which
are not fully appropriate for Likert data.10 In response to this dearth, we now introduce
a measurement model that fulfills all of our requirements (save one) in a principled
manner.

10There are also other reasons why these methods are not entirely appropriate for their task. These
additional reasons are discussed in Chapters 4, 5, and 6.
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Figure 2.4: Likert ICRFs. The ICRFs for a pro-object item and for an anti-object item,
each with K = 5. The curves are generated by a PCM-like model formulated so that
the total score is sufficient for θs

i . The bottom axis in the plot represents the evaluative
continuum.
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Chapter 3

A new measurement model for Likert
data

In this chapter, we introduce a new measurement model for Likert data, the Unfolding

Latent Trait Model for Ordered Direct Responses (ULTMODR). The ULTMODR is
a formal probability model for ordinal responses that, unlike other latent trait models,
allows for differing response category interpretation. (Unfortunately, the model cannot
incorporate ‘Don’t Know / Can’t Choose’ responses without modification). Further,
the model relates the latent traits, which represent attitudes, to responses in a manner
that reflects an unfolding process.

Note that the ULTMODR, though developed for Likert responses, is appropriate
for other types of direct responses measured at an ordinal level.

3.1 Motivation behind the model

The ULTMODR combines a response structure with an unfolding latent structure. Sep-
arating the response structure and latent structure makes it possible to model differing
response category interpretation in the response structure and more than one attitude
(i.e., latent trait) in the latent structure. The two-part structure reflects the fact that
people’s responses might differ because of differing underlying attitudes, differing re-
sponse category interpretations, or both. Obviously, we cannot hope to entirely sep-
arate the effects of these two phenomena on people’s responses since they are both
unobserved and, further, may not be independent. Of course, the model’s ability to
separate the two effects will depend on the data. As a trivial example, consider Likert
data with only one item, in which case attitude and response category interpretation
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would be hopelessly confounded. Obviously, the model will be better able to separate
the two effects when there are more items. However, as we will see in Chapter 6, it
is preferable that these items come from more than one set and that they be located in
different places along the evaluative continuum.

Different variants of the ULTMODR’s latent structure can be formulated depend-
ing on the particular data and questions being investigated. In the following discussion,
we describe the simplest of these variants. It is intended for data containing only one
set of items, and it assumes that only one latent trait (i.e., attitude) underlies them.

3.2 The ULTMODR

The formulation of the ULTMODR adheres to certain principles common to most la-
tent variable models. First, the ULTMODR makes the assumption that the people are
independent. In addition, it assumes local independence. This means that the items are
(conditionally) independent given the parameters specific to each person; these param-
eters include each person’s latent trait values (i.e., his attitudes) and possibly certain
person-specific response category interpretation parameters. The assumption of local
independence allows us to separately model responses to each item instead of the joint
responses to all items.

The latent structure of the ULTMODR is a Euclidean space in which both persons
and statements are located. The person location for person i will be denoted θi, and
the statement location for item j will be denoted βj . Note that the statement locations
are objective in the sense that they do not depend on the persons. In the simplest
variant of the ULTMODR, the Euclidean space is unidimensional and corresponds to
the evaluative continuum for object s; in this variant, θi = θs

i and βj = βs
j .

The latent structure is connected to the response structure by the assumption that
Yij (probabilistically) increases with the Euclidean distance between the relevant per-
son and statement locations. This assumption results in a model that reflects an un-
folding process. We will refer to the Euclidean distance between θi and βj as dij .

We now consider the model’s response structure, which is a mapping from the
dijs to the joint distribution of the persons’ observed responses. This mapping occurs
via the underlying-variable-coarsened-by-thresholds approach, which is equivalent to
the cumulative probability approach to modelling ordinal variables (see Agresti, 2002,
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Section 7.2.3). Here, the underlying response for person i on item j (denoted Y ∗
ij) is

the following function of dij:
Y ∗

ij = ±dij + εij , (3.1)

where εij is assumed to have a logistic distribution with centre 0 and scale equal to
1/1.7 or, alternatively, a normal distribution with mean 0 and variance 1; and where Y ∗

ij

is referred to as person i’s unobserved response to item j and lies along an agreement

continuum whose direction is determined by the ± sign.1 The agreement continuum is
partitioned (or coarsened) by thresholds into ordered categories. The ordered threshold
set used for coarsening is

−∞ = ci
0 ≤ ci

1 ≤ . . . ≤ ci
K−1 ≤ ci

K = ∞. (3.2)

As usual, a response of Yij = k is observed if and only if ci
k−1 ≤ Y ∗

ij ≤ ci
k. Note that

the superscript i in ci
k indicates that the threshold set can be person-specific (although

it might rather be group-specific or common to all people, as we discuss below). This
personalisation of the thresholds between categories reflects differing response cate-
gory interpretation, and it is possible because the thresholds are assumed to be the
same for all items.

The ICRF for category k of item j in the simple variant is then

P (Yij = k ) = P
(
ci
k−1 ≤ Y ∗

ij ≤ ci
k

)
(k = 1, . . . , K) (3.3)

= P
(
∓|θs

i − βs
j | + ci

k−1 ≤ εij ≤ ∓|θs
i − βs

j | + ci
k

)
, (3.4)

where S(j) = s. These ICRFs have forms similar to those illustrated in Figure 2.2.
Finally, the likelihood for the data is

L =
n∏

i=1

L(Y s
i ) =

n∏

i=1

∏

j∈Is

K∏

k=1

I (Yij = k) P (Yij = k ) , (3.5)

with the first and second multiplications allowed by the assumed properties of person
independence and local independence, respectively.

1For example, if a positive sign is used, it is oriented in terms of decreasing agreement, which means
that ‘Agree strongly’ should be treated as the lowest category.
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3.2.1 Different cases of the response structure

The ULTMODR models differing response category interpretation by allowing the
thresholds in (3.2) to vary. In this section, we describe different assumptions that can
be made about the way in which this variation occurs.

In the following discussion, Z denotes a group variable, which is a demographic
variable (e.g., nation) where response category interpretation varies more between this
variable’s groups than within them. Here, we assume that Z is categorical with its
categories labeled 0, . . . , G − 1, where G is the total number of groups and group 0 is
the reference group.2

We enumerate the response structure cases in terms of increasingly stringent as-
sumptions. In Case 1, the threshold set is allowed to differ for each person. In Case
2, the set is allowed to differ between Z groups but is the same for all people within
a given Z group. Lastly, in Case 3, the threshold set is the same for all people. In
Cases 1 and 2, the threshold set could be allowed to vary (across persons or groups) in
an unrestricted manner or in a restricted manner that involves shifting and scaling the
threshold set (for each person or group). In Case 1, we allow only restricted variation
for reasons of computational convenience. However, in Case 2, we allow the set to
vary across groups in either an unrestricted manner (Case 2a) or a restricted manner
(Case 2b).

1. Person-specific Response Structure: Each person is allowed to interpret the re-
sponse categories differently. In formal terms, this means that a person-specific
threshold set, {ci

1, . . . , c
i
K−1}, is used in the model’s response structure. For

person i,
ci
k = (σi)−1ck + τ i for k = 1, . . . , K

where {c1, . . . , cK−1} is the common threshold set; and where τ i and σi are re-
ferred to as person interpretation parameters and are used to shift and scale the
common threshold set for each person. In particular, τ i describes the centre of
where person i’s dijs map onto the agreement continuum. This parameter can
be thought of as a quantification of acquiescence, a tendency to use more agree-
able response categories regardless of the questions being asked. Analogously,

2If we suspect that more than one nominal categorical background variable affects response cate-
gory interpretation, we could create a group variable by crossing the levels of all variables expected to
influence response category interpretation.
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σi describes the spread with which person i’s dijs map onto the agreement con-
tinuum. This parameter can be thought of as a quantification of extremity, which
is a greater tendency to use outer response categories regardless of the questions
asked.

2. Group-specific Response Structure: All members of each Z group share the
same interpretation of the response categories, but this interpretation can differ
between groups. In formal terms, this means that a group-specific threshold set,
{c

(g)
1 , . . . , c

(g)
K−1}, is used in the model’s response structure.

(a) Unrestricted: The group-specific threshold set is allowed to vary across
groups in an unrestricted manner.

(b) Restricted: The group-specific threshold set varies across groups in a re-
stricted (shifted and scaled) manner. More specifically, for group g,

c
(g)
k = (σ(g))−1ck + τ (g) for k = 1, . . . , K,

where {c1, . . . , cK−1} is the common threshold set; and where τ (g) and σ(g)

are referred to as group interpretation parameters. These parameters are
analogous to the person interpretation parameters discussed above.

3. Common Response Structure: All people share the same response category inter-
pretation. In formal terms, this means that a common threshold set, {c1, . . . , cK−1},
is used for all persons.

3.2.2 Incorporating ‘Don’t Know / Can’t Choose’ Responses

The ULTMODR, as presented above, is intended for data containing ordinal responses.
However, as noted in Chapter 1, Likert data often contains ‘Don’t Know / Can’t
Choose’ responses. To incorporate these into analysis using the ULTMODR, we could
modify the data, treating the ‘Don’t Know / Can’t Choose’ responses as missing, or
else modify the method. The former approach is easier to implement, but may intro-
duce bias into the analysis, especially when the proportion of ‘Don’t Know / Can’t
Choose’ responses is high.

One way of modifying the data is to omit any ‘Don’t Know / Can’t Choose’ re-
sponses. We could remove persons with any ‘Don’t Know / Can’t Choose’ responses
prior to fitting the model to the data. Alternatively, we could ignore any ‘Don’t Know /
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Can’t Choose’ responses during the model fitting process by omitting the correspond-
ing terms from the likelihood.

Another way to modify the data it to replace the ‘Don’t Know/Can’t Choose’ re-
sponses with ordered agreement responses. For instance, we could adopt a (multiple)
imputation approach in which any ‘Don’t Know / Can’t Choose’ responses would be
replaced with imputed values falling into one of the ordered categories. Alternatively,
if the ordered response categories contain a middle ‘Neither agree nor disagree’ type
category, then the ‘Don’t Know / Can’t Choose’ responses could be recoded as this
middle category.

Last, we could modify the ULTMODR, which involves specifying an ICRF for the
‘Don’t Know / Can’t Choose’ category. For example, we might use the ICRF employed
for the ordered response categories, but with the thresholds ci

k and ci
k−1 replaced by two

additional thresholds (ci
DK,u and ci

DK,l, respectively), where no ordering constraints are
imposed on these additional thresholds. Alternatively, we could look to the numerous
item response theory models (see van der Linden and Hambleton, 1997) for a different
ICRF appropriate for the ‘Don’t Know / Can’t Choose’ category.

3.3 Comparison to existing latent variable models

In this section, we describe how the ULTMODR relates to other models, it order to put
it into some context.

The simplest variant of the ULTMODR possesses the attribute that characterises la-
tent trait models for ordinal variables (Luo, 2001, Theorem 1): The expected response
function for item j is a unimodal function of the latent trait, θs

j , with its mode at the
item location, βs

j . (See the next section for a proof).
However, the ULTMODR differs in several aspects from other unfolding latent trait

models for ordinal variables. For one, the latent structure can be multidimensional in
the ULTMODR, whereas the other models are unidimensional and their structure does
not make it easy to incorporate additional attitudes (latent traits). Another difference
centres around the way in which the models create ICRFs that reflect an unfolding pro-
cess. In the other models, an unfolding structure is induced by assuming unobserved
response categories whose probabilities are monotonic in the latent trait. In the ULT-
MODR, on the other hand, an unfolding structure is induced by using a non-monotone
function (absolute value) to directly model the probabilities of the observed response
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categories. In other words, in the ULTMODR, the latent structure unfolds instead of
the response structure. As a result, the response structure can be allowed to vary for
persons or groups of persons. It is much less feasible to incorporate differing response
category interpretations into the other models because it is their response categories
that unfold.

The way that the ULTMODR induces unfolding does resemble the approach used
in other types of unfolding models, such as the one developed for rank data (see Chap-
ter 4).3 Generally speaking, these models locate stimuli (e.g., statements) in a Eu-
clidean latent space, and then treat each person’s responses as a (deterministic or prob-
abilistic) function of the distance between his ideal point (i.e., person location) and
the stimuli locations. These unfolding models, like the ULTMODR, more explicitly
reflect Coombs’ (1964) description of an unfolding process than do models like the
GGUM and GHCM.

Analogously, the ULTMODR’s response structure does resemble those monotone
latent trait models for ordinal variables that use a underlying-variable-coarsened-by-
thresholds approach (e.g., the UVMOV). The ULTMODR’s response structure partic-
ularly resembles Shi and Lee’s (1998) Bayesian approach to fitting an UVMOV-like
model, where the thresholds are treated as person-specific random effects. However, in
Shi and Lee’s approach, the thresholds vary across persons in an unrestricted manner,
whereas the ULTMODR models threshold variation using a shifting parameter and a
scaling parameter.

In fact, the ULTMODR models threshold variation in a manner very similar to
Rossi et al.’s (2001) hierarchical model for differing response category interpretation.
In some senses, the ULTMODR is a variation on Rossi et al.’s model, a variation in
which the unobserved continuous variables are modelled as a function of underlying
latent traits (attitudes). For the sake of convenience, we adopt some of Rossi et al.’s
notation when describing the ULTMODR and some of their constraints when fitting
the ULTMODR.

3.4 Model fitting and identifiability

Having introduced the ULTMODR, we now describe a frequentist approach to fitting
it. This approach treats any person-level parameters (i.e., person locations and, if rele-

3Cox and Cox (2001, Chapter 8) and Marden (1995, Section 10.4) overview unfolding models for
rank, pairwise comparison, and dissimilarity data.
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vant, the person interpretation parameters) as random effects, and all other parameters
(and hyperparameters) as fixed effects.

The distributions of random effects are chosen for computational convenience. We
assume that θi comes from a normal distribution, denoted g1(θi), with hyperparameters
that may be fixed or estimated. If Case 1 is used, we assume that the person interpreta-
tion parameters come from a bivariate normal distribution, denoted g2(τ

i, ln(σi)), that
has mean vector ϕ and covariance matrix Λ, which are estimated. We might allow this
distribution to depend on person i’s Z group, specifically by allowing each group’s
distribution to have different hyperparameters (now referred to as ϕ(g) and Λ(g)). (We
will refer to the scenario where g2(τ

i, ln(σi)) has group-specific hyperparameters as
Case 1a, and the scenario where all groups share common hyperparameters as Case
1b.) We note that the distribution of person locations and the distribution of person
interpretation parameters are assumed to be independent. Although we could easily
imagine a scenario where underlying attitudes and response category interpretation
are not independent, we choose not to model their relationship in order to simplify the
model.

Before fitting the model, we must impose constraints on some parameters to make
sure that it is identified. Of course, the particulars of identifiability will depend on the
case and variant of the ULTMODR and on the particular questions being investigated.
However, we can still note here some general principles of identifiability. Beginning
with the latent structure, the person locations are additively confounded with the state-
ment locations, as can be seen in (3.3). We could deal with this identifiability problem
by setting to 0 the mean of g1(θi) for at least some people.4 Alternatively, we could
fix the item locations to pre-specified values. Turning to the response structure, in
Case 2b, the τ (g)s are additively confounded with the thresholds, and the σ(g)s are
multiplicatively confounded with the thresholds. These problems are resolved by con-
straining τ (0) = 0 and σ(0) = 1, respectively. Similar identifiability problems arise in
Case 1b and are resolved by setting E(τi) to 0 and E(σ2

i ) to 1, which translates into
the constraints ϕ1 = 0 and ϕ2 = −λ2,2. (In Case 1a, the constraints ϕ

(g)
1 = 0 and

ϕ
(g)
2 = −λ

(g)
2,2 are used only for group 0’s distribution.) Last, there may be confusion

(i.e., imperfect confounding) between the latent structure and the response structure in
certain analyses using the ULTMODR. In response, we may want to set the variance
of θi to a pre-specified value if the item locations are not fixed.

4Note that, even with this constraint, the item locations and person locations will be identified only
up to a change of sign.
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The fixed-effects parameters are estimated by maximizing the likelihood, which
is produced by integrating out the random effects from the product of the conditional
distribution of the data (given the random effects) and the marginal distribution of the
random effects. We will refer to the likelihood as the marginal likelihood (ML) as is
commonly done in item response theory literature; note that it is marginal only in the
sense that the latent traits have been integrated out, unlike in the joint likelihood where
they are treated as fixed effects and estimated simultaneously with the other model
parameters. For the simple variant of the ULTMODR, the marginal likelihood takes
the form:

ML =
n∏

i=1

{∫
g1(θ

s
i ) ·

∏

j∈Is

K∏

k=1

I (Yij = k) P (Yij = k) dθs
i

}
, (3.6)

or, for Cases 1a and 1b,

ML =
n∏

i=1

∫
· · ·

∫ {
g1(θ

s
i ) · g2(τ

i, ln(σi))·

∏

j∈Is

K∏

k=1

I (Yij = k) P (Yij = k)

}
d(θs

i )d(τ i)d(ln(σi)). (3.7)

(Marginal) MLEs will be used even for any variance parameters that are estimated
(e.g., the σ(g)s, if Case 2b is used, or the variances of any random effects distribu-
tions). For these parameters, we might consider using an alternative and more complex
method, like REML, that avoids under-estimating the variances. However, since our
primary interest lies in the item and person locations, using MLEs for the variances
will be sufficient for our purposes.

The person locations are then estimated using the mean of the conditional distribu-
tion of the random effects (given the data), with the fixed effects parameters set equal
to their MLEs.

3.5 Assessing goodness-of-fit

Assessing goodness-of-fit for the ULTMODR is difficult because the number of cells
in the J-way contingency is typically large, making sparsity a problem. For instance,
the NIS dataset has only 1805 persons, but there are 115 = 161, 051 cells. As a result,
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most response patterns are not observed, and very few response patterns (only eleven)
are repeated.

To assess overall goodness-of-fit, we can use the maximum value of ln(ML) for the
ULTMODR. Because the standard asymptotic theory is not appropriate for ungrouped
data, we will not assess ln(ML) in terms of deviance (which equals −2 ln(ML) for
ungrouped multinomial data). Instead, we could interpret ln(ML) in terms of logarith-
mic scoring (Good, 1983), which sums the negative log probability of the event that
occurred. Under this interpretation, ln(ML) can be translated into an average proba-
bility: On average, the probability that a person selects the item-category that he did
is exp {ln(ML)/(n ∗ J)}. Alternatively, we could interpret ln(ML) by comparing it
to the analogous value for various proportional odds models (for all the items). One
example is a model with no covariates but different category cut-offs for each item.
This model, which is equivalent to a product-multinomial model, assumes that there
are differences in the items but not in the persons. Another example is a model with
(fixed) effects for persons and items but the same category cut-offs for all items. This
model assumes that there are differences in the items and in the persons, but does not
distinguish between person differences in attitudes and person differences in response
category interpretation.

In addition to looking at overall goodness-of-fit, we can assess how well the ex-
pected probabilities (predicted by the ULTMODR) match the observed probabilities
for the univariate and bivariate margins. To compare the expected and observed prob-
abilities, we calculate signed Pearson residuals for the relevant margins. The signed
univariate Pearson residual for category k of item j is

χ2
j(k) = sign

(
pj(k) − p̂j(k)

)
·
n

(
pj(k) − p̂j(k)

)2

p̂j(k)

, (3.8)

where pj(k) is the (observed) proportion of respondents who select category k for item
j; and where p̂j(k) is the expected probability of selecting category k for item j, under
the fitted ULTMODR. Similarly, the signed bivariate Pearson residual for category k

of item j and category m of item l is

χ2
j(k)l(m) = sign

(
pj(k)l(m) − p̂j(k)l(m)

)
·
n

(
pj(k)l(m) − p̂j(k)l(m)

)2

p̂j(k)l(m)

, (3.9)

where pj(k)l(m) and p̂j(k)l(m) are the bivariate analogues of pj(k) and p̂j(k). For ULT-
MODR cases 2a, 2b, and 3, the expected univariate and bivariate probabilities are
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calculated using

p̂j(k) =

∫
P

(
∓|θs

i − β̂j| + ĉi
k−1 ≤ εij ≤ ∓|θs

i − β̂j| + ĉi
k

)
g1(θ

s
i )dθs

i

and

p̂j(k)l(m) =

∫
P

(
∓|θs

i − β̂j| + ĉi
k−1 ≤ εij ≤ ∓|θs

i − β̂j| + ĉi
k

)

P
(
∓|θs

i − β̂l| + ĉi
m−1 ≤ εil ≤ ∓|θs

i − β̂l| + ĉi
m

)
g1(θ

s
i )dθs

i ,

respectively, where β̂j and ĉk are the MLEs for those parameters. (For cases 1a and
1b, analogous expressions are used.) The sum of the unsigned univariate or bivariate
residuals5 cannot be used to formally test the fit of the ULTMODR because the model
was not fitted using either of those marginal frequencies. Bartholomew et al. (2002)
and Jöroreskog and Moustaki (2001) give heuristic arguments supporting two rules
of thumb for deciding whether the sum of the bivariate residuals indicates poor fit.
However, we will use the residuals in (3.8) and (3.9) simply to see which frequencies
are most poorly predicted by the ULTMODR, in order to get insight into the model
and the data.

3.6 A small simulation experiment

We performed a small simulation experiment using the simplest ULTMODR variant.
The experiment was designed with two purposes in mind: (i) To see whether we should
model response category interpretation if we are mainly interested in determining the
order of the items, and (ii) To see what range of log(ML) values indicates a well-fitting
model.

First, N = 100 datasets were generated from Case 1a of the simplest ULTMODR
variant. Recall that this case allows response category interpretation to differ by per-
son. The datasets contained n = 140 persons (the same as the abortion attitude dataset)
and J = 6 items comprising a Likert scale. In the latent structure, the item locations
were fixed at β1 = −4, β2 = −3, β3 = −2, β4 = 2, β5 = 3, and β6 = 4. These
values were chosen because Likert scales often contain a small number of statements
ranging from very to extremely pro-object and the same number of statements ranging

5The χ2
j(k) and χ2

j(k)l(m) statistics are signed versions of the univariate and bivariate GF-Fit statistics
proposed by Jöreskog and Moustaki (2001) in the context of the UVMOV.
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from very to extremely anti-object. For each person, θi was generated from a N(0, 1)

distribution. In the response structure, the thresholds were fixed at c1 = 0.5, c2 = 1.25,
c3 = 1.75, and c4 = 3.0. For each person, τi and ln(σi) were generated from a bivariate
normal distribution whose hyperparameters were chosen from experience with actual
Likert data. (Their values were φ1 = 0, φ2 = −0.16, λ1,1 = 0.36, λ1,2 = 0.22, and
λ2,2 = 0.16.)

Then, Case 3 of the simplest ULTMODR variant was fit to each of the simulated
datasets. The β̂js ordered the items correctly for every dataset, suggesting that the
ULTMODR can recover the true item order without modelling differing response cat-
egory interpretation. For each dataset, we calculated exp {log(ML)/(140 · 6)} and
found that the average probability (that a person selected the response category that
he did) ranged between 0.25 and 0.30. Since response category interpretation is not
allowed to differ in Case 3, we would expect these values to be on the lower side. For
this reason, we also fit Case 1a to each dataset. The resulting average predicted prob-
abilities ranged between 0.30 and 0.34. Thus, for an actual dataset, we should not be
surprised to see average predicted probabilities lower than 0.30.

Out of curiosity, we fit the GGUM with αi = 1 and τik = τk (see Roberts, 2000)
and the one dimensional normal linear factor model to each simulated dataset. Note
that both models assume the same response category interpretation for all persons. The
item locations estimated for the GGUM ordered the items correctly for every dataset.
On the other hand, the loadings estimated for the NLFM never ordered the items any-
where near their true ordering. Note, however, that in some situations, plotting the
loadings from the two dimensional NLFM can give us an idea of the true item or-
dering. An example can be seen in Figure 3.1. The plot contains the estimated two
dimensional loadings for a simulated dataset with twenty items evenly spaced between
−4 and 4. Note that the true item ordering can be roughly recovered by reading around
the horseshoe formed by the items.
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3.7 Proof of the Unimodality of the Expected Item Re-
sponse Function

The expected response function for item j is

E(Yij | θi) =
K∑

k=1

k · P (Yij = k) , (3.10)

where k = 1, . . . , K.

Theorem 1 In the simplest ULTMODR variant, the expected response for item j,

where S(j) = s, is a unimodal function of θs
i , with the single mode occurring at

θs
i = βs

j .

Proof. Without loss of generality, we assume that category K represents ‘Agree
strongly,’ which means that a negative sign is used in Equation (3.1). Thus,

E(Yij | θi) =
K∑

k=1

k · P
(
ci
k−1 +

∣∣θs
i − βs

j

∣∣ ≤ εij ≤ ci
k +

∣∣θs
i − βs

j

∣∣) . (3.11)

Obviously,

E(Yij | θi) =
K∑

k=1

k ·
{
P

(
εij ≤ ci

k +
∣∣θs

i − βs
j

∣∣) − P
(
εij ≤ ci

k−1 +
∣∣θs

i − βs
j

∣∣)} .

Simplifying the right-hand side yields

E(Yij | θi) = 1 +
K∑

k=2

P
(
εij ≥ ci

k−1 +
∣∣θs

i − βs
j

∣∣) . (3.12)

Each of the K − 1 probability terms in (3.12) increases as the expression ci
k−1 +∣∣θs

i − βs
j

∣∣ decreases. Since this expression is a U-shaped function of θs
i with a mini-

mum at βs
j , each term in the summation in (3.12) is thus a unimodal function of θs

i with
the single mode located at βs

j . Clearly, summing these terms (and adding 1) to obtain
E(Yij | θi) results in a function that is unimodal in θs

i with the single mode located at
βs

j .
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Figure 3.1: NLFM Item Loadings for a Dataset Simulated from the ULTMODR. The
plot shows λ̂j,2 vs λ̂j,1 for the two dimensional normal linear factor model. The model
was fit to a dataset with 140 persons and 20 items that was generated from Case 3
of the simplest ULTMODR variant. The locations of the twenty items were fixed at
equally spaced intervals from -4 to 4.
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Chapter 4

Visualisation

Following in the tradition of Exploratory Data Analysis (Tukey, 1977), we would like
to visualise Likert data prior to performing any formal statistical analysis. Specifically,
we would like to locate both the persons and the statements as points in the same
plot. This chapter focuses on a visualisation technique that we term multidimensional

unfolding analysis (MUA), which does just that.
We describe two methods that are appropriate for performing MUA on Likert data.

The first, an existing method, uses the unfolding model for rank data introduced in
Section 2.2. The second, a new method, uses a variant of the ULTMODR developed
for the purpose of visualization. Since this method uses a formal probability model,
confidence regions can be obtained for the person and statement locations. Both meth-
ods are employed to visualize the Likert items in three synthetic datsets and in the
abortion attitude dataset.

4.1 Overview of multidimensional unfolding analysis

Multidimensional unfolding analysis locates members from two sets or modes in a Q-
dimensional Euclidean space in such a way that the distances between objects from
different modes best match observed two-way dissimilarities between objects from
different modes.

MUA has its origins in the concept of unfolding formulated by Coombs’ (1950) in
his original MUA method.1 The concept was developed for a situation where judges
order objects in terms of decreasing preference. The judges and objects are assumed

1Note that our definition of MUA encompasses some methods that do not truly reflect Coomb’s
implementation of the unfolding concept.
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to be located along a continuum (in Coombs’ original formulation; in subsequent for-
mulations by Coombs and others, objects and judges are located in multidimensional
spaces). Folding the continuum at a judge’s location generates a ranking of the objects
that depends on their relative distances from the judge’s location. Unfolding refers to
performing the reverse process: Given observed object rankings for each of the judges,
locating the judges and objects along the continuum. Of course, it is not usually pos-
sible to locate the objects and judges in such a way that the generated ranking for each
judge perfectly matches his observed ranking.

The concept of unfolding—and, more generally, MUA—can be applied to Likert
data. In the terms used by Coombs, Yi can be viewed as a person’s ranking of the
statements (with ties). In the terms used in our MUA definition, Yij can be viewed
as a measure of the dissimilarity between person i and statement j. This dissimilarity
is measured at an ordinal level using categories whose interpretation may differ for
different people. Of the many methods2 encompassed by our definition of MUA, we
focus on two that seem appropriate for dissimilarities with those two qualities. (In
this chapter, any ‘Don’t Know / Can’t Choose’ responses in the Likert data must be
omitted, recoded, or imputed).

In our presentation of these methods, we use θi = [ θi,1 θi,2 . . . θi,Q ]T and
βj = [ βj,1 βj,2 . . . βj,Q ]T to refer to the locations of the persons and statements,
respectively, in the Q-dimensional Euclidean latent space. (Typically, Q = 2.) As
usual, dij will denote the Euclidean distance between person i’s location and statement
j’s location.

4.2 An existing method of performing MUA

The existing method comes from the multivariate data visualisation context. It uses the
unfolding model for rank data, which we recall seeks to locates the persons and state-
ments so that the order of the dijs best matches the order of the Yijs within rows of Y.
The model is fit by algorithms operationally similar to ordinal MDS in the sense that
they use a loss function to assess the similarity between distances and dissimilarities.3

2See Cox and Cox, 2001, Chapter 8 for descriptions of some methods.
3See Borg and Groenen (1997, Chapter 14) for an excellent presentation of this and other loss-

function-based methods of performing MUA.
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Although some algorithms use stress-based loss functions,4 the algorithm ALSCAL
(Young and Lewyckyj, 1979), which we use in the following applications, employs (a
normalised version of) the s-stress loss function:

s-stress =
1

n

∑

i

∑

j

(d2
ij − d∗2

ij )2,

where the d∗
ijs for each i are a (weak) monotonic transformation of the Yijs for each i:

Yij < Yij′ ⇒ d∗
ij ≤ d∗

ij′ . (4.1)

ALSCAL allows ties in the Yijs to be preserved (Kruskal’s secondary approach) or
ignored (Kruskal’s primary approach) by the d∗

ijs:

Yij = Yij′ ⇒ d∗
ij = d∗

ij′ (secondary approach)

Yij = Yij′ ⇒ irrelevant (primary approach)

We select the primary approach because having dissimilarity categories means a person
will have the same response for statements towards which he doesn’t react identically.
In order to prevent degenerate configurations from being optimal, ALSCAL uses a
normalised version of (raw) s-stress:

s-stress(1) =
1

n

∑

i

∑
j(d

2
ij − d∗2

ij )2

∑
j d4

ij

. (4.2)

This loss function does not take a value of zero for the degenerate configuration with
all statements and persons in one location. However, it does take a value of zero for the
degenerate configuration with the persons in one location and the statements located
in a circle around them.5

Unfortunately, the existing method does not always perform well in practice, due
to the limited amount of information contained in Y.6 We are trying to locate n + J

objects, but know only some of the dissimilarities between them: Table 4.1 show that
4The programs SSAR-II (Guttman-Lingoes series, 1973) and MINIRSA (Roskam, 1979) employ

algorithms with stress-based loss functions. MINIRSA stands for Michicagna-Israel-Netherlands-
Integrated Rectangular Smallest space Analysis. It is a modification of SSAR-II by Roskam, and it
is available as part of the MDS(X) software package.

5The program MINIRSA avoids the second type of degenerate configuration by dividing stress by
the quantity

∑
j(dij − d̄i)

2. The resulting function does not take a value of zero for either degenerate
configuration.

6See Borg and Groenen (1997, Chapter 14) for an excellent discussion of the drawbacks of the
existing method.
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a large proportion of the dissimilarities are unknown and that, worse still, the miss-
ingness occurs in a systematic way. Further, not comparing the observed dissimilar-
ities across rows means that we have even less information available to us. In the
existing method, we have only n · [J(J − 1)/2] order constraints, compared to the
(n + J)(n + J − 1)/2 that would be available if we had a complete dissimilarity ma-
trix where comparisons could be made across rows. As a result, the existing method
suffers from problems of indeterminancy. Thankfully, these are less severe when there
are more statements.

Table 4.1: Full n + J by n + J dissimilarity matrix

Persons Statements

Persons

? ? ? ? Y11 . . . . . . Y1J

? ? ? ? . . . . . . . . . . . .
? ? ? ? . . . . . . . . . . . .
? ? ? ? Yn1 . . . . . . YnJ

Statements

Y11 . . . . . . Yn1 ? ? ? ?
. . . . . . . . . . . . ? ? ? ?
. . . . . . . . . . . . ? ? ? ?
Y1J . . . . . . YnJ ? ? ? ?

4.3 A new method of performing MUA

As an alternative to the existing method, we introduce a new method that uses a mul-

tidimensional variant of the ULTMODR’s latent structure along with the common
threshold case (3) of its response structure. The ICRFs for this variant and case of the
ULTMODR are

P (Yij = k) = P


∓

√√√√
Q∑

q=1

(θiq − βjq)2 + ck−1 ≤ εij ≤ ∓

√√√√
Q∑

q=1

(θiq − βjq)2 + ck


 .

(4.3)
Our algorithm for estimating the model’s statement and person locations follows

the approach described in Section 3.4. The statement location and thresholds are es-
timated first by maximizing the marginal likelihood in equation (3.6), with g1(θi) as-
sumed to be a standard Q-variate normal distribution. Fixing the mean vector and
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covariance matrix of g1(θi) to pre-specified values resolves the translational and dila-
tional invariance issues inherent in MUA. However, it does not resolve the rotational
unidentifiability of the statement locations; as a result, their estimates will depend on
the starting values used. Last, the person locations are estimated by the mean of their
conditional distribution (given the data), with the fixed-effects parameters set equal to
their MLEs (perhaps after rotation in the case of the statement locations).

Although our new MUA method would not perform well if the number of items
were very small, it still performs well in moderate situations where the existing method
does not. However, this gain comes at the expense of suitability: Our new method,
though developed for Likert data, does not allow the interpretation of dissimilarities to
differ between rows in the dissimilarity matrix.

Another advantage of the new method is that confidence regions can be obtained
for each location. This is possible because the method uses a formal probability model
to locate persons and statements.

To find a confidence region for each statement location, we use an approach that
involves sampling from the large-sample approximation to the posterior distribution
of the fixed-effects parameters (under a vague prior).7 We set the covariance matrix
of this multivariate normal distribution equal to the inverse of the observed Fisher
information, evaluated at the MLEs of the fixed-effects parameters. (Due to certain
types of invariance (e.g., rotational) in the statement locations, it may be necessary to
set to zero one or more eigenvalues in the spectral decomposition of the covariance
matrix.) In each of the N samples from the approximate distribution, the statement
locations are subjected to the same rotation as the MLEs. Since the realizations of
the Q coordinates for statement location j come from a normal distribution (even after
rotation), the sample covariance matrix for the N realizations of those coordinates can
be used to plot a confidence ellipse for the statement’s location.

To find a confidence region for each person location, we use the fact that, for fixed
values of the statement locations, the posterior distribution of the person locations
factors into separate distributions for each person. The contour lines of the distribution
for person i can then be used to plot a confidence region around his estimated location.

7We note that importance sampling could have been used to sample from the exact posterior distri-
bution of the fixed-effects parameters (under a vague prior).
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4.4 Application: Visualising synthetic datasets

The new and existing MUA methods were used to create two-dimensional plots of
three synthetic datasets. All three were created under the assumption that a single
attitude continuum underlies the persons and statements. Further, each was designed
so that the performance of the methods could be easily assessed.

Here, one may question why we used two dimensions to visualize the data when
a single continuum underlies them? There are two answers to this question. First,
the data for some statements and some persons are not be consistent with one evalua-
tive continuum. (In actual datasets, this can happen because different people interpret
statements differently, or because certain statements unintentionally reflect an addi-
tional dimension.) Thus, plotting the data in more than one dimension can help us
detect which statements and/or persons have data that are explained most poorly by
one evaluative continuum. Second, even in the absence of the first problem, the na-
ture of Likert data means that one-dimensional unfolding analysis can fail at ordering
the statements sensibly. For instance, a strongly anti-object statement and a strongly
pro-object statement might be placed near each other because their data appear similar
(most people disagree with both of them).8

For each of the synthetic datasets, we used the SPSS implementation of ALSCAL
to create the existing method plot and an R function that implements the fitting algo-
rithm described in Section 4.3 to create the new method plot. For the latter, we also
calculated 95% confidence regions for the statement and person locations using an R
function that implements the approaches described in Section 4.3. Details pertaining
to the use of ALSCAL and the R functions are contained below in Section 4.7.

4.4.1 Data with ordered persons and ordered statements

The first dataset contains fifteen persons’ responses to ten statements (see rows 1-15
and columns 1-10 of Table 4.2). In creating the dataset, statements S-1 through S-10
were assumed to be ordered along the attitude continuum. Then, the responses for
each person were created so that it would be clear which statement he should be lo-
cated near: Each person strongly agrees with one statement and finds other statements

8This result becomes more likely when K is small and when most people’s attitudes are moderate
compared to the statements.
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Table 4.2: Synthetic datasets

Straightforward Confusing
statements statements

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12

Unconfused
persons

P-1 SD SD D N A SA A A N D A SD
P-2 D N A SA A A N N D SD N D
P-3 A SA A A A N D D SD SD D A
P-4 SD SD SD D D D N A A SA N SD
P-5 SD D N A SA A N D SD SD N D
P-6 N N A SA A N N N D D N A
P-7 D D N A A A SA A N D A A
P-8 SD SD D N A SA A N D SD A A
P-9 SA A N D SD SD SD SD SD SD SD SD
P-10 SD SD SD SD D D D N A SA A D
P-11 SD SD D D D N A A SA A A N
P-12 SD SD D N N A A SA A N N A
P-13 SD SD SD N N A SA A A N N SD
P-14 D D N A SA A A N D SD SD D
P-15 D A SA A A N N D SD SD SD N

Confused
persons

P-16 N A SA A N D N A SA A
P-17 D N A SA A A SA A N D
P-18 SA SA SA SA A A N D SD SD
P-19 D N A SA SA SA A N D SD
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increasingly (though not strictly) more disagreeable moving away from that statement.
The persons can be ordered based on their data (albeit with some ties).

The MUA plots in Figure 4.1 reveal that both methods result in very similar con-
figurations for the statements and persons. Both succeed in making apparent the true
order of statements S-1 to S-10, by locating them in order around a horseshoe.9 In
addition, both methods succeed in locating each person (with the exception of P-3)
nearest the statement with which he strongly agrees. We note that the standard nor-
mal prior used for the person locations in the new plot has the effect of pulling them
towards the origin.

Confidence regions for the person and statement locations in the new plot are
shown in Figure 4.2. A glance at the upper plot reveals that the more extreme state-
ments have larger confidence regions. This is not surprising since most people strongly
disagree with those statements, which means their location can be pushed further away
from the origin without substantially changing the model’s fit. In general, there is con-
siderable overlap amongst the confidence regions for the statement locations, which
we would expect given the small sample size. As for the person locations, their confi-
dence regions are roughly the same size, but a little larger for those persons with more
extreme locations.

4.4.2 Data with some confusing statements

To create the second synthetic dataset, two confusing statements were added to the
first synthetic dataset (see rows 1-15 and columns 1-12 of Table 4.2). These additional
statements do not have an obvious place in the statement ordering because different
people view their locations differently. Some people think that statement S-11 falls
between S-6 and S-7, whereas others think that it falls between S-9 and S-10. Sim-
ilarly, some people think that statement S-12 falls between S-1 and S-2, and others
think that it falls between S-5 and S-6.

9The horseshoe shape has also been noted in some applications of ordinal MDS where a single
continuum does underlie the data. The original and most famous of these applications is the seriation of
graves using grave good abundance matrices (Kendall, 1971). Various explanations have been proposed
for why a continuum appears as a horseshoe when using ordinal MDS. Shepard (1974) suggests that the
horseshoe effect occurs because the monotonic transformation of dissimilarities in ordinal MDS permits
points along a continuum to be mapped to a semicircle. Alternatively, Kendall (1971) suggests that the
horseshoe effect is an artefact (no pun intended!) of a bounded dissimilarity metric, where the largest
dissimilarity is used for fairly dissimilar and for extremely dissimilar objects. Both of these explanations
apply when MUA is performed on Likert data.
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The plots in Figure 4.3 reveal that both methods still produce statement configura-
tions that make apparent the ordering of statements S-1 to S-10: With neither method is
the configuration significantly altered by the presence of two confusing statements. As
for those two statements, the new method does a better job of conveying that they are
different because it places them inside the horseshoe formed by the other statements.
Though the existing method places S-12 inside the statement horseshoe, it makes it ap-
pear as if statement S-11 clearly falls in between S-9 and S-10. Both methods perform
reasonably well at locating each person nearest the statement with which he strongly
agrees, but not as well as when there are no confusing statements.

The confidence regions for the statement and person locations in the new plot can
be seen in Figure 4.4. Note that the confidence regions for statements S-11 and S-
12, though not large in an absolute sense, are reasonably large for centrally located
statements. Note also that the confidence regions for the person locations are larger
than when there are no confusing statements.

4.4.3 Data with some confused persons

To create the third synthetic dataset, four confused persons were added to the first
synthetic dataset (rows 1-19 and columns 1-10 of Table 4.2). All four additional people
strongly agree with more than one statement, making it unclear which statement each
should be located near. Persons P-16 and P-17 strongly agree with two non-adjacent
statements; these statements are far apart for person P-16, but fairly close for person
P-17. Persons P-18 and P-19, on the other hand, strongly agree with several adjacent
statements.

The MUA plots in Figure 4.5 reveal that, for both methods, the configuration of
statement locations does not change much with the inclusion of several confused per-
sons. In addition, the locations for the unconfused persons change only slightly (rel-
ative to the statement locations) when confused persons are included. As for the ad-
ditional persons, both methods signal that there is something different about P-16 by
locating it in the center of the statement horseshoe. This is only somewhat true for
P-17, since his location is no more central than those of various unconfused persons
(e.g., P-6). Neither method makes it apparent that there is something different about
P-18 and P-19: Both simply locate each person nearest the statement(s) in the middle
of those with which he strongly agrees.
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Figure 4.6 displays confidence regions for the statement and person locations esti-
mated by the new method. In the upper plot, the confidence regions for the statement
locations are not noticeably larger than when when there are no confused persons. The
lower plot contains confidence regions only for each confused person (P-16 to P-19)
and, for comparison, his nearest neighbour. Note that the confidence region for each
confused person is no larger than the comparable region.

4.5 Application: Visualising abortion attitude data

We used both methods to perform MUA on the Likert items in the abortion attitude
data. However, we first removed four items (14, 15, 19, and 21) that had more than
10% ‘Don’t Know/Can’t Choose’ responses; for the remaining 46 items, we recoded
any ‘Don’t Know/Can’t Choose’ responses as ‘Neither agree nor disagree.’

First, we used the existing method to perform MUA on the reduced, recoded data.
More specifically, we used the SPSS implementation of ALSCAL (see Section 4.7
for details). We did not use the default ALSCAL starting configuration of statement
and person locations because it resulted in a plot that did not make sense for the data.
Strangely, the default starting configuration did result in a reasonable plot if any four
items were omitted. Thus, we ran ALSCAL (from its default starting configuration)
on the abortion data with the last four items removed since most people find them
disagreeable. The final person locations from these 42 items were then used as starting
values when ALSCAL was run on all 46 items (ALSCAL was allowed to calculate
its own starting values for the statement locations). The resulting plot can be seen in
Figure 4.7. The final s-stress value corresponding to this plot was unfortunately not
included in the ALSCAL output.

Second, we used the new method to perform MUA on the data, using the aforemen-
tioned R code that implements the fitting algorithm in Section 4.3; details appear in the
final section of this chapter. The algorithm was started from various initial values that
were both random and based on experience with the model. Depending on the initial
values used, the algorithm converged at different local maxima. The statement location
and threshold values for the largest of the maxima found were retained as estimates.
The estimates of the statement locations were then subjected to a varimax rotation
(Kaiser, 1958) before estimating the person locations. The plot of the statement and
person location estimates can be seen in Figure 4.8. The log(ML) value corresponding
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Figure 4.7: Existing MUA Method. The plot was produced using ALSCAL with a
user-supplied starting configuration. Points corresponding to statements begin with
“S” and appear in black. Points corresponding to persons begin with “P” and appear
in green for British respondents and blue for American respondents.
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to this plot is −6940. Interpreted in terms of log probability scores (Good, 1983), this
value corresponds to an average probability (that a person would choose the category
that he did for a statement) of 0.34 = exp(−6940/(140 · 46)). Since this probabil-
ity is bigger than 0.20 (1/K), it seems that the multidimensional variant and simplest
case of the ULTMODR performs fairly well at predicting people’s responses to the
statements. However, we are more interested in how well the relationships (between
statements and persons) depicted by the plots match those present in the data.

We compare the fit of the new and existing plots by calculating three statistics that
assess how well, on average, the within-person rankings of the distances in the plot
match the person’s rankings of the statements. The three statistics are:

1. S-stress(1) from equation (4.2), where the d∗2
ij s are the predicted values from an

isotonic regression10 of d2
ij on δij . The value of s-stress is 0.097 for the existing

plot and 0.057 for the new plot.

2. A normalized version of stress,

stress =
1

n

∑

i

∑
j(dij − d∗

ij)
2

∑
j d2

ij

, (4.4)

where the d∗
ijs are the predicted values from an isotonic regression of dij on δij .

The value of stress is 0.043 for the existing plot and 0.020 for the new plot.

3. The average Kendall’s correlation,

τ̄b = Σn
i=1τ

i
b , (4.5)

where τ i
b is Kendall’s τb correlation between the dijs and the δijs for person i.

The value of τ̄b is 0.62 for the existing plot and 0.66 for the new plot.

All three statistics suggest that the observed rankings of the statements are better
matched by the new plot. This is somewhat surprising since the existing method
explicitly seeks to find distances whose within-person ordering matches the within-
person ordering of the dissimilarities as closely as possible. However, the existing
method assesses this match using a loss function based on s-stress. As a result of the

10The regression was performed using the isoreg() function in the R library modreg. This function
adopts weak monotonicity constraints and the primary approach to ties.
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Figure 4.8: New MUA Method. The plot was produced using R code written by the
author, the details of which are in Section 4.7.2. Points corresponding to statements
begin with “S” and appear in black. Points corresponding to persons begin with “P”
and appear in green for British respondents and blue for American respondents.
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outer square in its formula, less weight is placed on fitting the data values indicat-
ing agreement, which we suspect may be the source of the existing method’s poorer
performance.

Next, we interpret the statement locations in the new and existing plots. In both
plots, the statements are located roughly around a horseshoe that runs from S-47 (ex-
tremely pro-abortion) to S-5 (extremely anti-abortion). This horseshoe traces a con-
tinuum that, judging from the content of the statements, seems to correspond to the
evaluative continuum for abortion attitudes. The statements’ relative positions within
the horseshoe differ in the two plots. Focusing on the new method plot only, the
horseshoe can be divided into three clusters: An anti-abortion attitude cluster on the
right-hand side, an ambiguous attitude cluster in the lower middle, and a pro-abortion
attitude cluster on the upper left-hand side. Only S-20 cannot be assigned to one of
these clusters. It lies between the anti-abortion cluster and the ambiguous cluster, as
one might expect for a double-barreled statement with one moderate clause and one
anti-abortion clause. S-31 clearly departs from the horseshoe shape, not surprisingly
given that it asks people for their opinion on a factual rather than ethical question. If
we want to form an abortion attitude scale, we will want to omit S-31 and S-20.

As for the person locations, in both plots they are also located along a horseshoe
that, judging from each person’s 46 responses, seems to correspond to the evaluative
continuum representing abortion attitudes. For example, the person marking the left
end of the horseshoe— P-73, a Catholic American female raised Catholic in an ur-
ban environment—strongly agreed with the anti-abortion statements, and strongly dis-
agreed with almost all other statements. On the other hand, one of the people marking
the left end of the horseshoe—P-10, a non-practicing American male raised Catholic in
an urban environment—strongly agreed with the pro-abortion statements and strongly
disagreed with almost all other statements. Although the persons’ relative locations
within this horseshoe differ in the two plots, the British and American locations are
interspersed throughout the horseshoe in both plots. This suggests that the distribution
of abortion attitudes is similar within the British and American groups in our sample.
Similarly, although the shape and placement of the person horseshoe differs in the two
plots,11 it is located closer to the pro-abortion and ambiguous statements than to the
anti-abortion statements in both plots. This suggests that our sample has, on average,
fairly liberal attitudes towards abortion.

11The fact that the new method locates most persons near the origin is not surprising when we recall
that a N(0, I) prior distribution is assumed for the person locations.
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Last, we calculated confidence regions for all of the statement locations and two of
the person locations in the new method plot. These regions are shown in Figures 4.9
and 4.10, respectively. The regions were calculated using the aformentioned R function
that implements the approaches described in Section 4.3; the details are discussed in
the last section of this chapter. The confidence regions for the statement locations
suggest that the location of S-5 is the most uncertain. This is not surprising given that
everyone disagrees strongly with it. As for the confidence regions for persons 14 and
31,12 they indicate that there is more uncertainty in person 14’s location.

4.6 Conclusions

We have introduced a new method for performing multidimensional unfolding analyis
on Likert items. The new method is based on a multidimensional variant of the ULT-
MODR, and it is an alternative to a popular existing method operationally similar to
ordinal MDS.

The new and existing MUA methods seemed to perform well for all datasets, al-
though both methods encountered some problems with local maxima for the abortion
attitude items. These generally positive results are not surprising since all four datasets
contained a fairly large number of items.

If we are interested in getting a sense of the general structure underlying Likert
data, then we prefer to use the new MUA method. This is the case because the plots
it produces are generally less messy and thus more clearly convey the relationships
between statements and the relationships between persons and statements. This can be
seen by comparing the abortion attitude plots in Figure 4.7 and 4.8 above or the two
MUA plots in the following chapter. In the former plots, the new method plot makes
it easier to tell that there are three types of abortion statements and that the statements
are ordered (around a horseshoe). Further, because the persons are located inside this
horseshoe, it is easier to compare the distributions of British and American attitudes.

Another advantage of the new method is that it allows us to obtain confidence
regions for the statement and person locations, which the existing method does not
because it is not based on a formal probability model. The second synthetic data

12These particular persons were chosen because they are located near each other, making it possible
to compare their regions without having to adjust for the effect of extremity.
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Figure 4.9: Confidence Regions for the Statement Locations Produced Using the New
Method. The plot contains the same statement locations as Figure 4.2, with confidence
ellipses drawn around each statement location. These ellipses were obtained using the
approach described in Section 4.3, and the details of their calculation are described
in Section 4.7.2. The origin is marked by an “X.”
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Figure 4.10: Confidence Regions for Two Person Locations Produced Using the New
Method. The plot contains the same statement locations as Figure 4.2, with confidence
regions drawn around person locations 1 and 14. These regions were obtained using
the approach described in Section 4.3, and the details of their calculation are described
in Section 4.7.2.
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application suggests that the confidence regions for statement locations can assist us
in identifying statements that are interpreted differently.13

The second synthetic data application also suggests that the new method statement
locations themselves, not just their confidence regions, make it easier to identify con-
fusing statements. However, in the synthetic data application in the following chapter
on item analysis, the existing method locates more of the confusing statements inside
the statement horseshoe. Thus, if we are interested in identifying anomalous items,
then it is unclear which MUA method we should use.

4.7 Further details of the applications

In this section, we describe how we created the abortion attitude plots above. Unless
noted in a footnote, the details are the same for the synthetic datasets.

4.7.1 The existing method
The following SPSS syntax creates the plot seen in Figure 4.7. ALSCAL performs
loss-function-based multidimensional unfolding analysis when its “Rectangular” dataset
option is selected. To get ALSCAL to perform the existing method of MUA, one also
has to select the “Ordinal Measurement” and “Row Conditional Dissimilarities” op-
tions.

ALSCAL
VARIABLES = v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v16 v17 v18
v20 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37
v38 v39 v40 v41 v42 v43 v44 v45 v46
/SHAPE = RECTANGULAR
/LEVEL = ORDINAL (UNTIE)
/CONDITION = ROW
/MODEL = EUCLID
/PRINT = HEADER
/PLOT
/CRITERIA = CONVERGE(.001) STRESSMIN(.005) ITER(30)

CUTOFF(0) TIESTORE(5000) DIMENS(2,2)
/OUTPUT = SPSSCORD.SAV .

ALSCAL
VARIABLES = v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v16 v17 v18
v20 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37

13Disappointingly, the third synthetic data application do not suggest that the confidence regions for
person locations can be used to identify confused persons.
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v38 v39 v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50
/FILE = SPSSCORD.SAV ROWCONF(INITIAL)
/SHAPE = RECTANGULAR
/LEVEL = ORDINAL (UNTIE)
/CONDITION = ROW
/MODEL = EUCLID
/PRINT = HEADER
/PLOT
/CRITERIA = CONVERGE(.001) STRESSMIN(.005) ITER(30)

CUTOFF(0) TIESTORE(5000) DIMENS(2,2) .

4.7.2 The new method

This section describes the R code used to find estimates and confidence regions for the
statement and person locations in the multidimensional variant and common case of
the ULTMODR.

Fixed-point Gauss-Hermite quadrature (with a product rule) was used to approxi-
mate the integrals that appear in the marginal likelihood and the posterior distributions,
respectively. More specifically, for each person, the integrand of his two-dimensional
integral was evaluated at the lattice points of a two-dimensional grid formed by cross-
ing 21 Gauss-Hermite abscissas. The person’s integral was then approximated using a
weighted sum of the 212 evaluations, with weights equal to the product of the corre-
sponding Gauss-Hermite weights.

The fixed effects (i.e., statement locations and thresholds) were estimated by max-
imising the logarithm of the marginal likelihood in equation (4.3), with each of the n

integrals approximated in the manner described above. The marginal likelihood was
maximised with respect to the statement locations and the differences in the thresholds.
(Box constraints were used to keep the differences positive to ensure that the thresh-
olds remain ordered during the optimisation process.) Maximisation was performed
using R’s optim() function with the “L-BFGS-B” method, which implements the al-
gorithm introduced by Byrd et al. (1995) for optimisation with box constraints. The
initial values for the threshold differences were c1 = 2, c2 − c1 = 1.5, c3 − c2 = 0.5,
and c4 − c3 = 1.5; these values were based on experience with the simplest variant of
the model. Multiple sets of initial values were used for the statement locations: These
values were both random and based on experience with the model. Depending on the
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initial values used for the statement locations, the algorithm converged at different lo-
cal maxima.14 The initial statement locations that resulted in the largest maxima were,
for the first dimension, spaced equally between −5 and 5 according to statement num-
ber and, for the second dimension, generated from a N(0, 0.3) distribution. The final
statement location and threshold values corresponding to the largest maxima were re-
tained as estimates. The estimates of the statement locations were then subjected to a
varimax rotation before plotting them.

The person locations were estimated with the thresholds and statement locations
fixed at their MLEs (after varimax rotation in the case of the statement locations).
Thus, the conditional distribution of the person locations (given the data) could be
factored into separate distributions for each person. The location for each person was
estimated by the mean of his distribution, with the two-dimensional integral approxi-
mated in the manner described above.

Confidence regions for the statement locations were calculated from N = 100

samples from a multivariate normal distribution with mean vector equal to the MLEs
for the statement locations (before rotation) and thresholds and covariance matrix equal
to the modified inverse of the observed information matrix, evaluated at the MLEs of
the statement locations and thresholds.15 Modification of the matrix was necessary
because the observed information matrix should and did have one eigenvalue near zero
due to the invariance of the marginal likelihood with respect to orthogonal rotations of
the statements. Further, in the abortion attitude dataset, there was a second very small
negative eigenvalue that probably resulted from some sort of scaling invariance in the
likelihood. (This did not happen for any of the synthetic datasets.) All near zero
eigenvalues were set to zero before inverting them to obtain the eigen-decomposition
of the covariance matrix; the infinite eigenvalues that resulted were then set to zero
since we did not care which rotation (or scaling) was generated. The modified matrix
was then used to generate the N = 100 samples; the statement locations in each sample
were subjected to a varimax rotation. Next, for each statement, the two-dimensional
sample covariance matrix was calculated from the 100 rotated realizations of its two
coordinates. Finally, we plotted an ellipse (around the estimated statement location)

14No problems with local maxima arose for any of the synthetic datasets.
15The observed information matrix was calculated by optim(), which returns a numerical approxima-

tion of the Hessian matrix at the solution found. Although optim() actually returns the Hessian matrix
of the unconstrained problem, the box constraints are not active in the solutions found for our datasets.
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that represented the 95% contour of the bivariate normal distribution with a covariance
matrix equal to the sample covariance matrix.

A confidence region for each person location (given the statement locations) was
obtained using his posterior distribution, with the integral approximated in the manner
described above. The plotted confidence region for each person was the 95% contour
for this distribution.

64



Chapter 5

Item analysis

In this chapter, we focus on selecting items (from an initial pool1) for inclusion in a
Likert scale designed to measure attitudes towards object s. This process is known as
item analysis and typically uses data from a pilot survey of the Likert items in the pool;
we refer to this data as screening sample data. Ideally, we would like to select those
items that best reflect attitudes towards object s. Obviously, assessing which items do
so is difficult since we don’t know people’s attitudes (or else we wouldn’t be trying to
measure them!).

We describe how a variant of the ULTMODR can be used to perform item analysis
in a manner that reflects researchers’ stated aims. This new method is applied to a
simulated dataset and to the Likert items in the abortion attitude data, and the results
are compared to those produced using a popular method of item analysis.

5.1 Existing methods of item analysis

Researchers are interested in creating an attitude scale that is both valid and consistent.
Bollen (1989) defines validity and consistency and discusses several methods used to
assess them. Alternatively, Mueller (1986) and Spector (1990) discuss validity and
consistency in the particular context of attitude scales.

Most methods for creating a Likert scale from screening sample data focus on
selecting items that are internally consistent.2 In these methods, the data are first quan-
tified using the procedure described in Section 2.1, and internally consistent items are

1Mueller (1986, Chapter 2), Oppenheim (1992), and Roberts (1995, Chapter 19) make recommen-
dations for generating an item pool, describing how to choose appropriate statements.

2Mueller (1986), Spector (1990), and Roberts (1995) overview these methods.
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then selected using a procedure either impicitly or explicitly based on (Pearson) corre-
lations.

One popular method of item analysis3 —implemented in SPSS’s Reliability Analy-
sis function—employs the total score to calculate two correlation-based statistics. One
statistic is the item-remainder correlation, ρ(Yij, θ̂

s−j
i ), which is the Pearson correla-

tion between (quantified) item j and the total score without item j. Items with the
largest ρ(Yij, θ̂

s−j
i ) values are included in the Likert scale, on the grounds that they

best discriminate between people’s attitudes as measured by the total score. The other
statistic is Cronbach’s alpha (1951), or more specifically Cronbach’s alpha calculated
from all items except j. Those items whose deletion leads to a larger value of α(−j) are
removed from the pool. In general, an effort is made to select items that not only meet
this and the large ρ(Yij, θ̂

s−j
i ) criteria, but that also balance pro- and anti-statements (so

that acquiescence bias will effectively cancel out in responses to the resulting scale.)
The correlation-based methods discussed above were derived in the context of

Classical Test Theory. They were not designed for data with the characteristics of
Likert data, nor were they designed to reflect theories of attitudes and attitude forma-
tion. Further, they can only be used for items that are clearly against or in favour of
the object.

As an alternative to the correlation-based methods, Roberts (1995, Chapter 19)
describes an item-response-theory-based method of item analysis. In a first phase,
principal components analysis is used to check dimensionality: In a heuristic approach
based on the work of Davison (1977), those items that load highly on a third or higher
component are removed. In a second phase, the GUM is fit to the remaining items and
Wright and Masters’ (1982) item-fit and person-fit statistics are calculated; the worst-
fitting items and persons are removed in an iterative fashion. A scale is then formed
by selecting remaining items whose estimated locations are evenly spaced along the
evaluative continuum.

Roberts’ procedure is reminiscent of Thurstone and Chave’s (1929) method of
equal-appearing intervals, which is used to develop another type of scale used for
attitude measurement, the Thurstone scale. This type of scale contains items asking
surveyees whether they ‘Agree’ or ‘Disagree’ with statements about the object; the
median location of the agreeable statements for a surveyee is then used as an estimate

3Another correlation-based method uses either factor analysis or principal components analysis to
perform item analysis, specifically to identify subscales of items within the initial pool. Spector (1990)
discusses the use of explanatory and confirmatory factor analysis with Likert data.
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of his attitude. Thurstone proposed three methods for creating Thurstone scales and
estimating the locations of statements in them. All three collect data on the statements
from a screening sample, but not by asking its members whether they agree with each
statement. In the method of equal-appearing intervals, each member of the screening
sample is asked to separate the statements into eleven ordered intervals based on their
objective location along the evaluative continuum. It is assumed that the intervals are
equal in width, so they are assigned integer scores (e.g., 1-11). For each statement, its
median score is taken as an estimate of its location, and the IQR of its scores is taken as
an estimate of the disagreement between judges over its location. Statements with the
largest IQRs are removed from the pool, and then a scale is created by selecting items
whose estimated locations span the evaluative continuum. These estimated locations
are used when the resulting Thurstone scale is subsequently administered to surveyees.

In the following section, we introduce a new method of item analysis that shares
the goals of the method of equal-appearing intervals: It seeks to select a group of
statements that span the evaluative continuum and that do so in an order on which
most people would agree. Like Thurstone and Chave’s method, our method uses data
(the screening sample data) on how the members of the screening sample rank the
statements. However, in screening sample data, the rankings fan out from the person’s
own position on the evaluative continuum, rather than running from one end of the
continuum to the other. Our method is similar to Roberts’ approach, but involves the
ULTMODR rather than the GUM and also refines some of his ideas.

5.2 A new method of item analysis

Our new method involves the simplest variant and the common threshold case of the
ULTMODR; the model is fit to the data in the usual manner. The model is employed
to calculate four statistics—(i) β̂j , (ii) σ̂2

rk(β̂ns
j

)
, (iii) ŝe(β̂j), and (iv) χ2

j , the item j

chi-square component —that are then used to select items.
The β̂j statistic reflects statement j’s location along the evaluative continuum, mak-

ing it analogous to the median in the method of equal-appearing intervals. More specif-
ically, β̂j is the estimated location for statement j when the model is fit to the entire
screening sample. We will use the estimate to select items whose statements span the
length of the evaluative continuum.
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The σ̂2
rk(β̂ns

j
)

statistic reflects the uncertainty in the estimated location for statement
j, making it analogous to IQR in the method of equal-appearing intervals. However,
the calculation of σ̂2

rk(β̂ns
j

)
involves resampling. The model is repeatedly fit to a number

of small (size ns) sub-samples drawn (with replacement) from the screening sample
data. In each sub-sample, the statements are ranked according to their estimated lo-
cations, and the statistic σ̂2

rk(β̂ns
j

)
is then the standard deviation (across subsamples) of

statement j’s rank. A larger value of σ̂2
rk(β̂ns

j
)

indicates that the statement’s location dif-
fers depending on who is asked, and thus suggests that the item should be eliminated
from consideration.

Like σ̂2
rk(β̂ns

j
)
, ŝe(β̂j) reflects the uncertainty in the estimated location for state-

ment j. The statistic is the square root of the estimated asymptotic variance of β̂j .
The asymptotic variance can be estimated using the relevant diagonal element of the
modified inverse of the observed information matrix (evaluated at the MLEs of the
fixed-effects parameters). (The inverted matrix is modified in the manner described in
Section 4.7.2; this modification is necessary because the likelihood is invariant with re-
spect to changes of sign for all the βjs.) A larger value of ŝe(β̂j) indicates a statement
with a more uncertain location, suggesting that the item should possibly be eliminated
from consideration.

The χ2
j statistic can also be used to identify statements that should be eliminated

from consideration. It is calculated using

χ2
j =

∑

k

|χ2
j(k)|, (5.1)

where χ2
j(k) is the one-way signed Pearson residual discussed in Section 3.5. A large

value of χ2
j indicates that item j’s data are not well explained by the model and should

probably be eliminated.
The general strategy of the ULTMODR-based method is to select items with small

σ̂2
rk(β̂ns

j
)
, σ̂2

rk(β̂ns
j

)
, and χ2

j values and different β̂js. However, after we perform item
analysis on a simulated dataset in the following section, we will suggest several slight
modifications to this strategy.

5.3 Application: Selecting items from a simulated dataset

The ULTMODR-based and Reliability Analysis methods were used to perform item
analysis on a simulated dataset. The dataset was designed so that we could investigate
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(i) how the item statistics used by the methods change with statement extremity and
(ii) how the two methods perform at detecting confusing statements.

The dataset contains 140 persons and 46 statements, in order to make it compa-
rable to the abortion attitude data analysed in the following section. The dataset was
generated from a model that combined Case 1b of the ULTMODR’s response structure
with a latent structure similar to the simplest variant of the ULTMODR (section 3.2),
except that some statements had two locations. Statements S-1 to S-36 were assumed
to be interpreted identically by all 140 people and assigned evenly spaced locations
between -4.6 and 3.6. However, statements S-37 to S-46 were assumed to be inter-
preted differently, depending on the person. More specifically, each statement has one
location for (a random) 70 people, and a second location for the remaining 70 people.
The locations for the statements are presented in Table 5.1. The values of the other
parameters used to generate the simulated dataset were identical to those used in the
simulation experiment (see Section 3.6).

Figure 5.1 presents two plots of the data, created using the existing and new MUA
methods. In both plots, the straightforward statements (S-1 to S-36) are arranged
around a horseshoe in an order that is roughly the same as their true order. Further,
both plots make it apparent that there is something different about statements S-38,
S-39, and S-42 to S-46 by locating them in the center of the straightforward statement
horseshoe. (The existing method plot does the same for statement S-41). However,
neither plot identifies statements S-37 or S-40 as different, not suprisingly since each
is only slightly confusing.

For the ULTMODR-based method, the statistics β̂j , ŝe(β̂j), σ̂2
rk(β̂ns

j
)

and χ2
j were

calculated using an R function written by the author. (The function is based on the Q =

1 version of the R function described in Section 4.7.2.) The left-hand side of Table 5.2
presents the values of the three statistics for each of the forty-six statements, ordered
by β̂j . We note that σ̂2

rk(β̂ns
j

)
was calculated from twenty samples of size twenty.

Before the Reliability Analysis method could be used, the statements had to be
divided into pro- and anti-object groups. We assigned the statements with a negative
average location (i.e., S-1 to S-20 and S-40 to S-43) to the anti-object group, and
the statements with a positive average location (i.e., S-21 to S-36 and S-37 to S-39)
to the pro-object group. The statements with an average location of zero (i.e., S-42
to S-46) were excluded. We then applied SPSS’s Reliability Analysis to the data,
after reversing the scoring for the anti-object statements. Since statement S-20 had a

69



Table 5.1: Statement locations used to simulate dataset for item analysis

Straightforward Confusing
β1 = -4.60

β37 =

{
0.00

1.00
β2 = -4.37
β3 = -4.13
β4 = -3.90

β38 =

{
0.00

2.00
β5 = -3.66
β6 = -3.43
β7 = -3.19

β39 =

{
0.00

3.00
β8 = -2.96
β9 = -2.73
β10 = -2.49

β40 =

{
-1.00
0.00

β11 = -2.26
β12 = -2.02
β13 = -1.79

β41 =

{
-2.00
0.00

β14 = -1.55
β15 = -1.32
β16 = -1.09

β42 =

{
-3.00
0.00

β17 = -0.85
β18 = -0.62
β20 = -0.15

β43 =

{
-4.00
0.00

β21 = 0.09
β22 = 0.32
β23 = 0.55

β44 =

{
-1.00
1.00

β24 = 0.79
β25 = 1.02
β26 = 1.26

β45 =

{
-2.00
2.00

β27 = 1.49
β28 = 1.73
β29 = 1.96

β46 =

{
-3.00
3.00

β30 = 2.19
β31 = 2.43
β32 = 2.66
β33 = 2.90
β34 = 3.13
β35 = 3.37
β36 = 3.60
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Figure 5.1: Plot of statement locations for the generated dataset. The upper plot was
produced using the SPSS implementation of ALSCAL. The lower plot was produced
using R code written to implement the new MUA method introduced in Chapter 4.
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negative ρ(Yij, θ̂
s−j
i ) value, it was reclassified as pro-object, and Reliability Analyis

was performed a second time. The resulting ρ(Yij, θ̂
s−j
i ) values are presented on the

right-hand side of Table 5.2. The α(−j) values are omitted because they are too uniform
to be useful.

Table 5.2: Item analysis statistics for simulated dataset

ULTMODR-based method Reliability Analysis
Item β̂j σ̂2

rk(β̂ns
j

)
ŝe(β̂j) χ2

j ρ(Yij, θ̂
s−j
i ) Item

S-1 -3.67 0.25 0.12 4.24 0.482 S-1
S-2 -3.66 0.57 0.12 8.21 0.549 S-2
S-3 -3.39 0.41 0.11 7.4 0.336 S-3
S-4 -3.15 0.26 0.11 6.63 0.494 S-4
S-5 -2.92 0.56 0.10 2.03 0.532 S-5
S-6 -2.77 0.89 0.10 14.48 0.590 S-6
S-7 -2.71 0.85 0.10 4.91 0.524 S-7
S-8 -2.58 0.75 0.10 2.6 0.509 S-8

†S-46 -2.4 266.37 0.10 9.21 NAa S-46†

S-9 -2.4 0.54 0.10 9.92 0.554 S-9
S-10 -2.26 0.80 0.09 5.06 0.506 S-10

†S-43 -2.05 51.42 0.11 20.26 0.181 S-43†

S-11 -1.98 0.87 0.09 2.45 0.615 S-11
†S-45 -1.84 106.24 0.10 9.44 NAa S-45†

S-12 -1.83 1.20 0.09 1.49 0.619 S-12
S-13 -1.55 1.06 0.09 7.15 0.622 S-13

†S-42 -1.51 28.24 0.13 1.92 0.215 S-42†

S-14 -1.33 2.06 0.10 9.4 0.453 S-14
S-15 -1.32 1.21 0.09 6.3 0.592 S-15

†S-41 -1.14 4.54 0.10 4.59 0.281 S-41†

S-16 -1.03 3.20 0.11 9.56 0.397 S-16
S-17 -0.9 3.42 0.09 11.43 0.422 S-17
S-18 -0.76 1.89 0.10 8.47 0.205 S-18

†S-40 -0.44 3.82 0.10 7.85 0.151 S-40†

S-19 -0.39 2.87 0.10 10.55 0.023 S-19
S-20 -0.2 2.45 0.09 12.82 0.080 S-20
S-21 -0.07 4.16 0.10 7.85 0.1439 S-21
S-22 0.2 2.88 0.08 9.15 0.445 S-22
S-23 0.35 2.77 0.10 4.62 0.418 S-23

continued on following page

a Item excluded from Reliability Analysis.
† Denotes confusing statement
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Table 5.2: Item analysis statistics for simulated dataset (continued)

ULTMODR-based method Reliability Analysis
Item β̂j σ̂2

rk(β̂ns
j

)
ŝe(β̂j) χ2

j ρ(Yij, θ̂
s−j
i ) Item

continued from previous page
†S-37 0.35 3.22 0.10 10.35 0.486 S-37†

S-24 0.43 2.87 0.10 5.49 0.423 S-24
†S-44 0.45 7.31 0.11 1.1 NAa S-44†

S-25 0.77 1.25 0.10 3.58 0.584 S-25
†S-38 0.97 9.78 0.14 5.09 0.354 S-38†

S-26 1.00 0.78 0.10 3.74 0.632 S-26
S-27 1.11 2.20 0.10 3.18 0.648 S-27
S-28 1.37 1.78 0.10 1.26 0.605 S-28
S-29 1.38 1.15 0.11 3.72 0.550 S-29

†S-39 1.5 51.89 0.11 1.57 0.309 S-39†

S-30 1.7 0.68 0.10 2.1 0.596 S-30
S-31 1.9 1.00 0.10 11.54 0.508 S-31
S-32 2.06 0.96 0.11 4.05 0.534 S-32
S-33 2.17 0.45 0.10 13.3 0.622 S-33
S-34 2.36 0.41 0.11 5.96 0.464 S-34
S-35 2.55 0.26 0.11 13.6 0.527 S-35
S-36 2.71 0.13 0.11 6.74 0.511 S-36

a Item excluded from Reliability Analysis.
† Denotes confusing statement

We first comment on the β̂js. These values order the straightforward statements
(S-1 to S-36) in accordance with their true ordering, as we would expect from the
simulation experiment described in Section 3.6. Also as we might expect, many of the
confusing statements (i.e., statement S-37 to S-42) are located near the straightforward
statements with true locations most similar to their average true locations. However,
other confusing statements (i.e., S-43 to S-46, which have one anti-object and one
pro-object interpretation and an average true location of zero) are not located near the
straightforward statements with true locations of zero (e.g., S-20 and S-21). In fact,
when fitting the simplest variant of the ULTMODR, we experienced problems with
local maxima because of these items: The solution found depended on whether their
starting values were positive or negative. (Table 5.2 presents the βjs from the solution
with the largest ln(ML) value.) In none of these solutions were statements S-43 to
S-46 located near S-20 or S-21; instead, they were always located either amidst the
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anti-object statements or amidst the pro-object statements. Thus, it seems that the
criterion used to assess the ULTMODR’s fit penalizes grossly misfitting some people’s
data more than moderatedly misfitting everyone’s data.

Turning to the other ULTMODR-based statistics, we see that σ̂2
rk(β̂ns

j
)

and ŝe(β̂j),

vary with statement extremity, but χ2
j does not. The statistic σ̂2

rk(β̂ns
j

)
increases as state-

ments become less extreme. This phenomenon occurs because central statements have
more statements located within a certain distance of them than do extreme statements;
thus, it is easier for a centrally located statement to change position in the ranking. On
the other hand, ŝe(β̂) increases slightly as statements become more extreme. As noted
in Chapter 4, this phenomenon occurs because most people find extreme statements
strongly disagreeable, meaning that their locations can be made more extreme without
significantly altering the model’s fit. These results suggest that σ̂2

rk(β̂ns
j

)
and ŝe(β̂j)

should be compared only between statements with similar locations, but that χ2
j can be

compared between any statements.
The Reliability Analysis statistic ρ(Yij, θ̂

s−j
i ) also varies with statement extremity.

More specifically, it has a larger value for extreme statements and its most optimal
value for statements that are moderately extreme, peaking for statements with esti-
mated locations of ±1.5. The three anti-object statements with optimal ρ(Yij, θ̂

s−j
i )

have adjacent estimated locations, as do two of the three pro-object statements with
optimal ρ(Yij, θ̂

s−j
i ). These results suggest that the Reliability Analysis method will

produce scales containing very similar pro-object statements and very similar anti-
object statements, with both groups of statements moderately extreme.

The ULTMODR-based method and the Reliability Analysis method perform sim-
ilarly well at detecting confusing statements. In the Reliability Analysis method,
ρ(Yij, θ̂

s−j
i ) is very small for each confusing statement except S-37, which is only

slightly confusing. In fact, the confusing statements would be among the last selected
for inclusion in a scale. In the ULTMODR-based method, the statistic σ̂2

rk(β̂ns
j

)
identi-

fies all of the confusing statements. For each one, σ̂2
rk(β̂ns

j
)

suggests that a neigbouring
(non-confusing) statement is preferable. Further, for the more confusing of the state-
ments (i.e., S-38, S-49, S-42, S-44, S-45 and S-46), σ̂2

rk(β̂ns
j

)
is noticeably larger not just

in relative terms, but also in absolute terms. As for the statistic ŝe(β̂j), comparing its
values locally identifies some but not all of the confusing statements as unusual. Sim-
ilarly, global comparisons of the χ2

j values identify a few of the confusing statements;
For instance, the statistic takes its largest value for confusing statement S-43.
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The results of this application suggest that the best way to identify confusing state-
ments is by making local comparisons of σ̂2

rk(β̂ns
j

)
. In addition, global comparisons of

the χ2
j statistic can also be useful for identifying the most confusing statements.

5.4 Application: Selecting items for an abortion atti-
tude scale

The ULTMODR-based method and the Reliability Analysis method were used to per-
form item analysis on the Likert items in the abortion attitude dataset. The goal was to
to create a six item scale for measuring abortion attitudes.

As before (see Section 4.5)), we removed four items (14, 15, 19, and 21) that had
more than 10% ‘Don’t Know/Can’t Choose’ responses and, for the remaining 46 items,
recoded any ‘Don’t Know/Can’t Choose’ responses as ‘Neither agree nor disagree.’

First, the ULTMODR-based statistics β̂j , ŝe(β̂j), σ̂2
rk(β̂ns

j
)

and χ2
j were calculated

using the aforementioned R function written by the author. Here, σ̂2
rk(β̂ns

j
)

was calcu-
lated from ten samples of size twenty. The values for three of these ULTMODR-based
statistics are presented in the left-hand side of Table 5.3 for each of the remaining 46

items, ordered by β̂j . The values of ŝe(β̂j) are omitted because they are too uniform
to be helpful. The left-hand side of the table also includes the proportion of ‘Don’t
Know/Can’t Choose’ responses that were present before the data was recoded; obvi-
ously, we prefer items with fewer ‘Don’t Know/Can’t Choose’ responses.

Beginning with the σ̂2
rk(β̂ns

j
)

column, we see that the statements with the most un-
certain rank are: S-44 (‘I believe that abortion is generally wrong, but I think that it is
necessary for it to be legal in today’s society.’); S-30 (‘I personally have not resolved
how I feel about abortion.’); S-34 (‘Abortion should generally be a woman’s prerog-
ative, but it should not be permitted in every case.’); S-33 (‘I cannot wholeheartedly
support either side of the abortion debate.’); S-39 (‘Abortion should be legal under any
circumstances.’); and S-41 (‘Restrictions should never be placed on a woman’s right
to an abortion.’). These statements have σ̂2

rk(β̂ns
j

)
values that are much larger than other

statements with similar locations. It is not hard to see how each might be interpreted
differently by different people.

Turning to the χ2
j column, we see that the worst-fitting statements are: S-25 (‘Abor-

tion, in general, should be legal, but should never be used as a conventional method
of birth control.’); S-31 (‘If abortion were not legal, (illegal) abortions would still be
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performed.’); and S-29 (‘I find myself agreeing with arguments both for and against
abortion.’). We recall that S-25 and S-31 were tagged as unusual in the new MUA
method plot (see Figure 4.8). We also note that statement S-25 contains two ideas,
making it unsurprising that the statement is so poorly fit by the simplest ULTMODR
variant. (“Double-barreled” statements like this one tend to confuse respondents be-
cause they aren’t certain which idea to respond to.) In general, the statements express-
ing moderate views tend to have much larger χ2

j values. This is true, not surprisingly,
for those statements that express neutrality through the use of two ideas (e.g., S-23,
S-24, S-32, S-34, S-44). It is also true, however, for those statements that express
neutrality directly (e.g., S-30).

We used the ULTMODR-based statistics to select six items for inclusion in a scale.
Overall, we focused on selecting statements with varying β̂j values and differing state-
ment content. We used σ̂2

rk(β̂ns
j

)
to choose between statements with comparable loca-

tions, and also avoided statements with large χ2
j values. The resulting scale can be

seen in Figure 5.4.
Second, SPSS’s Reliability Analysis was run on the items that were clearly in

favour of or against abortion. We identified these 31 (15 pro- and 16 anti-) statements
using Figure 4.8, which we recall had a pro-abortion item cluster and an anti-abortion
item cluster.4 The ρ(Yij, θ̂

s−j
i ) values from Reliability Analysis are presented on the

right-hand side of Table 5.3; the α(−j) values are omitted since they are too uniform to
be helpful.

The ρ(Yij, θ̂
s−j
i ) statistic suggests that statements S-47, S-12, and S-37 should be

the first ones eliminated from consideration. Interestingly, in the existing MUA method
plot of the abortion attitude items (see Figure 4.7), these three statements are pulled
more towards the center of the statement horseshoe than the other 27 statements sub-
jected to Reliability Analysis.

We formed a Reliability Analysis scale by selecting the three anti-abortion with the
largest ρ(Yij, θ̂

s−j
i ) values, and the three pro-abortion items with the largest ρ(Yij, θ̂

s−j
i )

values. Note that the resulting scale (see Table 5.5) contains statements expressing
two types of views: abortion as immoral, and abortion as a woman’s right. The
ULTMODR-based scale, on the other hand, is explicitly designed to include differ-
ent types of pro- and anti-abortion views.

4We did not heed the warning of Spector (1990, p. 34), who discourages empirical determination of
statement direction and encourages researchers to classify items a priori based on statement content.
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Table 5.3: Item analysis statistics for abortion attitude items

ULTMODR-based method Reliability Analysis
Itema β̂j % ‘DK/CC’ σ̂2

rk(β̂ns
j

)
χ2

j ρ(Yij, θ̂
s−j
i ) Itemb

Anti-

S-5 -4.62 0.03 0.00 20.7 0.50 S-5
*S-2 -3.79 0.00 0.47 1.7 0.82 S-2
S-1 -3.63 0.01 1.92 12.3 0.67 S-1

S-11 -3.55 0.03 5.67 21.8 0.74 S-11
S-20 -3.51 0.01 7.21 12.3 NA S-20
S-18 -3.49 0.01 5.15 11.4 0.74 S-18
S-4 -3.46 0.06 3.92 7.3 0.79 S-4
S-9 -3.38 0.04 4.43 7.1 0.68 S-9
S-6 -3.29 0.08 4.03 3.6 0.88 S-6*

*S-13 -3.26 0.04 2.67 4.9 0.71 S-13
S-17 -3.16 0.04 2.68 2.1 0.75 S-17
S-3 -3.16 0.07 3.08 2.4 0.83 S-3*
S-8 -3.08 0.03 3.00 2.2 0.83 S-8

S-12 -2.84 0.01 7.25 6.3 0.54 S-12
*S-16 -2.84 0.03 2.01 1.0 0.84 S-16*
S-10 -2.82 0.02 1.75 5.9 0.74 S-10
S-7 -2.77 0.04 2.30 5.3 0.80 S-7

Mod.

S-30 -2.73 0.04 76.00 20.7 NA S-30
S-33 -2.44 0.06 35.63 19.2 NA S-33
S-28 -2.29 0.04 0.74 19.9 NA S-28
S-32 -2.22 0.02 1.12 24.4 NA S-32
S-44 -2.12 0.04 77.46 23.1 NA S-44
S-29 -2.01 0.05 0.68 35.0 NA S-29
S-23 -1.89 0.00 0.63 20.1 NA S-23
S-34 -1.64 0.01 37.82 20.9 NA S-34
S-27 -1.27 0.01 1.62 22.2 NA S-27
S-22 -1.24 0.01 4.06 8.0 NA S-22
S-26 -1.20 0.06 1.67 15.2 NA S-26
S-24 -0.91 0.01 1.63 27.6 NA S-24
S-25 0.05 0.06 1.29 94.0 NA S-25
S-31 0.20 0.04 1.67 47.0 NA S-31

Pro-

S-43 0.54 0.05 1.27 27.2 0.54 S-43
S-35 0.94 0.05 1.50 21.4 0.68 S-35

*S-45 0.98 0.04 1.09 6.5 0.64 S-45

continued on following page
a Asterisk indicates that item was selected using the ULTMODR-based method.
b Asterisk indicates that item was selected using the Reliability Analysis method.
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Table 5.3: Item analysis statistics for abortion attitude items

ULTMODR-based method Reliability Analysis
Itema β̂j % ‘DK/CC’ σ̂2

rk(β̂ns
j

)
χ2

j ρ(Yij, θ̂
s−j
i ) Itemb

continued from previous page

S-36 1.37 0.04 0.95 20.6 0.80 S-36*

Pro-

S-42 1.52 0.04 1.31 12.6 0.81 S-42*
S-38 1.53 0.04 0.96 10.5 0.73 S-38
S-49 1.77 0.07 1.88 14.7 0.82 S-49*
S-46 1.77 0.05 1.57 21.0 0.78 S-46
S-48 2.04 0.06 1.31 23.3 0.75 S-48
S-40 2.07 0.03 1.40 6.9 0.69 S-40
S-50 2.26 0.08 0.59 6.2 0.71 S-50

*S-37 2.40 0.03 1.16 6.2 0.59 S-37
S-41 2.70 0.04 20.77 12.5 0.68 S-41
S-39 2.74 0.04 27.99 2.1 0.68 S-39

*S-47 3.57 0.06 0.00 4.4 0.38 S-47

Excl.

S-14 NA 0.21 NA NA NA S-14
S-15 NA 0.11 NA NA NA S-15
S-19 NA 0.11 NA NA NA S-19
S-21 NA 0.44 NA NA NA S-21

a Asterisk indicates that item was selected using the ULTMODR-based method.
b Asterisk indicates that item was selected using the Reliability Analysis method.
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Table 5.4: Abortion attitude scale formed using ULTMODR-based method

Statement 1 (S-2): ‘Abortion is a threat to our society.’
Statement 2 (S-13): ‘Having an abortion is far worse than having an unwanted child.’
Statement 3 (S-16): ‘Even if one believes that there may be some exceptions, abortion

is still generally wrong.’
Statement 4 (S-45): ‘If abortion became illegal, there would be negative consequences

for society.’
Statement 5 (S-37): ‘Only the woman who is pregnant can decide whether an abortion

is warranted.’
Statement 6 (S-47): ‘Abortion should be a socially acceptable method of birth control.’

Table 5.5: Abortion attitude scale formed using Reliability Analysis method

Statement 1 (S-6): ‘Abortion is immoral.’
Statement 2 (S-3): ‘Abortion is inhumane.’
Statement 3 (S-16): ‘Even if one believes that there may be some exceptions, abortion

is still generally wrong.’
Statement 4 (S-36): ‘A woman should have control over what is happening to

her own body by having the option to choose abortion.’
Statement 5 (S-42): ‘Outlawing abortion violates a woman’s civil rights.’
Statement 6 (S-49): ‘Abortion is a reasonable alternative if a woman feels

that having a baby might ruin her life.’

5.5 Conclusions

We have introduced a new ULTMODR-based method of item analysis. This method
is an alternative to popular correlation-based methods of item analysis, such as SPSS’s
Reliability Analysis.

The results of the abortion attitude application suggest that the ULTMODR-based
method, when used on an actual dataset, tends to remove most of the moderate state-
ments a posteriori. The Reliability Analysis method, on the other hand, removes mod-
erate statements from consideration a priori. However, even though both exclude mod-
erate statements, the ULTMODR-based and Reliability Analysis method produce very
different scales.

Judging from the results of our two applications, the Reliability Analysis method
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produces scales with statements that cluster in two locations along the evaluative con-
tinuum, one moderately anti-object and the other moderately pro-object. The similarity
of pro- and of anti- statements is particularly interesting when we note that Reliability
Analysis scales are typically analysed using Likert’s measurement model, which treats
all statements with the same orientation identically.

In contrast, the ULTMODR-based method is explicitly designed to select state-
ments whose locations differ. The resulting scale is therefore more in line with the
aims of early attitudinal researchers such as Thurstone and Chave.
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Chapter 6

Fitting structural models

Researchers, though occasionally interested in attitudes for their own sake, typically
want to investigate how they are affected by certain background and behavioural co-

variates. As an example, we might use the NIS dataset to study how (British or Amer-
ican) nationality affects national pride. Here, we will use X to denote the covariates;
further, we will refer to the model that specifies how X affects θ as the structural

model.
Fitting a structural model to Likert data involves combining it with a measurement

model, in a one-stage or two-stage procedure. In the former procedure, both models are
fit to the data simultaneously. In the latter procedure, people’s attitudes are estimated
by fitting the measurement model to the data, and the estimated attitudes are then
used to fit the structural model. For example, social scientists commonly use Likert’s
measurement model to estimate θs

i in a first stage, and then use the resulting θ̂s
i s to

fit a structural model in a second stage. (We will refer to this method as the scoring

method.) There is some debate over which type of procedure is preferable,1 but we
prefer one-stage procedures since they model all possible effects on the data at once
and result in less attenuated estimates.

Of course, the covariates may affect Likert responses not just through attitudes,
but also through response category interpretation. In our example, differences in the
American and British responses should not necessarily be attributed solely to differ-
ences in national pride. They may also stem from noted differences in the way that
surveyees from the two nations interpret the response categories. Unfortunately, cur-
rent structural-model-fitting methods (e.g., the scoring method) do not allow response

1Bartholomew and Knott (1999, Sections 8.12 and 8.13) discuss why a two-stage procedure might
be preferable; Zwinderman (1997, p. 245) discusses why a one-stage procedure might be preferable.
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category interpretation to differ. Adjusting for differing response category interpreta-
tion is a particular concern in our example because the national pride scale is unbal-
anced: Since four of the national pride scale’s five statements are pro-country, more
agreeable responses will result for a more acquiescent nation even if it does not feel
more national pride.

In this chapter, we introduce a one-stage structural-model-fitting method that al-
lows response category interpretation to differ. The method embeds the structural
model in a multi-set variant of the ULTMODR. The multi-set variant has a latent
structure that can incorporate items from multiple sets (if available); incorporating ad-
ditional items can provide more information on how response category interpretation
differs.

After introducing the new method, we conduct simulation experiments designed to
assess the performance of the scoring method, including how it compares to our new
method. Then, in an extended example, we apply the new method to the NIS dataset in
order to investigate how nationality affects national pride, controlling for national dif-
ferences in response category interpretation. Last, in a shorter example, we apply the
new method to the abortion attitude items in order to investigate how nationality, gen-
der, and religious status affect abortion attitudes, controlling for national and gender
differences in response category interpretation

6.1 A new method of fitting structural models

We are primarily interested in how the covariates affect the attitude underlying one pri-

mary set of items. However, the variant of the ULTMODR employed in our structural-
model-fitting method can incorporate items from additional secondary sets. We noted
in Chapter 3 that the ULTMODR’s ability to separate the effects of attitudes and re-
sponse category interpretation depends on the data. For one, separating the effects
is obviously more difficult when the number of items is small, as is the case in our
national pride example. In addition, separating the effects is particularly difficult if
the items are homogeneous. For example, in the national pride scale, because 80% of
the statements are pro-country, it is nearly impossible to determine whether a person
with more agreeable responses is more acquiescent, has more national pride, or both.
Thankfully, the immigration items in the NIS dataset contain additional information
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on how each person interprets the response categories. This is particularly true be-
cause the items express a wide variety of views and are balanced. Thus, incorporating
the immigration items into our measurement model can help us separate the effects of
acquiescence and national pride on responses to the national pride items. However,
doing so requires making the assumption that response category interpretation does
not differ for items belonging to different sets.

We now address the latent structure of the multi-set variant. It is an S-dimensional
space where dimension s is the (one) dimension that underlies Is and where the axes
are not necessarily orthogonal to each other. Without loss of generality, the first di-
mension will be the one corresponding to the primary set. Both the persons and the
statements are located in this space; however, each statement’s location is restricted to
the axis for the set to which it belongs. More formally, θi = [ θ1

i θ2
i . . . θS

i ]T , and
βj = [ β1

j β2
j . . . βS

j ]T , where βs
j = 0 if S(j) 6= s. The (latent) distance, dij , is

the l1-distance between statement j’s location and the projection of person i’s location
onto dimension S(j):

dij =
∣∣∣θS(j)

i − β
S(j)
j

∣∣∣ . (6.1)

Note that dij is not directly affected by person i’s location along dimensions other than
S(j). (Of course, the other θs

i s might affect dij indirectly if the S elements of θi are
correlated.) Note also that, if no secondary sets are available (i.e., if S = 1), then the
multi-set ULTMODR variant reduces to the simplest ULTMODR variant introduced
in Chapter 3.

A structural model is embedded in the multi-set variant’s latent structure. We as-
sume that the structural model is a general linear model of the form

θi = γT Xi+δi for i = 1, 2, . . . , n, (6.2)

where Xi is a length P vector containing the covariates for person i; where γ is a
P ×S matrix containing parameters that quantify how changes in the covariates affect
the mean of the person location(s); and where δi is an error vector of length S. We will
assume that δi has a normal distribution with a mean vector that is 0 and a covariance
matrix, Φ, that is either equal to I or modelled as a function of the covariates (in which
case it is referred to as Φ(Xi)). Note that we are primarily interested in the elements
of γ (and Φ(Xi), if relevant) that correspond to θ1

i since these parameters quantify the
relationship between the primary attitude and the covariates.
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Figure 6.1: Case 2a and the multi-set ULTMODR variant applied to the NIS dataset.
Note that the response category thresholds differ by nation, but that they are the same
for items from the national pride scale and the immigration scale. The red graphics
illustrate how the model works for an American person responding to the fifth state-
ment.

Any case of the response structure can be used with this variant of the ULTMODR.
As noted above, the same response structure will be assumed for all items, regardless
of the set to which they belong. Figure 6.1 depicts how a group-specific response
structure (Case 2a) might be combined with the multi-set ULTMODR variant for the
NIS dataset.

The multi-set variant of the ULTMODR and the embedded structural model are
fitted simultaneously using the approach outlined in Section 3.4. The hyperparameters
of g1(θi) are now determined by Equation (6.2). More specifically, its mean vector
equals γT

Xi, and its covariance matrix is either I or Φ(Xi). If we want to estimate
these hyperparameters, we will need to fix the statement locations to pre-specified
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values. Fixing the βjs for set s establishes the scale and orientation of the metric
measured by θs

i , and therefore identifies column s of γ in terms of magnitude and sign.
Since the combined models are fit by maximising an appropriate likelihood, esti-

mates of asymptotic standard errors for their parameters can be obtained by inverting
the observed information matrix evaluated at the MLEs. In addition, we can use Like-
lihood Ratio Tests to compare competing hypotheses about the models’ parameters.

6.2 Simulation experiments

We conducted two sets of experiments designed to investigate the performance of the
oft-used scoring method and to see how it compared to our new method.

In these experiments, datasets were generated from the simplest ULTMODR vari-
ant with a person-specific response structure (Case 1). We assumed that the persons
belonged to two groups, which we refer to as 1 and 2; these groups can be thought of
as G.B. and U.S., say. We were interested in testing the hypothesis µ1 = µ2, where
µ = E(θ1

i ). In particular, we wanted to see whether various approaches to testing this
hypothesis were robust to other types of group differences (aside from differences in
mean attitude).

In every experiment, most of the hyperparameters of g2(τ
i, ln(σi)) and g1(θ

1
i ) were

identical for the two groups. In variation A, all hyperparameters were the same; in
variation B, only the variance of θ1

i differed by group; in variation C, only the mean of
τ i differed by group; in variation D, only the mean of ln(σi) differed by group; and, in
variation E, only the covariance matrix of τ i and ln(σi) differed by group. (Note that
the mean of θ1

i was, of course, always the same for both groups.) The values used for
the hyperparameters (see Table 6.1) were based on the results of the NIS application
in Section 6.3, as were the values used for the thresholds (c1 = 1.39, c2 = 2.89,
c3 = 3.88, and c4 = 5.54).

The first set of simulation experiments were designed to test the performance of the
scoring method and to see how its performance differed for three different scales. The
first scale was created to resemble the five-statement national pride scale: It used the
same statement locations as the national pride scale (see the top half of Figure 6.3), one
of which was negative and four of which were positive. The second scale was created
to resemble the six statement immigration scale: It used the same statement locations
as the immigration scale (see the bottom half of Figure 6.3), three of which were
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Table 6.1: Hyperparameter values used in the simulation experiments

Parameter Variation A Variation B Variation C Variation D Variation E
Grp 1 Grp 2 Grp 1 Grp 2 Grp 1 Grp 2 Grp 1 Grp 2 Grp 1 Grp 2

g1(µ,Φ)
hyperparameters

µ1 –0.13 –0.13 –0.13 –0.13 –0.13
φ1 0.56 0.66 0.47 0.56 0.56 0.56

g2(ϕ,Λ)
hyperparameters

ϕ1 0.37 0.37 0.00 0.74 0.37 0.37
ϕ2 0.005 0.005 0.005 –0.09 0.10 0.005
λ1,1 1.07 1.07 1.07 1.07 1.33 0.81
λ1,2 0.29 0.29 0.29 0.29 0.34 0.25
λ2,2 0.09 0.09 0.09 0.09 0.09 0.08
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Table 6.2: Sorted p-values from three hypothesis testing approaches

Variation Method P-values

1
Scoring 0.03 0.17 0.17 0.23 0.44 0.53 0.77 0.81 0.84 0.85
Case 3 0.13 0.31 0.42 0.45 0.63 0.67 0.81 0.83 0.88 0.94

Case 2a 0.13 0.4 0.43 0.55 0.66 0.75 0.76 0.84 0.85 0.91

2
Scoring 0.05 0.21 0.25 0.29 0.63 0.66 0.7 0.71 0.89 0.96
Case 3 0.16 0.36 0.49 0.55 0.69 0.75 0.75 0.89 0.92 0.98

Case 2a 0.19 0.43 0.51 0.56 0.59 0.73 0.75 0.82 0.93 0.97

3
Scoring 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.06 0.07 0.37
Case 3 0.00 0.01 0.01 0.02 0.03 0.05 0.06 0.11 0.18 0.47

Case 2a 0.17 0.41 0.53 0.62 0.79 0.83 0.84 0.88 0.91 0.95

4
Scoring 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.04 0.04
Case 3 0.00 0.00 0.02 0.04 0.05 0.07 0.08 0.12 0.13 0.15

Case 2a 0.22 0.43 0.52 0.57 0.61 0.75 0.89 0.91 0.92 0.94

5
Scoring 0.01 0.15 0.22 0.25 0.52 0.61 0.74 0.76 0.77 0.91
Case 3 0.08 0.36 0.37 0.49 0.65 0.67 0.75 0.81 0.86 0.94

Case 2a 0.11 0.39 0.47 0.56 0.64 0.64 0.73 0.83 0.85 0.94

negative and three of which were positive. The third scale contained six statements:
Three had locations equal to -5 and three had locations equal to 5. This scale was
created, especially when the primary set is small and unbalanced. Of course, in doing
so, we will be making the assumption that response category interpretation is the same
for these additional sets.

6.3 Application: Investigating national pride

We were interested in using the NIS dataset to investigate whether Americans or the
British exhibit more national pride, while adjusting for national differences in response
category interpretation.

First, we used the scoring method to make some preliminary comparisons of the
American and British NIS data, though we were mindful of the method’s limitations.2

The national pride total score, which we denote θ̂1
i , was calculated using category

2Smith and Jarkko (2001) also use the scoring method to compare mean levels of general national
pride for respondents from the different nations included in the NIS survey. Their comparison produced
a ranking (in terms of decreasing national pride) with the U.S. in second place behind Austria, and Great
Britain in fourteenth place.
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scores ‘AS’= −2, ‘A’= −1, ‘N’= 0, ‘D’= +1, ‘DS’= +2 for anti-country item 2,
and category scores ‘AS’= +2, ‘A’= +1, ‘N’= 0, ‘D’= −1, ‘DS’= −2 for pro-
country items S-1, S-3, S-4, and S-5. Therefore, θ̂1

i can range between −10 (flag
burning) and 10 (flag waving). The distribution, by nation, of θ̂1

i can be seen in Figure
6.2, which also contains frequency plots of the immigration total scores, or θ̂2

i s.3 The
means of the θ̂1

i are 2.08 and 0.34 for the American and British surveyees, respectively,
suggesting that Americans have more national pride. (The p-value for the equality of
means is less than 2 · 10−16 according to two-sample t-tests with equal and unequal
variances and the Wilcoxon rank sum test.) The sample variances are 9.38 and 10.60

for the American and British surveyees, respectively, suggesting that Americans have
more uniform national pride attitudes. In addition, we calculated Pearson correlations
between θ̂1

i and θ̂2
i , which were 0.33 and 0.41 for the American and British surveyees,

respectively. It makes sense that, for individuals, a higher level of national pride would
accompany a more negative attitude towards immigration.4

Second, we applied our new structural-model-fitting method to the NIS data. We
recall that the method requires fixing the eleven statement locations to pre-specified
values. We chose to estimate these values and did so using the multi-set variant of
the ULTMODR on its own (with no structural model). In order to resolve the additive
confouding issue in the latent space, we set the mean and variance of θi to 0 and
1, respectively. We first fit the common threshold case (Case 3) to the British data
and American data separately; we did so to check that the order of the β̂js was the
same for both groups of surveyees.5 It was, so we then fit the group-specific threshold
case (Case 2a) to the pooled data.Figure 6.3 presents the resulting statement location
estimates; we adopt these as the pre-specified values for the statement locations. Note
that, reassuringly, the estimates imply an ordering of the statements that is consistent
with their content.

3The immigration total score, θ̂2
i , was calculated using category scores ‘AS’= −2, ‘A’= −1, ‘N’=

0, ‘D’= +1, ‘DS’= +2 for pro- immigration statements and category scores ‘AS’= +2, ‘A’= +1,
‘N’= 0, ‘D’= −1, ‘DS’= −2 for anti-immigration statements. Thus, θ̂2

i can range between −12
(pro-immigration) and 12 (anti-immigration).

4Note that this relationship does not hold at the national level: Americans exhibit more national
pride and more pro-immmigration attitudes than the British. Though this might seem contradictory
prima facie, we recall that “unlike most nation states which were built up around a primordial tribe, the
US is based on a set of shared ideals . . . [which] allows American pride to be not only particularistic,
but also universal.” (Smith and Jarkko, 2001).

5Recall the simulation experiment performed in Section 3.6, which demonstrated that the true item
ordering could be recovered without modelling response category interpretation at a person-specific
level.
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Figure 6.2: Total Scores, by Nation, for National Pride and Immigration Sets. The left-hand frequency plots reveal that the
distribution of national pride total scores has roughly the same spread and a normal shape for both nations, but appears to be
shifted more to the left (towards flag-burning) for the British. Similarly, the right-hand frequency plots reveal that the distribution
of immmigration total scores has roughly the same spread and quasi-normal shape for both nations, but also seems to be shifted
more to the right (towards anti-immigration) for the British.
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Figure 6.3: Statement locations for the national pride and immigration sets. The state-
ments locations were estimated by fitting Case 2a of the ULTMODR to the combined
British and American data, with the same mean vector (= 0) and variance vector
(= 1) used in g1(θi) for both nations.

We embedded the following structural model in the multi-set variant of the ULT-
MODR:

θi = γ0 + γ1Xi+δi, (6.3)

where θi is a vector containing person i’s locations along the national pride continuum
and the immigration continuum; where Xi indicates whether person i is American
(e.g., Xi = 0 if person i is British and Xi = 1 if person i is American); where γ0 is a
vector containing the mean national pride attitude and the mean immigration attitude
for the British; and where γ1 is a vector containing the difference in mean national
pride and the difference in mean immigration attitude between Americans and British
people. Lastly, δi is an error vector that comes from a bivariate normal distribution
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with mean vector 0 and covariance matrix, Φ(Xi), that is itself a function of Xi:

Φ(Xi) =

{
Φ

(US) if Xi = 1
Φ

(GB) if Xi = 0
. (6.4)

Note that γ1,1 is the parameter of primary interest.
All five cases of the model were fit to the data using the R function described in

the last section of this chapter. The − ln(ML) values for these five models can be seen
in the first five rows of Table 6.4; comparing them reveals that the less we constrain
response category interpretation, the better the model fits the data. According to Like-
lihood Ratio Tests, Case 1a fits the best. Thus, from now on, we focus exclusively on
this model. Estimates of Case 1a’s parameters and hyperparameters, as well as some
estimated standard errors, can be seen in Table 6.3.

In the fitted model, differences in American and British responses stem from both
national differences in attitudes and national differences in response category interpre-
tation. We were curious whether the NIS data could be better explained by the former
differences alone or by the latter differences alone. To find out, we compared the fit
of Case 1b (which has a common g2(τ

i, ln(σi)) distribution but nation-specific g1(θi)

distributions) to the fit of an ULTMODR model with nation-specific g2(τ
i, ln(σi)) dis-

tributions but a common g1(θi) distribution for both nations. The models’ ln(ML)

values were −24642 and −24706, respectively. Model 1b fit substantially better than
the additional model, despite having the same number of parameters. This suggests
that differences in American and British responses are better explained by national
differences in national pride rather than by national differences in response category
interpretation. Obviously, however, the true explanation is probably a combination of
these two phenomena, as is true for Case 1a.

In Case 1a, the parameter of primary interest suggests the same conclusion as the
scoring method. Comparing µ̂

(US)
1 to µ̂

(GB)
1 suggests that Americans exhibit more

national pride. We tested the hypothesis that γ1,1 = µ
(US)
1 − µ

(GB)
1 = 0 using a

Likelihood Ratio Test. The value of ln(ML) was −24700 when γ1,1 = 0, compared
to −24642 when γ1,1 was estimated. Thus, we rejected the constrained model and
concluded that Americans have a higher level of national pride, even after allowing for
national differences in response category interpretation.

The remaining hyperparameters of g1(θi) can be used to investigate other national
differences in attitudes. Comparing φ̂

(US)
1 to φ̂

(GB)
1 suggests that Americans have more
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Table 6.3: Parameter estimates and errors for Case 1a fit to the NIS data

Parameter Estimate (standard error)
British American

(n = 807) (n = 998)

g1(µ,Φ)
hyperparametersa

µa1
1 –0.38 (0.01) 0.12 (0.02)

µa2
2 0.25 (0.01) 0.08 (0.02)

φ1,1 0.66 0.47
ρ†

1,2 0.47 0.45
φ2,2 0.93 0.60

Threshold
parameters

c1 1.39
c2 2.89
c3 3.88
c4 5.54

g2(ϕ,Λ)
hyperparametersb

ϕb1
1 0.00O 0.74 (0.05)

ϕb2
2 –0.09O 0.10 (0.03)

λ1,1 1.33 0.81
λ1,2 0.34 0.25
λ2,2 0.09 0.08

a: Elements with subscripts 1 and 2 pertain to the national pride
and immigration scales, respectively.

a1: More positive values imply greater national pride.
a2: More positive values imply more pro-immigration attitudes.
†: ρ1,2 = φ1,2/

√
φ1,1φ2,2

b: Elements with subscripts 1 and 2 pertain to acquiescence and
extremity, respectively.

b1: More positive values imply greater acquiescence.
b2: More positive values imply greater extremity.
O: Indicates that the value is pre-specified rather than estimated.
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uniform national pride attitudes. Comparing µ̂
(US)
2 to µ̂

(GB)
2 and φ̂

(US)
2 to φ̂

(GB)
2 sug-

gests that Americans exhibit immigration attitudes that are more pro-immigration and
more uniform, respectively. Further, the estimates ρ̂

(US)
1,2 and ρ̂

(GB)
1,2 suggest that anti-

immigration attitudes accompany pro-country attitudes for individuals from both na-
tions. These estimated correlations are larger and more nearly equal than the corre-
sponding Pearson correlations calculated using the scoring method. The lesser mag-
nitude of the Likert score correlations is not surprising since they were calculated in
two-stages, which results in attentuated estimates due to measurement error (Zwinder-
man, 1997, p. 245).

The hyperparameters of g2(τ
i, ln(σi)) can be used to investigate national differ-

ences in response category interpretation. As we would have hypothesised a priori,
Americans are significantly more acquiescent; this can be seen by comparing ϕ̂

(US)
1

and ϕ̂
(GB)
1 , the estimated U.S. and G.B. means for τ i. Also unsurprisingly, Ameri-

cans are significantly more extreme, as revealed by a comparison of ϕ̂
(US)
2 and ϕ̂

(GB)
2 ,

the estimated U.S. and G.B. means for ln(σi). A comparison of the diagonal ele-
ments in the covariance matrices suggests that Americans are more uniform in terms
of acquiescence than the British, but equally uniform in terms of extremity. Also, the
relationship between greater acquiescence and greater extremity is positive for both
nations, but stronger for the British.

We assessed the overall goodness-of-fit of Case 1a to the entire NIS dataset. The
maximum ln(ML) value from fitting the model was −24642, which translates to an
average predicted probability of exp {−24642/(1805 · 11)} = 0.29. This probabil-
ity is very reasonable especially when we recall that, in Section 3.6, fitting the ULT-
MODR to data simulated from the ULTMODR produced probabilities that were not
much larger. Further, the − ln(ML) value for Case 1a compared favourably to various
proportional odds models for the NIS dataset. The logarithmic scores for these models
can be seen in the bottom half of Table 6.4, which reveals that none fits as well as Case
1a. Note that two of the models (2 and 3) are product-multinomial models and have
item-specific category cut-offs: The first assumes no differences between persons, and
the second assumes no differences between persons from the same nation. All of the
other models have the same category cut-offs for all items. These other models may
have item-specific slopes and/or either nation- or person-specific slopes.6 Note that, in

6All parameters, even the person-specific slopes, were treated as fixed-effects when fitting the pro-
portional odds models.
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some models with nation-specific or person-specific slopes, the sign of those slopes is
reversed for the anti-country and pro-immigration items (i.e., 2, 7, 9, and 10).

Since we were primarily interested in the national pride items, we also examined
the overall goodness-of-fit of Case 1a to those items only. The national pride compo-
nent of ln(ML) is −11274. This value translates into an average predicted probability
of 0.29, which is encouraging. Further, Case 1a fits the national pride data better than
various proportional odds models, whose logarithmic scores can be seen in Table 6.5.
These models were similar to the ones described in the previous paragraph. Note that
the sixth model resembles the Rasch model (Rasch, 1960/1980) in formulation. In
addition, note that the seventh model distinguishes between items only by indicating
whether they are pro- or anti-country in the score for each person; thus, this model can
be viewed as a probabilistic version of Likert’s measurement model. Although two
proportional odds models do fit better than Case 1a, they have a very large number of
parameters (1818) because their person-specific slopes are treated as fixed-effects.

We examined the fit of Case 1a to the univariate margins for each nation. Figure
6.4 presents the British expected and observed frequencies for each margin, along with
the corresponding unsigned Pearson residual; Figure 6.5 presents the same statistics for
the American responses. For both nations, the model fit the S-8 margins the best. For
the British, the model fit the S-7 margins the worst, mostly because it underpredicts
the number of British respondents who are neutral on whether immigrants are good
for the economy. For the Americans, the model fit the S-9 margins the worst, mostly
because it underpredicts the number of Americans who agree that immigrants make
the country open to new ideas and cultures.

We also examined the fit of Case 1a to the bivariate margins for each nation. For the
British and American responses, we calculated the observed and expected frequencies,
and the signed Pearson residuals, for every pair of statements. For example, Table 6.6
presents these statistics for the American S-1 and S-2 margins, which are among the
most poorly fit. (The other 2 · 55 − 1 tables are omitted for the sake of brevity.) The
table reveals that the model severely underpredicts the frequency for the ‘SA’ category
of S-1 and the ‘A’ category of S-2. In general, the bivariate statistics highlight the same
problems with fit as the univariate statistics. For the British, the model fits all two-way
margins involving S-7 most poorly, because it underpredicts the frequencies involving
the ‘N’ category. For the Americans, the model fits all two-way margins involving S-9
most poorly, because it underpredicts of the frequencies involving the ‘A’ category.
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Table 6.4: Logarithmic scores for models fit to the national pride and immigration data

Model Log. Score† (num. param.)

ULTMODR models
Case 1b 24642 (33)
Case 1a 24706 (28)
Case 2b 25218 (29)
Case 2a 25239 (27)
Case 1 25325 (28)
Case 1b, with common g1(θi) 24742 (28)

Proportional odds models

N(i): indicates the nation (GB or US) to which person i belongs
R(j): indicates if item j is ‘reversed’
S(j): indicates the set (NP or I) to which item j belongs

logitP (Yij ≤ k) = βk + βj 27158 (14)
logitP (Yij ≤ k) = βjk 26754 (44)
logitP (Yij ≤ k) = βjkN(i) 26452 (88)
logitP (Yij ≤ k) = βk + βj + βN(i) 27081 (15)
logitP (Yij ≤ k) = βk + βj + (1 − I(Rj))βN(i) − I(Rj)βN(i) 27039 (15)
logitP (Yij ≤ k) = βk + βj + βS(j)N(i) 27057 (16)
logitP (Yij ≤ k) = βk + βj + (1 − I(Rj))βS(j)N(i) + I(Rj)βS(j)N(i) 26993 (16)
logitP (Yij ≤ k) = βk + βj + θi 25532 (1818)

†: Log. Score =
∑1805

i=1

∑11
j=1

∑5
k=1 −I (Yij = k) ln P (Yij = k)
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Figure 6.4: Case 1a univariate goodness-of-fit statistics for British responses in the NIS dataset. Each plot pertains to an item in
the NIS dataset. In each plot, the five pairs of bars depict observed and expected frequencies for the categories. The expected
frequencies were calculated using an equation similar to (3.5) with the British g1(θi) and g2(τ

i, ln(σi)) distributions and each
integration approximated using Monte Carlo immigration. The number written above each pair of bars is the corresponding
unsigned Pearson residual. This value is omitted when the expected frequency is smaller than five.

96



S
A A N D

S
D

Nat. Pride S−1

0

200

400

600

800 16 38 0 0 NA

S
A A N D

S
D

Nat. Pride S−2

0

200

400

600

800 12 31 26 0 23

S
A A N D

S
D

Nat. Pride S−3

0

200

400

600

800 0 27 15 6 1

S
A A N D

S
D

Nat. Pride S−4

0

200

400

600

800 6 0 7 8 5

S
A A N D

S
D

Nat. Pride S−5

0

200

400

600

800 10 3 41 19 11 US Obs. Freq.
US Exp. Freq.

S
A A N D

S
D

Immigr. S−6

0

200

400

600

800 0 3 0 0 14

S
A A N D

S
D

Immigr. S−7

0

200

400

600

800 19 11 8 1 24

S
A A N D

S
D

Immigr. S−8

0

200

400

600

800 1 1 4 4 0

S
A A N D

S
D

Immigr. S−9

0

200

400

600

800 34 61 7 3 1

S
A A N D

S
D

Immigr. S−10

0

200

400

600

800 6 3 1 10 17

S
A A N D

S
D

Immigr. S−11

0

200

400

600

800 1 12 1 8 21

Figure 6.5: Case 1a univariate goodness-of-fit statistics for American responses in the NIS dataset. Each plot pertains to an item
in the NIS dataset. In each plot, the five pairs of bars depict observed and expected frequencies for the categories. The expected
frequencies were calculated using an equation similar to (3.5) with the American g1(θi) and g2(τ

i, ln(σi)) distributions and each
integration approximated using Monte Carlo immigration. The number written above each pair of bars is the corresponding
unsigned Pearson residual. This value is omitted when the expected frequency is smaller than five.
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Table 6.5: Logarithmic scores for models fit to the national pride data

Model Log. Score† (num. param.)

ULTMODR modela

Case 1b 11274 (22)

Proportional odds modelsb

N(i): indicates the nation (GB or US) to which person i belongs
R(j): indicates if item j is ‘reversed’
S(j): indicates the set (NP or I) to which item j belongs

logit(P (Yij ≤ k) = βk + βj 11927 (8)
logit(P (Yij ≤ k) = βjk 11694 (20)
logit(P (Yij ≤ k) = βjkN(i) 12129 (40)
logit(P (Yij ≤ k) = βk + βj + βN(i) 12042 (9)
logit(P (Yij ≤ k) = βk + βj + (1 − I(Rj))βN(i) − I(Rj)βN(i) 11984 (9)
logit(P (Yij ≤ k) = βk + βj + θi 9981 (1812)
logit(P (Yij ≤ k) = βk + (1 − I(Rj))θi − I(Rj)θi 11590 (1808)
logit(P (Yij ≤ k) = βk + βj + (1 − I(Rj))θi − I(Rj)θi 9625 (1812)

†: Log. Score =
∑1805

i=1

∑11
j=1

∑5
k=1 −I (Yij = k) ln P (Yij = k)

a This model was fit to the National Pride and Immigration items
b These models were fit to the National Pride items only

Last, we checked that Case 1a produced attitude estimates that sensibly incorpo-
rated differing response category interpretation. Specifically, we calculated EAP esti-
mates for two imaginary British surveyees: The first surveyee had data

Yi = [ A D A A A SA SD SD SA SA SD ]T , (6.5)

and the second surveyee had data

Yi = [ A D A A A A D D A A D ]T . (6.6)

Although both surveyees responded identically to the five national pride items, the es-
timate of θ1

i is 0.08 for the first respondent and 0.50 for the second respondent (more
positive values correspond to being more pro-country.) This difference reflects the
surveyees’ differing responses to the immigration items: Since the second surveyee’s
responses to these items reveal an aversion to using the outermost categories, her re-
sponses to the national pride items seem a stronger indication of national pride. With-
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Table 6.6: Goodness-of-fit statistics for American S-1 and S-2 two-way margins

Entry(k,m)
=

nUS · p1k2m (nUS · p̂1k2m)
χ2

1k2m

S-2
Categories ‘SA’ ‘A’ ‘N’ ‘D’ ‘SD’

S-1

‘SA’
117 (120) 356 (216) 94 (152) 96 (100) 43 (18)
χ2 = 0 χ2 = 91 χ2 = -22 χ2 = 0 χ2 = 33

‘A’
25 (65) 106 (144) 43 (69) 27 (29) 0 (3)

χ2
2,1 = -25 χ2

2,2 = -10 χ2
2,3 = -10 χ2

2,4 = 0 χ2
2,5 = NAa

‘N’
13 (18) 33 (28) 16 (10) 3 (4) 1 (0)
χ2 = -2 χ2 = 1 χ2 = 3 χ2 = NAa χ2 = NAa

‘D’
6 (7) 8 (7) 2 (3) 4 (1) 0 (0)

χ2
4,1 = 0 χ2 = 0 χ2 = NAa χ2 = NAa χ2 = NAa

‘SD’
0 (1) 3 (1) 1 (0) 0 (0) 1 (0)

χ2 = 0 χ2 = 0 χ2 = NAa chi2 = NAa χ2 = NAa

a χ2 statistic omitted because nUS · p̂jklm < 5
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out the immigration items (and a model that incorporates differing response category
interpretation), the estimates of θ1

i would be the same for both surveyees.
In conclusion, both the scoring method and our new method suggest that Ameri-

cans exhibit more national pride than the British. However, we have more confidence
in the new method’s conclusions because they are adjusted for national differences in
response category interpretation.

6.4 Application: Investigating abortion attitudes

Finally, we used the new method to analyse a subset of the abortion attitude items.
In particular, we wanted to investigate how nationality (GB or US), gender, and reli-
gious status (Christian or none) affect abortion attitudes, while controlling for national
and gender differences in response category interpretation. Note that, unfortunately,
the dataset does not include any secondary attitude items that could provide additional
information on response category interpretation. (If the author had been more pre-
scient, she might have expanded the web-based survey described in Section 1.3.1 to
include some statements about non-abortion objects.) However, the presence of addi-
tional items is not as crucial in this application because the primary set contains a large
number of items expressing heterogeneous and relatively balanced views.

Before performing any analysis, we discarded those abortion attitude items that
were problematic according to our ULTMODR-based method of item analysis in Sec-
tion 4.5. We removed four items with outlying ‘DK/CC’ proportions (i.e., S-14, S-15,
S-19, and S-21), three items with outlying σ̂2

rk(β̂ns
j

)
values (S-25, S-29, and S-31), and

six items with outlying χ2
j values (S-30, S-33, S-34, S-39, S-41, and S-44). After

doing so, 37 Likert items remained, and their ‘DK/CC’ responses were recoded as
‘Neither agree nor disagree.’ Note that the remaining items do not completely balance
anti-abortion and pro-abortion statements: There are more of the former than the lat-
ter. Thus, according to the results of the simulation experiments in Section 6.2, we
should not use the scoring method to draw formal conclusions about group differences
in abortion attitudes. In fact, we cannot even use the scoring method to perform pre-
liminary investigations because some of the 37 statements cannot be classified as pro-
or anti- abortion.

We also discarded the eleven persons who currently practice religions other than
Christianity. We did so because the American sample included several Jewish persons
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whereas the British sample did not, and we wanted to make sure that the religious sam-
ples were reasonably similar for the two nations. After discarding the eleven persons
(most of them American), 129 persons remained. The resulting frequencies for each
of the eight nationality×gender×religion groups can be seen in Table 6.7.

Before we could use the new-structural-model-fitting method, we had to fix the
statement locations to prespecified values. To do so, we fit Case 2a of the simplest
ULTMODR variant to the remaining 129 persons and 37 items. (This model was fit
using the R function described in Section 4.7.2.) In the model, the thresholds were
assumed to differ by nationality×gender. However, the distribution of θ1

i was assumed
to be the same for persons from both nations; the common mean was fixed to zero,
and the common variance to one. The β̂js that resulted from fitting this model were
consistent with the statements’ content and ranged from −4.90 for S-5 to −3.65 for S-
47. Thus, in the following analysis, more positive θ1

i values correspond to more liberal
attitudes towards abortion.

We then used these statement locations to implement our structural-model-fitting
method. Specifically, we fit Case 1a of the multi-set ULTMODR variant (with S = 1)
to the remaining data. The hyperparameters of the g2(τ

i, ln(σi)) distribution were
allowed to differ by nationality×gender, and the hyperparameters of the g1(θ

1
i ) dis-

tribution were allowed to differ by nationality×gender×religion. The model was fit
using the R function described in the last section of this chapter. Estimates (and some
estimated standard errors) for the model’s hyperparameters can be seen Table 6.7. The
maximum ln(ML) value for the model is −5133. This corresponds to an average pre-
dicted probability of exp {−5133/(129 · 37)} = 0.34. This value is even higher than
the probabilities observed in the simulation experiment in Section 3.6, which indicates
that the model explains the data very well.

We used the eight sets of estimated g1(θ
1
i ) hyperparameters to investigate group

differences in attitudes. Beginning with the mean of θ1
i , we see that British Chris-

tian males have the most conservative attitudes, and that American and British non-
religious females have the most liberal attitudes. As we might expect, female stu-
dents have significantly more liberal attitudes than male students in every nationality×
religion group. Similarly, non-religious student have significantly more liberal abor-
tion attitudes than Christian students in every nationality×gender group. Interestingly,
American Christian students are more liberal than British Christian students, signifi-
cantly so for females. Non-religious British males have more liberal attitudes than their
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American counterparts, whereas non-religious British females have attitudes identical
to their American counterparts. Turning to the variance of θ1

i , we see that male and
then female American Christians have the most heterogeneous views, and that British
and then American non-religious females have the most uniform views.

We used the four sets of estimated g2(τ
i, ln(σi)) hyperparameters to interpret group

differences in response category interpretation. They suggest that each of the four
nationality× gender groups has significantly different response category interpreta-
tion. We see that American males are the least acquiescent and least extreme, and
that American females are the most acquiescent and most extreme. British females
fall somewhere in between, and British males are very similar to American females.
British students have more uniform response category interpretation than American
students, and male students have more uniform response category interpretation than
female students.

Last, we tested whether response category interpretation does differ by nationality×
gender. To do so, we fit Case 1b of the model. (Recall that the hyperparameters of
g2(τ

i, ln(σi)) are the same for all persons in Case 1b.) The ln(ML) value for this
model is −5166, and the Likelihood Ratio Test comparing it to Case 1a has a p-value
less than 0.01. Thus, it seems that response category interpretation does indeed differ
by gender and nation.

6.5 Conclusions

We have introduced a new method of fitting (structural) models for the effect of co-
variates on attitudes. The method embeds the structural model in the ULTMODR mea-
surement model. Because of this embedding, both models can be fit simultaneously
so that the resulting estimates of the structural model’s parameters are less attenuated.
Further, these estimates can be adjusted for differing response category interpretation
by modelling it in the ULTMODR’s response structure. This adjustment can be made
even in a situation where there are only a few, unbalanced items measuring the attitude
of primary interest. If other items (measuring secondary attitudes) are available, they
can be incorporated into a multi-set variant of the ULTMODR; doing so provides ad-
ditional information on how response category intepretation differs. If secondary sets
are incorporated, the multi-set variant allows us to obtain less attenuated estimates of
the correlation between the primary and secondary attitudes, an additional bonus.
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Table 6.7: Parameter estimates and errors for Case 1a fit to 37 abortion attitude items

Parameter Estimate (standard error)
British American

Male Female Male Female
None Chrstn None Chrstn None Chrstn None Chrstn

(n = 28) (n = 9) (n = 22) (n = 8) (n = 19) (n = 14) (n = 20) (n = 9)
g1(µ,Φ)
hyperparameters

µa1
1 0.30 (0.12) –1.39 (0.13) 0.61 (0.09) –0.87 (0.14) 0.03 (0.17) -0.94 (0.18) 0.61 (0.07) 0.17 (0.13)

φ1,1 0.64 1.22 0.19 0.26 0.48 2.94 0.33 1.84

g2(ϕ,Λ)
hyperparametersb

ϕb1
1 0.75 (0.06) 0.48 (0.11) 0.00O 0.81 (0.14)

ϕb2
2 0.27 (0.04) 0.08 (0.06) –0.15O 0.28 (0.09)

λ1,1 0.13 0.44 0.31 0.40
λ1,2 0.07 0.25 0.18 0.28
λ2,2 0.07 0.15 0.15 0.21

a1: More positive values imply more liberal attitudes towards abortion.
b: Elements with subscripts 1 and 2 pertain to acquiescence and extremity, respectively.
b1: More positive values imply greater acquiescence.
b2: More positive values imply greater extremity.
O: Indicates that the value is pre-specified rather than estimated.
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Simulation experiments indicate that inferences drawn using the new method are
robust to group differences in response category interpretation, even for an unbalanced
scale. On the other hand, the scoring method based on Likert’s measurement model
does not appear to perform well for unbalanced scales.

In our applications, we find that the new method does make it possible to separate
the effects of response category interpretation from the effects of attitudes. In the na-
tional pride application, this separation is accomplished by borrowing strength across
scales.

6.6 Details of the R function

We describe the R function written by the author to fit the multi-set variant of the
ULTMODR with all five response structure cases.

The fixed-effects parameters and hyperparameters are estimated by maximising the
relevant Marginal Likelihood. For Cases 2a, 2b and 3, the Marginal Likelihood is

ML =
n∏

i=1

{∫∫
g1(θi) ·

J∏

j=1

K∏

k=1

I (Yij = k) P (Yij = k) d(θ1
i )d(θ2

i )

}
. (6.7)

In our national pride application, for instance,

g1(θi) =

{
BV N(µ(US),Φ(US)) where µ(US) = γ0 + γ1 if Xi = 1
BV N(µ(GB),Φ(GB)) where µ(GB) = γ0 if Xi = 0

.

For Cases 1a and 1b, the Marginal Likelihood is

ML =
n∏

i=1

∫∫∫∫ {
g1(θi) · g2(τ

i, ln(σi))· (6.8)

J∏

j=1

K∏

k=1

I (Yij = k) P (Yij = k)

}
d(θ1

i )d(θ2
i )d(τ i)d(ln(σi)).

where, for Case 1b,

g2(τ
i, ln(σi)) = BV N(ϕ, Λ) with ϕ1 = 0 and ϕ2 = −λ2,2,

and, for Case 1a,

g2(τ
i, ln(σi)) =

{
BV N(ϕ(g), Λ(g)) if g > 1

BV N(ϕ(g), Λ(g)) where ϕ
(g)
1 = 0 and ϕ

(g)
2 = −λ

(g)
2,2 if g = 1

.
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The n integrals in (6.7) or (6.8) are approximated using Monte Carlo integration.
More specifically, with (6.7), the change-of-variables technique was used to transform
the ith integral into an integral with respect to θ

′

i, where θ
′

i comes from a standard
bivariate normal distribution. The transformed integral is then approximated using
Monte Carlo integration implemented with N = 600 points generated from the stan-
dard bivariate normal distribution. (For Cases 1a and 1b, we adopt an analogous ap-
proach to approximate each integral in (6.8), but employ N = 1000 points generated
from a standard four-dimensional normal distribution.)

The logarithm of the relevant ML is maximised using R’s optim() function with
method=“L-BFGS-B”, which implements the optimization technique of Byrd et al.
(1995), a quasi-Newton method that allows box constraints. To ensure that the Φ

matrices (and, in Case 1a or 1b, the Λ matrices ) remain symmetric and positive definite
throughout optimisation, ln(ML) is maximised with respect to the elements of the
matrices’ Choleski decompositions. Similarly, in order to ensure that the threshold
set(s) remain ordered, ln(ML) is maximised with respect to the differences in the
thresholds, subject to the constraint that these differences are positive. Lastly, to ensure
that σ(g) in Case 2b remains positive, ln(ML) is maximised with respect to ln(σ(g)).

To begin the optimisation process, sensible starting values suggested by a combi-
nation of theory and experience are used for the fixed-effects parameters. However,
since log(ML) can have multiple modes, the optimisation process is then repeated
using alternative starting values arrived at by jittering the initial starting values. The
values of the fixed-effects parameters corresponding to the largest maxima are retained
as estimates.

The final ln(ML) value is calculated by evaluating either (6.7) or (6.8) at the es-
timated values of the fixed-effects parameters, using N = 10000 points in the Monte
Carlo approximations for the n integrals.

Estimated standard errors for the µ̂s and the ϕ̂s are calculated by taking the square
root of the relevant diagonal elements of the inverse of the observed information ma-
trix, evalulated at the MLEs of the fixed-effects parameters. The observed information
matrix is calculated by optim(), which returns a numerical approximation of the Hes-
sian matrix at the solution found. Although optim() actually returns the Hessian matrix
of the unconstrained problem, the box constraints are not active in the solutions found
for any of the models.
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Last, the person-effects estimates are estimated in the manner described in Section
3.4.
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Chapter 7

A few final comments

This thesis has introduced the ULTMODR—a new measurement model for Likert
data—and demonstrated how its different variants can be used to analyse Likert data
in a variety of ways. The ULTMODR-based methods of analysis generally perform
better than comparable existing methods. This is particularly true for our method of
fitting structural models.

However, our ULTMODR-based methods do suffer certain limitations. For one,
they are implemented using a normal prior distribution for the person locations. This
may not be appropriate if the (population) distribution of attitudes is multimodal,
which is entirely possible. Bartholomew and Knott (1999) argue that, in latent variable
modelling, the prior distribution has little effect, meaning that we should not concern
ourselves too much with its form. This may be true in situations where we want to draw
conclusions about the items (e.g., when visualising the relationships between them or
when determining which ones confuse people). However, the appropriateness of the
prior distribution is a greater cause for concern when we want to draw conclusions
about the persons’ attitudes (e.g., when visualising them or when formally comparing
them between groups). In these instances, we might try to fit the ULTMODR using an
alternative prior distribution, such as a mixture of two normals.
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Jöreskog, K. and Moustaki, I. (2001). “Factor analysis of ordinal variables: A com-
parison of three approaches.” Multivariate Behavioral Research, 36, 347–387.

109



Judd, C. and Kulik, J. (1980). “Schematic effects of social attitudes on information
processing and recall.” Journal of Personality and Social Psychology, 38, 569–
578.

Kaiser, H. (1958). “The varimax criterion for analytic rotation in factor analysis.”
Psychometrika, 23, 187–200.

Kendall, D. (1971). “Seriation from abundance matrices.” In Mathematics in the

Archaeological and Historical Sciences, eds. F. R. Hodson, D. G. Kendall, and
P. Tatu, 215–252. Edinburgh: Edinburgh University Press.

Likert, R. (1932). “A technique for the measurement of attitudes.” Archives of Psy-

chology, No. 140.

Lingoes, J. (1973). The Guttman-LINGOES Nonmetric Program Series. Mathesis
Press, Ann Arbor, Michigan.

Luo, G. (2001). “A class of probabilistic unfolding models for polytomous responses.”
Journal of Mathematical Psychology, 45, 224–248.

Marden, J. (1995). Analyzing and Modeling Rank Data. London: Chapman & Hall.

Masters, G. (1982). “A Rasch model for partial credit scoring.” Psychometrika, 47,
149–174.

Masters, G. and Wright, B. (1984). “The essential process in a family of measurement
models.” Psychometrika, 49, 529–544.

Moustaki, I. (2000). “Structural Equation Modeling: Present and Future.” In A re-

view of exploratory factor analysis for ordinal categorical data., eds. R. Cudeck,
S. Du Toit, and D. Sörbom. Scientific Software International.

Mueller, D. J. (1986). Measuring Social Attitudes: A Handbook for Researchers and

Practitioners. New York: Teachers College Press.

Muraki, E. (1992). “A generalized partial credit model: Application of an EM algo-
rithm.” Applied Psychological Measurement, 16, 159–176.

Oppenheim, A. (1992). Questionnaire Design, Interviewing and Attitude Measure-

ment. New ed. London: Continuum.

110



Pratkanis, A., Breckler, S., and Greenwald, A. (1989). “The cognitive representation of
attitudes.” In Attitude structure and function, ed. A. Pratkanis, 71–98. Hillsdale,
NJ: Erlbaum.

Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests.
expanded ed. Chicago: The University of Chicago Press. Reprint of the original
1960 publication by the Danish Institute for Eductional Research.

Roberts, J. (1995). “Item Response Theory Approaches to Attitude Measurement.”
Ph.D. thesis, University of South Carolina, Columbia, SC.

Roberts, J., Donoghue, J., and Laughlin, J. (2000). “A general item response theory
model for unfolding undimensional polytomous responses.” Applied Psycholog-

ical Measurement, 24, 3–32.

Roberts, J. and Laughlin, J. (1996). “A unidimensional item response model for un-
folding responses from graded disagree-agree response scale.” Applied Psycho-

logical Measurement, 20, 231–255.

Roskam, E. (1979). “A Survey of the Michigan-Israel-Netherlands-Integrated Series.”
In Geometric Representations of Relational Data., eds. J. Lingoes, E. Roskam,
and I. Bor, 289–312. Ann Arbor, MI: Mathesis Press.

Rossi, P., Gilula, Z., and Allenby, G. (2001). “Overcoming scale usage heterogeneity:
A Bayesian hierarchical approach.” Journal of the American Statistical Associa-

tion, 96, 20–31.

Rost, J. and Luo, G. (1997). “An application of a Rasch based model to a questionnaire
on adolescent centrism.” In Applications of Latent Trait and Latent Class Models

in the Social Sciences, ed. G. Bohner. Münster: Waxmann Verlag GMBH.

Samejima, F. (1969). “Estimation of latent ability using a response pattern of graded
scores.” Psychometrika Special Monograph, Monograph Supplement No. 17.

Shepard, R. (1974). “Representation of structure in similarity data: Problems and
prospects.” Psychometrika, 39, 373–421.

Shi, J. and Lee, S. (1998). “Bayesian sampling-based approach for factor analysis
models with continuous and polytomous data.” British Journal of Mathematical

and Statistical Psychology, 51, 233–252.

111



Smith, T. and Jarkko, L. (2001). National Pride in Cross-National Perspective. Na-
tional Opinion Research Center / University of Chicago.

Spector, P. (1990). Summated Rating Scale Construction: An Introduction. Newbury
Park, CA: Sage.

Thissen, D. and Steinberg, L. (1986). “A taxonomy of item response models.” Psy-

chometrika, 51, 567–577.

Thurstone, L. and Chave, E. (1929). The Measurement of Attitude: A Psychophysi-

cal Method and Some Experiments with a Scale for Measuring Attitude Towards

Church. Chicago, IL: University of Chicago Press.

Tukey, J. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.

Wright, B. and Masters, G. (1982). Rating scale analysis. Chicago, IL: MESA Press.

Young, F. and Lewyckyj, R. (1979). ALSCAL-4 user’s guide. Psychometric Labora-
tory, University of North Carolina at Chapel Hill. Implemented in the software
package SPSS.

Zwinderman, A. (1997). “Response models with manifest predictors.” In Handbook

of Modern Item Response Theory, eds. W. van der Linden and R. Hambleton,
245–256. New York, NY: Springer-Verlag.

112


