

Automated Event-driven Security Assessment

by

Jeong-Jin Seo

A Thesis Presented in Partial Fulfillment

of the Requirement for the Degree

Master of Science

Approved January 2014 by the

Graduate Supervisory Committee:

Gail-Joon Ahn, Chair

Stephen S. Yau

Joohyung Lee

ARIZONA STATE UNIVERSITY

May 2014

i

ABSTRACT

 With the growth of IT products and sophisticated software in various operating

systems, I observe that security risks in systems are skyrocketing constantly.

Consequently, Security Assessment is now considered as one of primary security

mechanisms to measure assurance of systems since systems that are not compliant with

security requirements may lead adversaries to access critical information by

circumventing security practices. In order to ensure security, considerable efforts have

been spent to develop security regulations by facilitating security best-practices.

Applying shared security standards to the system is critical to understand vulnerabilities

and prevent well-known threats from exploiting vulnerabilities. However, many end users

tend to change configurations of their systems without paying attention to the security.

Hence, it is not straightforward to protect systems from being changed by unconscious

users in a timely manner. Detecting the installation of harmful applications is not

sufficient since attackers may exploit risky software as well as commonly used software.

In addition, checking the assurance of security configurations periodically is

disadvantageous in terms of time and cost due to zero-day attacks and the timing attacks

that can leverage the window between each security checks. Therefore, event-driven

monitoring approach is critical to continuously assess security of a target system without

ignoring a particular window between security checks and lessen the burden of exhausted

task to inspect the entire configurations in the system. Furthermore, the system should be

able to generate a vulnerability report for any change initiated by a user if such changes

refer to the requirements in the standards and turn out to be vulnerable. Assessing various

ii

systems in distributed environments also requires to consistently applying standards to

each environment. Such a uniformed consistent assessment is important because the way

of assessment approach for detecting security vulnerabilities may vary across applications

and operating systems.

In this thesis, I introduce an automated event-driven security assessment framework to

overcome and accommodate the aforementioned issues. I also discuss the implementation

details that are based on the commercial-off-the-self technologies and testbed being

established to evaluate approach. Besides, I describe evaluation results that demonstrate

the effectiveness and practicality of the approaches.

iii

TABLE OF CONTENTS

Page

1. INTRODUCTION.. 1

1.1 OVERVIEW ... 1

1.2 STATEMENT OF THE PROBLEM .. 4

1.3 OUTLINE OF THE THESIS ... 6

2. REALTED WORK .. 7

3. BACKGROUND TECHNOLOGY ... 11

3.1 COMMON INFORMATION MODEL .. 11

3.1.1 WINDOWS MANAGEMENT INSTRUMENTATION 13

3.1.2 IMPLEMENTATION OF CIM IN WMI .. 15

3.2 ONTOLOGY .. 16

3.2.1 SPARQL PROTOCL AND RDF QUERY LANGUAGE PROCEDURE 18

3.3 OPEN VULNERABILTY AND ASSESSMENT LANGUAGE 20

3.3.1 USAGE OF OVAL DEFINITION ... 21

3.3.2 OVAL STRUCTURE AND ITS USE ... 22

4. EVENT-DRIVEN CONTINUOUS MONITORING SYSTEM FRAMEWORK 29

4.1 GENERAL OVERVIEW ... 30

4.2 EVENT-DRIVEN CONTINUOUS MONITORING METHODOLOGY 31

4.3 VULNERABILITY INFORMATION PROVIDER METHODOLOGY 38

iv

4.3.1 OPERATING SYSTEM BASED TEST IDS ... 40

4.3.2 DETECTION OF RELATING VULNERABILITIY PROCEDURE 42

4.4 SECURITY ASSESSMENT METHODOLOGY .. 45

4.4.1 MEASUREMENT OF SECURITY RISK ... 46

5. IMPLEMENTATION AND EVALUATION ... 50

5.1 IMPLEMENTATION AND ISSUES .. 50

5.1.1 AGENT .. 51

5.1.2 ONTOLOGY SERVER ... 56

5.1.3 VULNERABILITY SERVER ... 60

5.2 RESULT & EVALUATION .. 62

6 CONCLUSION ... 68

6.1 CONTRIBUTION .. 68

6.2 FUTURE WORK .. 69

7 REFERENCES .. 70

1

1. INTRODUCTION

1.1 OVERVIEW

The government, defense, and private sectors have been struggling to keep computer

systems away from security breaches. Among many useful methods to secure systems,

Security Assessment has been considered as an effective method to measure assurance of

systems based on security standards and the status of compliance with baselines [32].

Such standards and baselines could help systems avoid well-known risks and describe the

weakest points of systems by allowing rigorous security analysis and discovering

configurations that cause potential risks in systems. Furthermore, Security assessment

enlightens parties to understand security goal precisely, and thus it may mitigate security

risks and ensure an appropriate level of system assurance.

US federal government has recognized the importance of security assessment and started

to develop plans for using Microsoft’s operating system based on specific security

configurations, which stem from US Air Force’s common security configuration for

Windows XP. This initiative was expanded to deal with other operating systems such as

iOS, Linux, and HPX [33][34]. The Office of Management and Budget (OMB) and

National Institute of Standards and Technology (NIST) developed Federal Desktop Core

Configuration (FDCC) baseline for the purpose of security management, which prevents

security problems as early as possible caused by malfunctioned operating system and

faulty configurations which have been found by security testers or attackers [33]. The

United State Government Configuration Baseline (USGCB) evolved from FDCC

replaces the FDCC baseline for Information Technology (IT) products widely deployed

2

across agencies [34]. However, under increasing number of products and various

operating systems, establishing standards and measuring security risks are getting harder

to collect and test all of security configuration resources by security analysts. The FDCC

and USGCB teams decided to work together with organizations and companies for

collecting vulnerability information with XML-based well-structured format and

maintain information into one repository to facilitate easy sharing process and

comprehensive protection. As a result, the XML format of vulnerability information has

been discussed, analyzed, stored, and disseminated by central place, MITRE Corporation.

This XML-based specification was named as Open Vulnerability Assessment Language

(OVAL) for the purpose of a single security standard that is both human- and machine-

readable and covers various operating systems and its applications [20][21].

The main purpose of both FDCC and USGCB is to develop and implement security

configuration baselines, and gather security assessment results to provide the current

status of system assurance to stakeholders. In other words, it allows them to determine

how much security problems could be occurred in a target system with the help of

security baselines. However, both departments mainly focus on the detection of

vulnerabilities in the system. Consequently, Federal Information Security Management

Act (FISMA) was initiated to prioritize risk-based security assessment and real-time

continuous monitoring of security controls as a critical focus of compliance and security,

due to a dramatic increase in security incidents at federal agencies [19]. For example, the

reported security incidents among 24 key agencies increased more than 650% in the last

five years but ironically these federal agencies have periodically performed security

assessment based on security configuration baselines.

3

Therefore, the need of new continuous security monitoring that depends on system

environments has been recently addressed in the security community. The previous

monitoring approaches have been mainly dedicated to share security incidents by

stacking security issues up in the repository as much as possible. By using the gathered

information, the traditional security monitoring approach periodically measures system

assurance since it is tedious and costly to evaluate the entire system with various

standards. However, it is critical to perpetually monitor the previously discovered

security issues in a target system since it would be worthwhile to detecting new risks.

Every events in the target system with respect to users’ behavior such as installing

software packages or patching updates should be considered to perform security

assessment so that we can achieve a more comprehensive assessment to reflect any

changes and modifications on the system’s configuration. Thus, the periodic security

assessment is not sufficient enough to measure the assurance of systems.

We reiterate that we need event-driven continuous monitoring system is necessary to

consider the newly changed configuration that may draw security problems on the

system. Without evaluating system environments reflecting to the system configuration

that can be frequently changed by users, continuous security assessment is the most

effective approach to reduce and eliminate potential risks. In addition, as mentioned

above, diverse environments and various software applications that change system

configurations are another obstacle to hinder the accurate assessment of systems. To

perceive comprehensive security risks is increasingly tough even to security experts

because it is difficult to understand or define different domains of security problems. We

thus need a comprehensive and domain-independent approach that can be used in

4

multiple environments in a seamless manner. There are many commercial tools to

discover and share vulnerability information to the public for the purpose of avoiding

security risks. Without having the integrated data to provide the commonly

understandable security information to each computer environment, it is also hard to

measure system assurance comprehensively. In this thesis, we leverage the notion of

ontology to build a system that can support various environments for performing efficient

high-level reasoning and making better decision.

1.2 STATEMENT OF THE PROBLEM

There are several questions that this thesis attempts to address. First, Security

Assessment (SA) is crucial part of measuring assurance status of systems, but most SA

techniques have been focused mostly on how to define and detect vulnerability or

vulnerable configurations with the periodic system check. Security administrator

performs security assessment periodically because it is obligated to comply with the

security standards and it helps discover inappropriate configurations in the system and the

potential issues that can be missed without deep inspection of the system. So, it might be

enough to realize current system status but the drawback of periodic security

measurement is that configurations could be changed any time by users. Event-driven

security assessment is strongly demanded because of this reason. For example, suppose a

security administrator sets the security measurement task up for twenty-four hours and a

user changes one of system configurations an hour after the measurement was performed.

If the changed configuration meets the conditions of vulnerable configurations, then

attackers can still have twenty-three hours to use this security configuration breach for

5

their malicious purpose. By this reason, event-driven continuous monitoring should be

carried out.

Second, applying proper security standards corresponding to each system helps systems

keep safe. Many companies and organizations generate and provide OVAL-based

security assessment practices to the public. Many standards with various approaches help

understand a wide-range of security issues. However, it is not even easy for security

administrators to determine which standards should be applied in a target system

considering the characteristics of a system environment since computer configurations

could be different based on users’ preferences of operating systems and applications. And

each standard has different perspectives to interpret configurations so it is not

manageable without having comprehensive understanding on each standard. So, it is

fairly a time consuming task to know which standard should be applied properly in a

target computer and how to apply it. Also, it is necessary to have data not only

consolidating security information for the system, but also capturing characteristics of

different environments properly. Moreover, the structure of data should be expandable

since security risks in the system keep growing continuously.

Third, the environments of a system can vary based on the role and services that the

system provides. There exist many operating system dependent security assessment tools.

However, more intuitive but system-independent security assessment is required. By

using system-level implementation, tool is applicable to the various environments in a

seamless manner. This tool provides security assessment consistency for diverse

environments.

6

Last but not least, security assessment with the specific viewpoint of security

administrators is more effective since their interests on a particular aspect of

vulnerabilities in a system would help clearly recognize current risks and its affects to the

system. In other words, providing user-centric security assessment helps security

administrators monitor security gaps between security countermeasures and their point of

view on vulnerabilities.

1.3 OUTLINE OF THE THESIS

The thesis is organized as follows. Chapter 1 addresses motivation of this work and

problem statements including the overview of security assessment standard and the

importance of event-driven comprehensive security measurement system, followed by the

related work in Chapter 2. In Chapter 3, we also overview background technologies that

are leveraged to realize the proposed security assessment approach. Chapter 4 describes

an event-driven continuous monitoring framework and elaborates each component in our

framework. Furthermore, we show the architecture of system-independent event-driven

monitoring system. The implementation details including algorithms and evaluation of

our system are discussed in Chapter 5 and Chapter 6 concludes this thesis along with the

contributions and future works.

7

2. REALTED WORK

Risk assessment has been part of core security methods. Most risk assessments have

been performed with risk analysis and monitoring. While evaluating security disciplines,

applying undifferentiated security disciplines is not straightforward since each

environment has its own nature. Also, the security administrators who analyze

vulnerabilities existed in the system may want to see analysis results based on their

preferences. In this thesis, we focus on an event-driven system analysis approach to

identify risks and then show results in accordance with the preferences of the security

administrators. To achieve this, we first review relevant methods that we leverage in this

thesis including Security Information and Event Management (SIEM), Common

Information Model (CIM), and ontology. To accomplish event-driven risk assessment in

different environments, we introduce continuous monitoring system that can work under

various system settings. We then discuss the integrated security requirement framework

and risk assessment method to check security compliance.

Many companies have adopted Security Information and Event Management (SIEM) and

introduced real time tools to mainly identify systems’ weaknesses by investigating

system configurations based on security policies and compliance requirements. Previous

government reports show that proper review of vulnerability and SIEM had been done

early, but the correlation between continuous monitoring and SIEM has not been

achieved. Security assessment has been rather periodically performed so far [2].

Most organizations have to patch and configure their products for the security reason and

their products are maintained by the security postures at any given time to keep the

8

systems safe. Furthermore, organizations are obligated to be compliant with sets of

security requirements. To support such a critical obligation, Security Content Automation

Protocol (SCAP) was introduced and published by NIST [3]. To avoid any unnecessary

steps in security assessment, SCAP works with OVAL. By taking advantages of SCAP,

maintaining enterprise systems, inspecting system security configuration settings, and

examining signs of potential compromises in the systems have been extremely efficient

[4]. SCAP can collect vulnerability information from different vendors and integrate

information into definitions that contain checking methods so that security administrators

can examine security risks with a given set of compliance requirements. The current

version of SCAP performs measurement of system assurance and monitoring of security

setting [5]. The SCAP uses top-down approach for the measurement and OVAL is the

main step of the assessment process, which contains security contents about the way to

measure a specific machine’s state associated with system details. Based on this system

details, OVAL generates assessment results by expressing the state of each machine. To

achieve goal of sharing information, OVAL enforces structural standard but it cannot

provide flexible measurement because of this structural dependency.

CIM and Web-Based Enterprise Management (WBEM) architecture [29] are another

related work. There are many approaches that took advantage of CIM and WBEM to

achieve their security goal [25]. In these approaches, the CIM is mostly used to collecting

and gathering data from operating system configuration. Also, CIM is utilized to retrieve

data from a system and provide such data to check the current security status in the

system. Even though these approaches resulted in an effective set of security controls and

risk management process, it may increase the burdens of data management since data

9

storage can be quickly filled due to the infinite number of events incautiously caused by

end users. Such events might cause security breaches in the system so each reflected data

should be compared or matched to the overall security standard.

The ontology represents a set of relational concepts within domain and the relationships

among its concepts of domain can be represented with CIM. In other words, CIM defines

classes and relations can be represented by ontology [29]. There exist several research

approaches to make connection between system information and security features, using

both ontology and CIM at the same time [35]. However, making ontology and expanding

the data relevant to vulnerable information still need to be studied. . Especially, gathering

information by CIM and generating ontology based on the gathered information are

costly. Suppose we deal with the cloud-based environments and there exist many

different configurations in the virtual machine (VM) depending on users’ preferences.

Under such environments, ontology has to cover all configuration changes in each VM

but it will be a time-consuming task. Therefore, it is necessary to develop systematic

procedures for leveraging CIM and ontology to represent vulnerabilities in a more

effective manner,

Government agencies and organizations started to focus on developing continuous

monitoring systems. As a result, the Federal Network Security (FNS) Branch of

Department of Homeland Security launched the Continuous Asset Evaluation, Situational

Awareness, and Risk Scoring (CAESARS) [8]. The objective of their project is to build a

concrete vendor-neutral architecture and incorporate the main elements of the

Department of State (DOS).

10

Figure 1: Conceptual Description of the CAESARS System

CAESARS system has integrated security postures with determining the gaps between

current state and security baseline and ensuring that the every system and application

does not contain tested potential security problematic configurations. For ensuring that

every system meets security policies and compliance requirements, CAESARS system

provides four subsystems as shown in Figure 1: sensor subsystem, database/repository

subsystem, analysis/risk scoring subsystem, and presentation and reporting subsystem.

11

3. BACKGROUND TECHNOLOGY

3.1 COMMON INFORMATION MODEL

Distributed Management Task Force (DMTF) published the CIM standard to

exchange management information about managed elements that is the structure of the

information contained among multiple parties. By using CIM, software, which manages

information, does not need to be written again for converting operations or information

since CIM attempts to unify and extend the existing instrumentation and management

standards using Object-Oriented Constructs and Design (OOD) [26]. CIM model

leverages OOD-based techniques to have richer representation of management data. The

architecture of CIM is convertible to Unified Modeling Language (UML) which can be

represented between CIM classes and CIM associations, either ways. So, the CIM can not

only describe classes and its relationship among classes of objects, but also enables to

have various relationships with other managed elements. The CIM is composed of two

parts: CIM infrastructure specification and CIM schema. The CIM infrastructure

specification provides managed elements and its relationships by allowing specialization

of common base elements to access specific features of the system. The system needs to

provide its information as an object through the CIM managed elements. The CIM

schema is a conceptual schema which enables the CIM client to communicate with

managed elements in a system. CIM schema covers most elements in the computer

product, such as computer systems, operating systems, networks, middleware, services

and storages. The strength of CIM schema is that it can be extended seamlessly with the

common functionality defined in CIM schema.

12

Users can specify, visualize and document software systems using UML from the Object

Management Group (OMG) [9]. The UML-based specification is converted to the

corresponding CIM MOF file and vice versa. The following example is a package for the

mapping between CIM MOF file and UML elements.

Figure 2: Mapping between CIM MOF file and UML elements

In Figure 2, the CIM_DeviceA has the UMLPackagePath qualifier, so its value gets

information under a target package path of a device as UML elements shows. For the

CIM_DeviceB class, the UMLPackagePath is not specified so the default

UMLPackagePath is applied and vice versa. This is a simple example that shows how

CIM schema is applied to MOF files. UML package whose package path under a target

package shall own the UML class which a CIM class is mapped with the inheritance.

This general mapping between CIM MOF and UML elements allows CIM to support any

computer environments.

Package default::Class CIM_DeviceB

+Propery pa

Package Device::Class CIM_deviceA

+Property pb

Package
CIMSchema::
Package CIM

Package
CIMSchema

Package
CIM::Package

default

Package
CIM::Package

Device

CIM.mof
#pragma include “Device.mof”

Device.mof
[UML
PackagePath(“CIM::Device”)]
Class CIM_DeviceA{
String pa;
}
Class CIM_DeviceB{
String pb;
}

13

3.1.1 WINDOWS MANAGEMENT INSTRUMENTATION

Windows Management Instrumentation (WMI) is a set of extensions to the

Windows Drive Model (WDM), which is the framework for device drivers that provide

system interfaces to provide information and notification based on CIM and WBEM.

WMI enables to managing windows-based personal computers both locally and remotely

by Desktop Management Interface (DMI), which is a standard framework that tracks and

manages components in desktop, laptop or server. By leveraging existing management

applications, WMI can also generate and provide comprehensive management as a

uniform and reference model by acquiring management data from various heterogeneous

sources in a common way.

Figure 3: WMI Architecture

WMI Core
(CIM Object Manager)

WMI
Repository

WMI COM API

WMI Scripting API

Scripts
C/C++
Client

SNMP WMI
provider

SNMP WMI
provider

CIMv2 WMI
provider

Windows (Win32)
Managed entity

CIM Inter-Op

System Management
(instrumentation objects)

.NET WMI provider

.NET managed
Application/entity

...

WMI consumers
(management
applications)

WMI infrastructure

WMI providers and
managed objects

14

The main components of WMI architecture stem from CIM components. Those

components are WMI provider, the CIM object manager (CIMOM) and CIM repository

as illustrated in Figure 3.

WMI providers monitor and communicate with physical and logical system components

made up with operating system services and utilities, hardware and applications. WMI

providers are an extension of WDM and send its data information into WMI repository

with the managed format described in MOF files. These providers mainly provide

information as a set of managed objects in response to the requests coming from CIMOM

received in a WMI consumer. The MOF files can be compiled by MOF compiler in WMI

and added into WMI repository for the managed data.

CIMOM manages the data transfer among WMI providers, the CIM repository, and

management applications. The procedure of transferring data is made in the following

steps: the WMI provider retrieves information from resources and CIM repository stores

information requested by WMI consumer layer. CIMOM creates indication subscription

in the CIM repository and contacts WMI provider to receive the requested information

from clients. The CIMOM sends the received information from the provider to the WMI

consumer. The data can be manipulated by WMI Query Language (WQL), which is

written in a SQL-like format. And WMI has a function to notify events coming from the

provider both locally and remotely. WMI event notification is capable of monitoring the

state of the systems across the network. There are two kinds of event notification:

synchronous and asynchronous event notifications. Synchronous event notification is

paused until the method call returns the collection of objects. In contrast, asynchronous

15

event notification allows continuous execution of WMI methods or provider methods

while returns the collection of objects.

CIM repository is the storage to store the registered information that providers and

applications provided with the managed format added in the repository by MOF files.

The data in CIM repository can be easily out-of date, therefore, CIMOM executes queries

to extract the changed data dynamically from the repository. This helps consumers

receive the recent event information that providers give.

3.1.2 IMPLEMENTATION OF CIM IN WMI

WMI is an infrastructure to support CIM model and Microsoft Windows-specific

extension of CIM. However, all schemas in the WMI repository are CIM-based schemas.

Only “cimv2” namespace, which obtains data from Microsoft Win32 APIs, is CIM

schema-based such as CIM core, system devices and application models. For example,

Windows 7 introduced Win32_PowerPlan WMI class. This class resides in the cimv2

WMI namespace so that any script or code can trigger this information to receive power

status of current machine from the client by executing WQL. When the CIMOM receives

the request for information, the CIMOM checks an appropriate provider if the provider

support dynamic data or notification of events of the requested information. If not,

CIMOM forwards the request to the appropriate provider to return the requested

information from resources. The return data format of WMI provider is described in

CIM. The result format is standardized so any environment can use this data format to

receive data and use it. There are many useful CIM classes--especially CIM_RecordLog

class that can log and filter out other logs by names. By using this class, a system can

16

derive notifications of event information from a provider. WMI already have running

Win32 classes to record log files for the event so that system can get event information

by using WQL. Using .NET framework, applications can be developed using data from

WMI classes. It means the system can assess management information in an enterprise

environment. If the provider does not exist in certain management information related to

CIM, the system can create a provider based on CIM class and receive information from

the created provider, which allows the system to access all WMI data.

3.2 ONTOLOGY

Knowledge sharing and reuse have many challenging issues [10]. The sharing and

reuse of data is currently achieved but still lacks understanding of data semantics between

entities. Sharing information in knowledge means the transfer from the sender to the

receiver that could not use the same format for data representation in most cases. In this

reason, extra care must be taken when the messages are transferred. The information is

transferred in the way of structured format that is understandable to both sender and

receiver. The message should be also transferred between sender and receiver who may

use different formats. It means each party needs to process the transferred information on

the knowledge base through the use of logical language. Moreover, the architecture of

relational database does not represent n : m relationship [27]. The additional table is

needed to transform n : m relationship into a 1 : n and a 1 : m relationships. This

necessary step needs to be solved without schema modification. The lack of standard

causes many unnecessary steps to share and reuse data between two sides. The effort to

generate standardized results in the new way of sharing knowledge, ontology. Ontology

can solve this problem by using formal and real-world semantics. Ontology provides

17

formal semantics, which are machine and human understandable data format. Ontology

attempts to detect every possible domain and support broad axioms for the expression of

knowledge and it is ideally formal vocabularies shared by a group that is interested in a

specific domain.

In the area of semantic web, ontology is used in various research fields such as

knowledge engineering, database design, and information retrieval and extraction. The

meaning of human understandable is that a word is in natural language and its

relationships are reasonable to the human. The example of human understandable

relationship is is-a relation, which denotes an association between super and sub

concepts. The relationship describes the fact that one super concept is more general than

another sub concept. The more general concepts are senior to the more specialized

concepts in an is-a hierarchy as shown in Figure 4.

Figure 4: is-a hierarchy example

The relationship between entities may make many different conclusions. For example,

both student and researcher can be a person. PhD student can be student and researcher,

18

but MCS student cannot. This conclusion can be drawn by both computer and human

since the formal nature of the relation can be explained respectively in this diagram. Real

world objects can be described in the concepts. For example, John is instance of PhD

student. The instance of relation means an actual concept derived by the PhD student.

And all super concepts have is-a relation so that John must be an instance of the concepts

such as PhD student, Student, Researcher, and Person. Ontology brings advantage of data

and relation representation with several features such as flexibility and interoperability.

3.2.1 SPARQL PROTOCOL AND RDF QUERY LANGUAGE

The Resource Description Framework (RDF) [11] is the first language developed

for the semantic web. RDF includes machine readable metadata to existing data on the

web. RDF Schema (RDFS) [12] extends RDF with some basic (frame-based) ontological

modeling primitives such as classes, properties and instances. Instance-of and subclass-of

relationships are also introduced through RDFS. RDF has the object-attribute-value

triple. It is commonly written as (O, A, V) [13][14]. Figure 5 is an example of RDF graph

with this structure.

Figure 5: RDF graph example

In Figure 5, an oval describes the resource and arrows that connect two resources show

the predicate of the resource. The basic building block can be represented as follows:

#john1 #johnsmith

“John”

“Smith”

hasNameOf

hasLastNameOf

hasFirstNameOf

19

Figure 6: RDF triples example

RDF graph in Figure 5 is converted to RDF triples in Figure 6 with a predicate of each

connection of resources. These simple three statements become very complicated in

XML serialization. This is one of benefits that we can get from ontology. The XML

schema describes how XML document ought to be ordered and combined in the

predefined structure. In contrast, RDF schema does not describe the syntax of the RDF

description, but the interpretation of each statement. This means RDFS defines classes

and sub-classes for the class hierarchy, properties and its hierarchy. RDFS has the benefit

of increasing formality of their subject and standard entailment of relationship among

data.

The official W3C document describes SPARQL as follows [13]: “Most forms of SPARQL

queries contain a set of triple patterns called a basic graph pattern. Triple patterns are

like RDF triples except that each of the subject, predicate and object may be variable. A

basic graph pattern matches a sub-graph of the RDF data when RDF terms from that

sub-graph may be substituted for the variables.” SPAQL is generally graph matching

execution [14]. For example, the query in Figure 7 returns the all football club that is

based in Barcelona.

(hasNameOf, #john1, #johnsmith)
(hasFirstNameOf, #johnsmith, “John”)
(hasLastNameOf, #johnsmith, “Smith”)

20

Figure 7: SPARQL Query Example

In Figure 7, the query is written in the SPARQL query language and this example shows

that it gets data set, which is strictly associated with two edges. One edge is ‘hasTypeOf’

which connects between club and FootballClub objects, and other is labeled as

‘hasRegionOf’, which is limited to the data set in Barcelona entity. The entities which

match these conditions are allocated to the variable name of ‘?Club’ and the manager, is

returned if an entity meets the both edges. A simple SPARQL query can be converted

into an SQL statement.

3.3 OPEN VULNERABILTY AND ASSESSMENT LANGUAGE

FDCC and USGCB published the checklist for checking vulnerabilities in the

configuration of computer environments [15]. Security checklist is stored in National

Vulnerability Database (NVD), which includes many kinds of security configuration

including operating systems, applications and so on. The XML-based format for the

checklists is specified in the Open Vulnerability and Assessment Language (OVAL) that

is fundamental part to check the presence of vulnerabilities and configuration issues in a

target system. This means that OVAL-based checklist called OVAL definition describes

the technical details about security vulnerabilities and configurations in XML-based

?Club

?Manager

hasRegionOf
hasManagerOf

hasTypeOf

Select ?manager ?club
Where{
?manager hasManagerOf ?club.
?club hasTypeOf FootballClub.
?club hasRegionOf Barcelona.
}

FootballClub

Barcelona

21

format. Security baseline in SCAP uses OVAL for checking baseline settings. OVAL is

used to determine which vulnerabilities exist on a system and generate reports, and then

system administrator deploys software patches or gets security countermeasures from

assessment tools and takes proper actions based on organizational discipline or policies.

3.3.1 USAGE OF OVAL DEFINITION

OVAL is a standard to standardize the assessment information across the various

security tools and services. The information security community has developed OVAL

definitions by collaborating to create OVAL language and maintaining definitions in the

OVAL repository from many participants and stakeholders. Industry, academy and

government organizations try to share their vulnerability information through OVAL

definitions. This effort helps share security issues and protects systems in a professional

manner. OVAL works in three main steps: collecting characteristics from systems for

testing, testing the presence of a machine state, and evaluating systems. For the collection

of characteristics from a target system, it collects information of target system, system

configurations, and other security relevant configurations in a standard XML format. By

gathered system characteristics, assessment tool could receive vulnerability information

associated with system. Any mismatched configurations will be eliminated or further

examined. The standardized OVAL that encodes the vulnerability details of a specific

machine state can check the system whether the system has any vulnerabilities,

configuration setting meets the security policy, and patch is performed in the wide range

of computer systems. There are many operating system based schemas to test a specific

OS platform and its applications. Core schema and individual component schema tests

basic and detailed system states of operating system platforms or applications,

22

respectively. The result schema defines a standard XML format for generating an

evaluation report. The report contains current configuration information of a system

against OVAL definitions. The result schema allows administrators to compare the

system with standards for verifying the existence of vulnerabilities or configurations

which do not match security policies on the system

3.3.2 OVAL STRUCTURE AND ITS USE

The OVAL definition schema consists of two part of schema: core schema and a

number of component schemas.

The core schema provides a structure of an OVAL definition to express metadata that is

independent of an OVAL definition, which includes CVE identifier, platform under

affected attribute, and description of the definition. Component schema is different from

core schema and it defines the vulnerability, configuration and security issues within an

OS platform and its applications.

Figure 8: OVAL Definition Core Structure

DefinitionDefinition

MetadataMetadata

TitleTitle AffectedAffected referencereference DescriptionDescription

platformplatform productproduct

CriterionCriterion

CriteriaCriteria

Extended
Definition

Extended
Definition DefinitionDefinition

23

In Figure 8, core schema has many components of the definition. The structure of the

OVAL definition contains two main categories: metadata and criteria. Metadata includes

information of each definition and refers to CVE. The description in metadata shows how

this vulnerability could happen. The criteria in Figure 8 show how to draw this

vulnerability by specifying which security check should be performed on the system. It

has two categories: extend_definition mainly deals with the configuration of application,

hardware, or operating system and criterion is to scan configurations by checking

whether it meets any specific conditions.

To provide vulnerable information to different environments, we need to implement a

flexible database which handles various structures for the target environments. Classical

relational database or XML has limitations to provide such flexibility. To represent RDF

triple mentioned in Figure 6, the classical relational database needs an additional table to

link values and join operation to return data to the requester. The XML also needs many

lines to represent these data and relationships in the system. With the help of ontology,

this problem could be handled by using RDF triple. Taking advantage of this flexibility,

we can share various vulnerability data with different environments.

24

Figure 9, OVAL definition in XML

In Figure 9, core schema is described. For example, the title of this schema is OWA For

Exchange Server Data Validation XSS Vulnerability. And its affected family is Microsoft

Windows operating system and the reference shows the CVE identifier.

The component schema contains a specific path (object) and values (state) that identify

the system configuration, which matches the vulnerability. Definition is composed of

many different vulnerable configurations. Each criterion has its own test that contains an

object and a state with a specific path and certain value, respectively. The matching of

two paths and values declares a security issue but it may not a real vulnerability at this

point. Extended definition is to check the installed software. The combination of the

criterion and extended definition can finally declare a specific vulnerability.

25

Figure 10: Criteria components schema of OVAL definition

In Figure 10, the structure of the component schema is illustrated. By checking object and

state in a test, system administrators verify whether the test hits the vulnerable

configuration on the system. In Figure 11, a specific example in this test has one object

that shows the file ‘owaauth.dll’ and its state ‘6.5.7653.38’ with the path.

Figure 11: Criterion of test in OVAL XML

CriterionCriterion

CriteriaCriteria

Extended
Definition

Extended
Definition

TestTest

DefinitionDefinition

ObjectObject StateState

VariableVariableObjectObject

26

OVAL criteria have two operators: ‘and’ and ‘or’. The combination of ‘and’ and ‘or’

helps define a vulnerability in the OVAL definition. Criterion variable refers to another

object, which shares the same path.

To use OVAL in many places, we design the basic structure of OVAL ontology to

include attributes described in the OVAL definition, test, object and state related to the

environments.

Figure 12: OVAL Ontology: Basic Structure

In Figure 12, we show the basic structure of the OVAL definition applied in ontology.

Definition ID is an unique identifier and Test ID is the attribute which could be

duplicated in different Definition IDs. So, connections between Definition ID and Test

ID can be reusable in other relations. This basic structure is helpful not only

understanding structure of OVAL ontology, but also further expanding information in

different attributes. For example, the registry appears in only Microsoft Windows

platforms. As mentioned previously, object has the path of the vulnerability so that a

hasIDof
hasIDof

Definition ID

Version

Class

family

Platform

product

reference
Description

Test ID

Object ID

State ID

Variable IDhasIDof

hasIDof

hasIDof

hasIDof

hasIDof

hasTestIDof

hasTestIDof

hasTestIDof

hasIDof

Version xmlns

hasObjectIDof hasObjectIDof

Version

xmlns

hasStateIDof

hasStateIDof

version
comment

hasVariableIDof
hasVariableIDof

27

registry path information can be added to the Object ID. In the same way, the value of

registry is added in the State ID. This expansion allows ontology to support diverse

structures of OVAL definition and have the tool return its data for taking care of many

different systems by using relationships in RDF triple. Also, ontology enables users to

add any relationship into ontology without schema modification. In addition to such

advantages, we attempt to improve our structure for enhancing the performance in

returning information.

Figure 13: OVAL Criteria Operators

Every definition has its own criteria. Figure 13 shows a decision path based on logical

operators to facilitate various criteria. For example, the definition indicates that it would

be vulnerability if either criteria 1 and 2 or criteria 3 and 4 meet conditions mentioned in

tests. In OVAL XML file, the published assessment tool should check all criteria until a

criteria match conditions in the definition. Also, it is constructed as a hierarchical

structure, which facilitates top-down approach. For instance, it would first check the

version of operating system and product in metadata of a definition. Then it starts

OR

Definition

And And

Criterion1 Criterion2

test

test

test

test

Criterion3 Criterion4

test

test

test

test

28

checking criteria until it finds matched combination of criteria. To overcome the

performance issue of such a top-down but exhaustive approach, we introduce the notion

of clustered area for checking the system effectively. The subsequent section will discuss

our enhancement.

29

4. EVENT-DRIVEN CONTINUOUS MONITORING FRAMEWORK

The continuous monitoring has been recognized as a critical strategy and it could be

realized by sharing incident information among government agencies and various

organizations. As mentioned in previous chapters, this strategy has mainly focused on the

way for continuously detecting and publishing new vulnerabilities or configuration

problems. Figure 14 briefly describes the risk management framework proposed by NIST

[16][17]. Based on this framework, this thesis concentrates on tasks in the phase 6:

continuous monitoring. The life cycle of the framework determines whether the system

meets the security requirements periodically but does not consider any changes with

respect to the user’s behavior such as installing applications or patching updates. Even

though security assessment periodically generates and maintains vulnerability

information in the security repository, ensuring system assurance and protecting target

systems would be in vain without considering various vulnerability information and

continuously monitoring configuration changes. Therefore, the system should perform

event-driven comprehensive security assessment and environment independent

monitoring.

Figure 14: Risk Management Framework

PHASE 1.
CATEGORIZE

Information System

PHASE 2.
SELECT

Security Controls

PHASE 3.
IMPLEMENT

Security Controls

PHASE 4.
ACCESS

Security Controls

PHASE 5.
AUTHORIZE

Information System

PHASE 6.
MONITOR

Security Controls

30

Normally, the process of security monitoring deals with detection of risks in the system

and active management of the detected risks. By adopting this method, security risks

must be checked whenever suspicious events occur. In this thesis, we extend such

conventional processes to include event-driven monitoring that facilitates usage reduction

of system resources and event-related configuration check.

Figure 15: Event-driven continuous monitoring framework

4.1 GENERAL OVERVIEW

To provide comprehensive vulnerability information and environment independent

event-driven continuous monitoring in the target system, we propose the event-driven

continuous monitoring framework. The proposed framework has three main domains as

is illustrated in Figure 15: vulnerability server, OVAL ontology server, and agent. Each

 OVAL ONTOLOGY
SERVER

Communicator
Vulnerability
Information

Provider

OVAL
Ontology

OVAL xml
file

Net
work

Communicator

Founded
Vulnerability

OVAL
Definition

interpreter

Result Analysis

 VULNERABILITY
SERVER

Ontology
Generator

OVAL
Repository

OVAL DB
Generator

National
Vulnerability

Database (NVD)

Target

WorkstationWorkstation

Report

Continuous
Monitoring

Operating system

Mobile

Cloud

AGENT

AGENT

AGENT

Windows, Linux, iOS

Android, iOS

EC2, skyDrive

Common Information
Model

 AGENT
(Gathering and scanning system information)

Workstation

31

domain is designed to perform specific tasks as follows: ontology server is to generate

vulnerability information from OVAL fed by National Vulnerability Database (NVD)

and provide security data to the agent through the network. To provide information that

can support a target system in different environments, we also introduce high-level

reasoning with vulnerability information to extract data based on environmental

characteristics given by agents. Agents play an important role for gathering and scanning

system information based on ontology. By using CIM discussed in the previous chapter,

agents can be deployed in not only different operating systems, but also various devices

such as mobile and cloud platforms. Agents can get notification of configuration changes

by using CIM event classes. The role of vulnerability server is to search machines with

the deployed agent in the network, receive detected vulnerabilities from agents, and

verify if those vulnerabilities really exist in a target system. For analyzing and verifying

the target system, we also use an OVAL interpreter to generate a report. OVAL

interpreter validates the target system and generates the results for the security

administrators.

4.2 EVENT-DRIVEN CONTINUOUS MONITORING

Minimizing computation costs and increasing assessment reliability of a target

system are primary roles of the agent. We present an agent model that can detect security

vulnerabilities in the system. Usually, vulnerability is considered as a logical combination

of properties that can be presented in the target system. Properties in the system can vary

depending on the nature of environments and security problems are associated with

vulnerabilities in the system. One simple example of vulnerability is a specific running

process (e.g. httpd), a specific open port (e.g. 80), and a specific version of the system

32

(e.g. 2.6.10.rc). In other words, vulnerability may require several properties. To monitor

events from a system, CIM event log which is one of CIM model for operating system

information is used. WMI which is Microsoft extension of CIM is to support the CIM

model for performing retrieval and event notification of the system. With such benefits of

the system, data is accessed by COM/DCOM API in providers. There are many built-in

providers in WMI. Among many providers, event providers handle event-driven

continuous monitoring, which captures events and notifies the consumer. Windows NT

event log provider provides access to data and event notification from the Windows NT

event log [18]. When Windows NT is booted, it starts the Service Control Managers

(SCMs). The win32 program event logging service is started up automatically when SCM

started. Once an event is occurred in a device driver, or an application, it sends the report

to the event logging service. The service stores the information that can be categorized as

one of three event log files located in the local system disk: Application Event Log file,

Security Event Log file, and System Event Log file.

Figure 16: Event log service in Win32 program

Event Viewer
EVETVWR.EXE

Event Logging API
ADVAPI32.DLL

Event Logging
Service

EVENTLOG.EXE

Message
Files

Registry

Security Event
Log File

Application
Event Log File

System Event
Log File

33

WMI consumer in figure 3 can also retrieve a particular event from event repository for

the further analysis. Figure 16 shows the structure of Win32 event logging service and

how event logging service displays events from each log file. There exist two ways to

access the event log files: local and remote. By using scripts or execution of a program

that a system provides, event log file can be locally accessible. Also, the event logging

service can be accessed by processes running on the local system. With remote procedure

calls (RPCs), a remote computer can also access the event logs on the local system. All

requests such as write, read, clear and backup operations on remote event logs are

forwarded to the service using RPC. Both ways are transparent to the calling process. If

WMI consumer requests and receives every event from log files checks security breaches

related to the single event, automated security assessment requires heavy interactions

with a running operating system to get system information and causes performance

overhead. So, it is necessary to only extract data from related certain changes of a path

described in security standards. This means that the system monitors and gathers data

specified in the OVAL definition, instead of getting every event from the system. In this

thesis, we narrow down the scope of this task to focus on Microsoft Windows operating

systems. Every registry event is stored into Windows NT registry. The EventLog registry

key is composed of event log sub-keys and event source keys. Event log sub-key stores

the event log information for a specific registry event. Sub-key is mapped to the event

source key. When an event source key is added to the registry, the name of the event

source is automatically added to the source value of the corresponding event log sub-key

by the event logging service. Event logging service has functions to log the registry and

file related events such as creating, modifying, and deleting the value of registry or file.

34

By using this event log service, changing information of certain file or registry can be

monitored and used for the comparison between current and standard values.

CIM has an abstraction of event logger class for the system event log. In CIM, a CIM

indication represents the occurrence of an event that changes the state of the environment

of the component of the environment. For example, indicating the one service in the

operating system is started or stopped or a certain application is installed so configuration

is changed accordingly. An instance of the CIM_Indciation class represents the concrete

indication of the occurrence of an event. Modeling CIM life cycle events of

InstIndication includes instance creation, deletion, modification, method invocation and

read access. From the security perspective, a system needs to distinguish interesting

events from all collected events. This helps save resource usages and improves

performance of security assessment by narrowing down the assessment scope of current

system. For example, WMI provides WMI Registry Event Classes that can obtain registry

information to interact with vulnerability information provider. Registry Event Classes is

derived from _SystemClass class. The Registry event classes have four classes:

RegistryEvent, RegistryKeyChangeEvent, RegistryTreeChangeEvent, and

RegistryValueChangeEvent. RegistryEvent is an abstraction class for deriving other

registry event classes. RegistryValueChangeEvent focuses on the changed value of a

specific key since it can facilitate the specific path and value specified in the OVAL-

based security standard. Other classes such as RegistryKeyChangeEvent and

RegistryTreeChangeEvent monitor subkeys so additional process steps are needed. The

indication of an event is made by Windows Query Language (WQL), which is the subset

of ANSI Structured Query Language (SQL) in Microsoft Windows. The syntax of WQL

35

is similar to SQL. WQL makes a system to get specific event information by narrowing

the scope of an event. File changes in Microsoft Windows are also detected by using

WMI. By comparing between changes and security standards, a system can determine

whether changes on system configuration can affect the level of system security.

Figure 17: Agent Diagram

The agent architecture is depicted in Figure 17. To achieve continuous monitoring in

various environments, the agent needs to monitor any events related to security risks and

generate results when changes violate standard configuration. The agent is generic based

on CIM object so that it can be used not only any operating systems, but also any other

environments such as mobile and cloud as shown in Figure 17. The continuous

monitoring in an agent starts with collecting system properties that is basis to get basic

configuration and compliance information from standards. The agent sends such

computer characteristics to the server and receives security vulnerability information to

Operating system

Mobile

Cloud

AGENT

AGENT

AGENT

Windows, Linux, iOS

Android, iOS

EC2, skyDrive

Common Information Model

 AGENT
(Gathering and scanning system information)

Agent

Scanner

Vulnerability Information
Receiver

A
gen

t C
o

m
m

u
n

icato
r

Vulnerability
Information

Information Collector

Vulnerability Information
Parser

Vulnerability
Checker

Continuous
Monitor

Computer Properties Collector

36

check security risks and monitor future changes with respect to the vulnerability

described in the security standard. Based on collected computer information, ontology

server extracts and provides configurations, compliances, and vulnerability information

to the agent. The agent parses such information from ontology server and checks initial

system state of a target system. This initial check of the target system leads the system to

retrieve current vulnerabilities against standards and notify which vulnerabilities are

found. After the initial check, the agent continuously monitors events associated with the

vulnerability information received from ontology server. For configuration checking, the

agent has different comparison methods because each operating system has its own

structure. For example, Microsoft Windows operating system has registry as hierarchical

database manager. Registry contains information how and what program is installed in

while other operating systems store individual files in the file system. Scanner scans and

checks each value based on security data received from OVAL ontology server.

Continuous monitoring thread captures events from providers continuously and

vulnerability checker thread compares captured events and standards for each event.

The agent detects vulnerability based on the following 4-tuples: (R, F, W, M), where R is

the set of registry vulnerability; F is the set of file vulnerability; W is the set of WQL

vulnerability; and M is the set of Metabase vulnerability of IIS configurations.

Consider R, F, M, and W has each subset as follows:

 (1)

 (2)

37

 (3)

 (4)

Each component is represented as the composition of path and value of each

configuration:

)) (1)-1

)) (2) -1

)) (3) -1

))) (4)-1

WMI query checks WMI information with two elements: value and existence. Existence

is to check the existence status of certain query described in . From (1), (2), (3), and

(4) definitions, the notion of vulnerability is formally defined as follows:

 { ()}

 (5)

The following example shows how this definition can be realized with real world cases:

Consider OVAL definition has a vulnerability description

{oval:org.mitre.oval:def:996}which deals with file and print sharing service in Microsoft

Windows operating systems. For instance, Microsoft Windows 95, Windows 98, and

Windows ME do not properly check the password for a file share, which allows remote

attackers to bypass access controls by sending a 1-byte password that matches the first

38

character of the real password. This vulnerability is defined with the following

composition of configuration properties: Vulnerability = { }. This definition

includes two registries and one file value. The first registry checks a key path of

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion which value is

Windows 98. The other registry checks the existence of the following path

SYSTEM\CurrentControlSet\Service\UitlMan{5c773859-bb96-48fa-875b-

6a58aae072f4}. In addition, the value of the following file %windir%\System\vserver.vxd

is checked to determine whether its value is less than 4.10.2001.0. Once these R1, R2,

and F meet the each condition, the system declares a vulnerability entitled

oval:org.mitre.oval:def:966 is detected. Information collector waits for an event which is

triggered by any environmental changes. However, by processing only related

information, our approach enhances performance by reducing the number of

comparisons.

4.3 VULNERABILITY INFORMATION MANAGEMENT

To provide security standards to the agent in a seamless manner, we introduce

ontology as a security information provider. The system has to handle various existing

documents containing security problems published by different organizations. Even

though each standard document has a structured format, its structures and attributes vary.

Therefore, making a generic structure regarding to the security standards is needed. To

address this issue, we use ontology because it provides not only data and its relationships,

but also foundation of high-level reasoning. Particularly, a formal logic based on well-

defined data and knowledge bases in ontology helps users deduce the implicit and

inherent knowledge. In our system, ontology can extract and provide information about

39

operating system vulnerability, application security issues, and security metrics as

mentioned in OVAL. Based on preloaded data from ontology, agent can monitor and

generate reports of current system status associated with vulnerabilities based on OVAL.

To reduce errors to generate ontology from OVAL XML, the data structure is needed to

verify each vulnerability definition since OVAL definition has different structures in

criteria part.

The ontology approach consists of two parts: the first part is vulnerabilities based on the

operating systems and its dependencies of operating systems and the second part is to get

vulnerability with various structures. The second part of ontology approach needs two

inputs: security event and its operating system.

The ontology is coded in OWL (Web Ontology Language [20]) and the Jena API which

supports various types of OWL. The base case for algebra is a set of triple patterns which

is called basic graph patterns (BGP). The example of BGP is as follows:

{(?X, name, ?name), (?X, email, ?email)}

In this example, we can retrieve information of name and email of an entity X. A graph

pattern expression from basic BGP is based on dom(µ) which is the domain of µ and µ(P)

which is the set obtained from a basic graph pattern P. The example of BGP is as follows:

µ = {?X → R1, ?name → john, ?email → j@ed.ex}

P = {(?X, name, ?name), (?X, email, ?email)}

µ(P) = {(R1, name, john), (R1, email, j@ed.ed)}

mailto:j@ed.ex
mailto:j@ed.ed)

40

The mapping µ1, and µ2 are compatible if and only if they agree in their shared

variables: µ1(?X) = µ2(?X) for every ?X dom(µ1) dom (µ2).

µ1 = {?X → R1, ?name → John}

µ2 = {?X → R1, ?email → j@ed.ed}

µ1 µ2 = {?X → R1, ?name → John, ?email → J@ed.ex}

The evaluation of the BGP P over a graph G is denoted as]] , which is the set of all

mappings µ such that dom(µ) is the set of variables in P and µ(P) is the subset of G. The

triple patterns and BGP are used for both system information extraction and detection of

vulnerability based on OVAL language.

4.3.1 OPERATING SYSTEM BASED SECURITY TEST

Figure 18 and 20 show OVAL definition and criterion which are connected to test

id. It also shows the extended definition that includes reference to the other definition in

OVAL language. Metadata in OVAL definition contains many attributes and one of

attributes is an affected attribute. An affected attribute has two sub attributes: platform

and product and the further information are described in [21]. Platform has the operating

system information that the definition can be applied to. By providing platform

information in xml, the identified operating system will be checked by each definition.

Product indicates that the definition is applicable when a specific application is installed

in a target system. Breaking the OVAL language into components, a schema enables

tools to reduce process overhead and execution time. However, the drawback of this

approach is that schema structure is difficult for a user to navigate since its structure

mailto:j@ed.ed
mailto:J@ed.ex

41

varies so it would have many different structures to be covered. Definition combines one

or more tests using logical operator AND or OR operator. It wraps metadata and criteria

to understand what and how processes will be taken for checking vulnerability on the

target system. Definition has a unique id which starts with ‘oval:’ followed by three letter

code ‘def’, and ending with integer. Each id is associated with criteria that outline what

will be tested. The criteria consist of one or more tests with logical AND or OR operator.

Again, the process overhead and execution in continuous monitoring are important

factors to achieve in our framework. In case that OVAL language continuously performs

checking and validating tests and reference definitions, the system resources will be

easily exhausted and execution time would be dramatically increased. Thus, our approach

uses only environment related data via ontology. The basic idea is to enumerate all

configurations including their values and potential vulnerable settings on a target system.

In Microsoft Windows operating systems, there are four types of vulnerability: File,

registry, WQL, and Metabase. To get vulnerability information based on type, we provide

a formal definition used in SPARQL for the extraction of the data from basic definition:

[[{())))}]]

 { {[)]] [)]] }|) (6)

In the equation 6, the set) obtains vulnerability information based on operating

system in a target system, while the set) handles null value which causes incorrect

set of values. The set) categorizes the type of vulnerability returned from the test.

This method shows vulnerability information is first extracted and then it is categorized

42

by type based on the target system. The operator OPT is an extension of mappings in

with compatible mappings in and FILTER returns the value only if it satisfies the

defined in dom().

4.3.2 DETECTION OF VULNERABILITIY

Guided by the SPARQL protocol, RDF query language and BGP in ontology

framework, we harness the expressiveness of ontology to classify OVAL definition

information from the following dimensions: 1) metadata including detailed information

of vulnerability definition; 2) criteria containing regulatory checking method; and 3)

domain-specific taxonomies of related test cases based on OVAL. Using object-oriented

ontology into an interconnected definition, it can be easily expanded to address any

domains.

Figure 18: OVAL structure

In Figure 18, OVAL structure is described. The structure of OVAL varies based on

operating system because each operating system has its own system. The part of metadata

shows information related to definition like operating system product, which causes

43

potential security issues. And criterion in a criteria part includes vulnerability path and

value that will be used for checking each configuration. For example, when an event

including installing application or updating patch occurs, agent tries to discover

corresponding objects and states from standard. These objects and states compose one

and more test ids so agent sends its test id to server for identifying additional information

related to a single vulnerability definition. When server receives information from the

agent, it starts to figure out additional information. Ontology for OVAL was derived from

OVAL structure. However, OVAL structures vary so ontology is the best way to address

the connection of anomalies among different operating systems.

Figure 19: Metadata structure in ontology

Figure 19 shows how metadata structure for a definition is constructed based on OVAL.

Each definition has a unique ID and the definition ID is straightly linked to attributes in

metadata for providing accurate information. The direct link from the definition ID to its

attributes can reduce unnecessary steps to reach the attributes that should be extracted.

For example, the system will use CVE ID associated with detected vulnerability

44

definition to calculate Common Vulnerability Scoring System (CVSS) scores. To

calculate risk scores based on event, ontology provides additional test id which relates to

vulnerability from detected events.

Figure 20: Criteria structure in ontology

As illustrated in Figure 20, the definition ID has at least one test id and one extended

definition. Extend definition refers to another definition for verifying the configuration of

the target computer such as application, operating system and hardware. Referenced

definition has its own metadata and test id for the information. Definition can include

more than one test id. As shown in Figure 13, the vulnerability can be detected by

matching conditions of criteria. So, it is unnecessary to check all test ids. Instead, we

introduce the notion of clustered test ids to overcome exhaustive check with the

conditions in all test ids,

45

Figure 21: Clustered test ids

Clustered test id is constructed based on the type of operator. As shown in Figure 21, it

implies that Test Ids 1 and 2 are clustered with ‘AND’ operator , while clustered areas 1

and 2 are associated with ‘OR’ operator.

4.4 SECURITY ASSESSMENT METHODOLOGY

As mentioned earlier, NVD [22] provides not only standardized information of

most software products available today, but also risk level of each product by score

associated with CVE included in OVAL. The score is from CVSS [23] which is the tool

that enables security administrator to quantify the severity and risk of individual product.

However, CVSS could not be used directly to measure vulnerability in a particular

product because the design of CVSS only aims at an individual vulnerability. Due to this

reason, it is sometimes ignored that one product installed in a target system could cause

multiple vulnerabilities in the system. Moreover, most risk assessment approaches based

on CVSS do not reflect the concerns from security administrator who performs and

demands such security assessment tasks. The risk level can vary based on different

viewpoints on the assessment results. For example, if a security administrator is more

concerned with the impact on the system, the assessment results should give more weight

Definition ID

Test ID 1

hasTestIDOf
hasIdOf

Clustered area 1

Test ID

hasTestIDOf

hasIdOf

Clustered area 2

Test ID 2

hasTestIDOf

Test ID

hasTestIDOf
hasIdOf

hasIdOf

46

on the impact of a particular vulnerability. To achieve this goal, we use CPE, CVE and

CVSS to gather risk information assess the security posture of the software with the given

weight provided by security administrators. In the subsequent chapters, we present our

approach to obtain vulnerability measured by OVAL and store vulnerability information

into our repository. Then, we analyze the collected information using CPE, CVE and

CVSS based on exploitability and impact aspects.

4.4.1 MEASUREMENT OF SECURITY RISK

Rigorous and continuing risk assessment substantially helps protect systems from

risks and threats. If we use CVSS scoring system to measure risks in the system, we have

to deal with many CVSS scores since one product may have multiple vulnerabilities and

the vulnerability has many CVSS score based on status of product. It is necessary to

consider all vulnerabilities for calculating a risk score based on CVSS scores. Moreover,

the importance of computer is varied depending on the purpose of each system so that

security administrators may need to perform security assessment along with their own

security concern.

The CVSS base score metrics contain six vectors: Access Vector (AV), Access

Complexity (AC), Authentication (AU), Confidentiality Impact (CI), Integrity Impact

(II), and Availability Impact (AI). Three factors, AV, AC, and AU show current state of

exploit techniques or code availability. It measures availability of exploit codes that could

increase the attack vector when it is available. For example, suppose web browser has a

set of ‘network’ in AV, ‘none’ in AU, and ‘low’ in AC. It describes that vulnerability

exists in a web browser if network is accessible, no authentication is required, and this

47

sever is easy to access. The impact of the system indicates how much it could be

compromised by the identified vulnerability.

When OVAL generates the results in XML format, Common Platform Enumeration

(CPE) is included for defining and explaining the conformance of IT products [34]. CPE

has three categories: operating system, application, and hardware. In our approach, we

check the system including running applications, operating system, and hardware with

OVAL and categorize the detected vulnerability scores by CPE.

As we mentioned above, we categorize CVE based on CPE. Suppose a software product

is p in CPE and the number of vulnerability is n associated with the product p which is

denoted as follows:

 ∑

All CVEs in a product p is T which is represented as follows:

We first separate the CVSS scores into two groups. The one of groups is categorized by

exploitability as follows:

In T ∋ EXi and T ∋ EXj

, EXi = {AVi, ACi, AUi, IIi, CIi, AIi} and EXj = {AVj, ACj, AUj, IIj, CIj, AIj}

 EXi ≈ EXj where AVi = AVj, ACi = ACj, and AUi = AUj

48

This means that a group is categorized only if the scores of AV, AC, and AU are identical

while, II, CI, and AI do not need to be same. The exploitability-based risk score is

represented as follows:

 ∑)

The set of impact IMk corresponding to the is , the impact-based risk score is

formulated as follows:

 ∑)

In addition, we calculate the vulnerability of IT product based on weights from the

security administrators. Each weight shows the importance of concern on each vector: a,

 β and γ denotes the importance of operating system (o), importance of hardware (h)

and the importance of application (a), respectively. Also, we introduce two additional

inputs from security administrators to express their concerns between exploitability and

impact factors: ex represents the exploitability weight and im shows the impact weight.

By using these weights and vulnerability scores grouped by CPE, we can compute the

overall vulnerability scores.

Exploitability-based scoring method is represented as follows:

) ()

 {∑ ((

∑

))

∑ ((

∑

))

}

49

The assessment categorized by impact is formulated as follows:

) ()

 {∑ ((

∑

))

∑ ((

∑

))

}

If the vulnerability is categorized by exploitability, the same exploitability will be added

to the group without considering impact values.

As shown in the formula above, we define the risk level based on CPE and CVSS by the

given weights from security administrator. Given information in the server, we first

analyze the installed IT products by CPE and identify possible combination of

exploitability (AV, AC, AU) and impact (II, CI, AI) values. These combinations can be

basic characteristics of the vulnerability and it reflects IT product characteristics as well.

The combination of exploitability and impact can be 27 possible cases, respectively. So,

there exist 54 cases as security metrics that we can use to evaluate. For each case, we can

also rank vulnerability among others based on security administrator’s point of view.

50

5. IMPLEMENTATION AND EVALUATION

In order to realize the proposed approaches in Chapter 4, we implement the automatic

system to measure security vulnerability in a target system and generate risk analysis

results. In our implementation, we focus on the Microsoft Windows operating systems

As mentioned in Figure 14, the architecture consists of three components: OVAL

ontology server, vulnerability server, and agent. OVAL ontology server is the server

providing vulnerability information to the agent in conjunction with the target computer’s

characteristics and it also returns relevant vulnerabilities. Vulnerability server verifies

certain vulnerability and invokes risk assessment in a target system. The role of agent is

to provide system characteristics and monitor potential fault configurations that can be

exploited by the attacker. In subsequent chapters, we will discuss how we implemented

each component and evaluation results.

5.1 IMPLEMENTATION DETAILS

Our framework is realized as an event-based monitoring system. Figure 22 shows a

high level architecture of our system with three components. The left part of architecture

is ontology server that can support information to the agent which runs in various

environments. The agent exists in the middle to provide continuous monitoring

vulnerable events that may cause vulnerability in the system. And the rightmost

component in the architecture is the vulnerability server, which is used by security

administrator to figure out the level of risk for a target system.

51

Figure 22: Event-driven Continuous Monitoring Architecture

In this chapter, we first discuss implementation details of each component in the event-

driven continuous monitoring framework. Then, we articulate the features of our security

assessment.

5.1.1 AGENT

Agent modules are implemented in Java and j-Interop library which enable

systems to interoperate with COM and DCOM components. The agent delivers computer

characteristic of the installed machine, receives the server information from vulnerability

server, finds matched vulnerability on the current configuration and monitors events

relating to the ones specified in the standards. The agent has functionalities to gather

system characteristics and send characteristics to vulnerability server. Once vulnerability

server picks an agent in a target system, vulnerability server sends server information so

that the agent can collect vulnerable configurations from ontology server. The

vulnerability information receiver module passes the received security configuration

information to parse through configuration information with the regular expression.

52

Figure 23: Agent Diagram

The scanner component consisting of two sub modules: continuous monitor and

vulnerability checker in Figure 23. The vulnerability checker is to scan vulnerability

information from vulnerability information parser and figure out existing security

problems on the system. The continuous monitor is mainly focused on the event which

can trigger security issues on the system. The continuous monitor subscribes specific

paths described in security standards in OVAL ontology server for detecting vulnerable

events caused by end users. Once the vulnerable events are occurred and detected by the

continuous monitor, the Subhandler in scanner requests additional information to the

server with respect to the matched events. Vulnerability checker re-scans additional

information in the system and determines current changes related to security breaches on

the system. And detected vulnerabilities in the target system are sent to the vulnerability

server by Subhandler.

53

Figure 24: Continuous Monitor Diagram

Continuous monitor consists of three threads to check multiple events at the same time.

Security standards for Microsoft Windows operating systems mainly deal with four

configurations: registry, file, Metabase and WQL. Event handler monitors the changes

and reports vulnerable configurations. Of these event handlers, WQL is not event-driven

so it does not need to be monitored. Three event monitors keep watching the changes of

system configuration continuously. Each event handler receives the notification of an

event from WMI repository. One of handlers is the RegistryEventHandler which waits

for an event related to the registry path and value. This handler uses

RegistryTreeChangeEvent class in WMI class which observes a path and its sub-path in

the registry by using two conditions: hive and root_path of a specific path.

RegistryTreeChangeEvent can capture three events: creation, modification, and deletion

of sub-registry path or value. However, this RegistryTreeChangeEvent class does not

monitor a non-existent path so that pre-creation is required before starting to monitor.

Another handler is the FileEventHanlder which gathers the collection of data from WMI

by using __InstanceOperationEvent. This __InstanceOperationEvent class monitors

particular files, including files that do not exist in the logical drive currently. The

54

__InstanceOperationEvent consists of three classes: __InstanceCreationEvent,

__InstanceDeletionEvent, and __InstanceModificationEvent. Each class stores events of

creation, deletion, and modification of specific information on a file, respectively. The

CIM_DATAFILE class represents the collection of data related to a target file. By using

these two classes, scanner can get which and how file is changed by an event. The last

handler is MetabaseEventHandler which uses CIM_DATAFILE to look at Metabase file

which is the collection of data for Internet Information Service (IIS). As the handler uses

CIM_DATAFILE, it can detect changes on file modification of the Metabase file in the

system. The continuous monitoring function has SubHandler which handles sub-

procedures when an event is considered as vulnerability captured by each EventHandler.

SubHandler requests the event detected by SubHandler and checks additional

vulnerability information to confirm if security problems occur. SubHandler has its own

thread until finishing the task so that the agent could have many SubHandlers depending

on the number of events. SubHandler has different functions comparing with

EventHandler that handles regular expressions. Since OVAL definition provides a path or

a value of the vulnerability information based on a regular expression so that SubHandler

needs to manage regular expression in a proper manner to capture fault configurations in

the system.

55

Algorithm 1 shows how an initial check works without a regular expression. Initial

checker compares security standards with system configuration since the target computer

might have potential security problems in the current system configuration. The initial

checker starts with the collection of system specifications. When it gathers system

characteristics, it sends the collected data to ontology server and gets vulnerability

information. Vulnerability information is then used to check the target system. As

summarized in Algorithm 2, the checker receives data list from the initial checker and

takes types to check vulnerabilities associated with the type of vulnerability. As

mentioned earlier, Microsoft Windows operating systems have four types of vulnerability

determined by the configuration check. The tool scans configurations and compares it

with the vulnerability information from the previous procedure in Algorithm 1. The agent

sends the detected vulnerability information to vulnerability server and vulnerability

server generates a report based on the initial check.

56

As discussed earlier, we use both normal expression and regular expression to compare

the results from the initial configuration check. The algorithm 4 shows how to check a

target system in regular expression. The regular expression handler continues to check if

the registry path exists. The registry paths that are matched with regular expression will

be stored and re-scanned to discover all sub-paths. If there is no certain path comparing

with security standards, the path will be removed from the path list. After collecting all

paths matched with this regular expression, the agent starts checking values in the target

system.

 5.1.2 ONTOLOGY SERVER

Ontology server was implemented by JAVA, MySQL, Apache JENA and SPARQL.

Apache JENA is widely used ontology builder which is Java framework for semantic

57

web applications. Ontology server uses OVAL definitions but data extraction procedure

is different from the methods used by OVAL. To utilize security standards for a target

system based on system characteristics received from the agent, we first transformed and

stored OVAL definitions into ontology server so that we can build a well-defined

knowledge base based on OVAL.

Figure 25: Ontology Server Diagram

Ontology server has several components for providing information to the agent. The

OVAL DB generator parses and stores OVAL to database. The database is able to

produce XML files that include the OVAL definitions. Criteria contained in OVAL

definitions have different structures so there is possibility to occur errors while

transforming ontology to OVAL XML files directly. Therefore, we leverage database to

maintain OVAL information and reduce potential errors in the transformation [7]. As

shown in Figure 25, DB generator parses OVAL XML file and stores it into database.

 OVAL ONTOLOGY SERVER
(supporting the vulnerability information)

OVAL
Ontology

Vulnerability
Description

Vulnerability
DescriptionOVAL xml file

Vulnerability Source

Ontology
Generator OVAL

Database

OVAL DB
Generator

National
Vulnerability

Database (NVD)

OVAL
Repository

Or
OVAL from xccdf

C
o

m
m

u
n

icato
r

Agent
Checker

Agent Info
File

Vulnerability
Information

Provider

58

Since there are many criteria that contain vulnerability information by object and state,

several tables can be created in database. In other words, one definition may have

multiple criteria for defining vulnerability.

Figure 26: OVAL Repository database structure

To retrieve vulnerability information from database, the join operation should be

committed. However, join operation combines tuples from different relations so it is

relatively expensive operation [28]. Instead of optimizing join operation, we use ontology

generator to create ontology file. The ontology generator retrieves data from database and

generates ontology file by using Apache JENA library. By using the notion of clustered

59

area, the server efficiently extracts data related to detected vulnerability in the system. In

Chapter 5.2, we provided the detailed information how the ontology is constructed and

handles the relevant tasks. The other component in ontology server is vulnerability

information provider. The vulnerability information provider uses SPARQL to extract

data from owl file that contains security data and its relation. This component has two

functionalities to support the agent. One is to deliver security standards to the agent based

on system characteristics gathered by the agent in a target system. The characteristics

include MAC address, operating system, IP addresses, user id, password, and so on. The

other is to supply test-based vulnerability information in the OVAL definition to the

agent.

Figure 27: OVAL definition criteria

Figure 27 shows a sample OVAL definition. This OVAL definition has four different

criteria that cause security issues in Adobe Reader. If the agent detects

oval:org.mitre.oval:def:6390 in the system and then ontology server returns two test IDs

60

such as oval:org.mitre.oval:tst:20618 and oval:org.mitre.oval:tst:20935 for helping the

agent check the related vulnerability in the system.

5.1.3 VULNERABILITY SERVER

Vulnerability Server was implemented in Java. Based on the retrieved

vulnerability information, this server re-verifies vulnerabilities that are detected by the

agent in the target system. This server has three modules: result analysis, auto

assessment, and agent management. Result analysis module helps security administrators

generate a report based on the detected vulnerabilities. This module contains two

components: security assessment and report display. Security assessment shows

significant vulnerabilities in a target system based on the importance factor described in

Chapter 4.4. Report display component provides analysis results of the target system. The

second module is auto assessment that has three components: oval parser, oval merger,

and verification tool. Oval parser is to split oval definitions by ID and oval merger

merges only related IDs to scan the target system. The part of agent management mainly

controls each agent and this module allows each agent to access both vulnerability server

and ontology server. In other words, only authorized agents can access both servers.

The interpreter in auto assessment module only receives the merged oval information

related to events acquired from agents. Since the oval definition interpreter needs

information from a target system, the property handler helps the interpreter establish a

session with a target system remotely by creating config.properties. Once auto

assessment module receives vulnerability data from the agent, auto assessment module

generates the vulnerability result through result analysis module including vulnerability

61

information from document and the level of risk based on weights from security

administrators.

Figure 28: Vulnerability Server Architecture

Figure 28 depicts the above-mentioned procedures and Algorithm 4 summarizes our risk

calculation approach mentioned in Chapter 4.4.1.

62

5.2 EVALUATION RESULTS

In this chapter, we describe comprehensive and analytical evaluation results of our

system to demonstrate the feasibility and scalability of our approach.

In order to test the effectiveness our solution, we measured the extraction time to retrieve

vulnerability information from ontology. Our experiment was performed with a desktop

computer (Core2 quad q9650 3.0 GHz CPU, 16GB RAM), and multiple Microsoft

Windows operating systems including Windows XP, Windows Vista, Windows 7, Server

2003 and Server 2008. The extraction task is divided into two parts. One part is to

measure the number of test-based vulnerability retrieved for a particular operating

system. As mentioned earlier, our tool should check and obtain the path of the

vulnerability before starting to launch a monitoring task. Therefore, this measurement

shows whether our system legitimately retrieves relevant vulnerability.

63

(1) Number of retrieved vulnerability (2) Vulnerability retrieval time

Figure 29: Performance measurement in ontology

Figure 29 shows the number of vulnerability retrieved from OVAL ontology and the

performance in extracting vulnerability information based on registry and file from

ontology.

The other part is to retrieve tests and definitions from OVAL ontology server. Figure 30

shows that the extraction time is consistent--no matter how many test ids are retrieved

from ontology. In ontology, each definition contains two types of criterion: test and

extended definition. The test contains paths and values for the vulnerability while the

extended definition mainly refers to the other definition.

64

 (1) Number of Retrieved Vulnerabilities (2) Respond Time of the Vulnerability

Figure 30: Performance measurement in ontology

Figure 30 (1) shows the number of vulnerabilities retrieved from ontology and (2)

describes the extraction time of retrieved vulnerabilities regarding to the detected

vulnerability in the agent. In Figure 30 (1), there are more than 1,000 vulnerabilities

extracted by one test id occurred in target machine. We found two reasons why one test

id could have a relation with many test ids. One reason is that there are many criterions

which have a AND relationship with detected test id in the definition. And the other

reason is that test id is used in the multiple definitions. In figure 30 (2), we analyze the

different reasons for time variations: detection test id in clustered area and refer to

different definition. The case of detection which is made in clustered area in Figure 21

decreases the extraction time. Based on analyses from both graphs, we derive the result

that extraction time takes at most 5 seconds in many different numbers of retrieved

vulnerabilities.

For the measurement of performance in agents, we built a testbed in a cloud by using

Openstack. Each virtual machine image represents one of the following systems:

Windows 7 and Windows Server 2008 respectively. For brevity, our measurement

ignored network latency but focused on the vulnerability assessment.

65

Table 1: Initial Evaluation in Agent Tool

As summarized in Table 1, the performance in single core and 2GB RAM takes 24

seconds to check the system but takes 15 seconds to scan and detect the vulnerability in

the system. However, the results between dual core and 4GB RAM and quad core and

8GB RAM did not indicate any significant changes. In other words, our agent could

perform the tasks in a timely manner without producing any unexpected overhead.

Based on the risk assessment approach introduced in Chapter 4.4.1, we have performed

several experiments to determine how the weights from security administrators can affect

our assessment results. The assessment considers at most 54 groups of vulnerability in a

product found in a target system and each group is categorized by either exploitability or

impact. The dataset is collected from XML files by jOVALdi tool. For instance, our tool

checks vulnerability with a locally installed product in a target system and tested it again

in vulnerability server with jOVALdi. In order to analyze results with given weights, we

performed several experiments in a desktop computer (CPU 2.80GHz, 4.00GB RAM,

Microsoft Windows 7 operating system).

66

(1) Assessment Result in Apache (2) Assessment Result in Firefox

 (3) Assessment Result in Safari

Figure 31: Assessment Results

Figure 31 illustrates the analysis results based on the different viewpoints from security

administrator. All CPE values set to 1 because we mainly concentrate on changes in

CVSS score based on given weights from security administrator. Figure 3 (1) shows that

Apache product has vulnerabilities in the system but the most critical vulnerability in the

system has been changed depending on the value of exploitability and impact. For

example, the significant vulnerability was changed after setting up the exploitability

impact to 0.9 and 0.1, respectively. We could obtain similar results in Mozilla Firefox

and Apple Safari products. In addition, the result shows that these weights not only

67

change the most significant vulnerability but also affect the ranking of vulnerabilities. As

a matter of fact, none of critical vulnerability is affected.

 (1) Assessment Results in Adobe Reader (2) Assessment Results in Windows

Figure 32: Assessment Results (Less Change)

We have observed that some experiments show almost constant results under different

weights. Figure 32 illustrates both products were not affected by weights from security

administrator. However, CPE factors such as operating system, application, and

hardware, could change the significant vulnerability and ranking of vulnerability

68

6 CONCLUSION

In this thesis, we have proposed an innovative security assessment system that is

designed to facilitate not only event–driven continuous monitoring, but also automated

risk assessment accommodating various environmental requirements. Event-driven

continuous monitoring system is capable of monitoring suspicious events, which could

lead security risks based on security standards in OVAL. Also, the proposed system can

be easily adapted to various environments in a seamless manner. In addition to the event-

driven continuous monitoring, we have also introduced the tool that can provide and

expand vulnerability information with high-level reasoning and decision-making. Our

experiments demonstrated we could accomplish the comprehensive security risk

assessment based on security administrator’s view point.

6.1 CONTRIBUTION

The major contributions of this thesis are summarized as follows:

1. We articulated the need for event-driven continuous monitoring including

identified challenges and design criteria in building corresponding security

assessment systems.

2. We proposed systematic approaches to realize event-driven continuous

monitoring framework that automatically assesses vulnerabilities and calculate

risk scores based on multiple viewpoints from security administrators.

3. We implemented a proof-of-concept prototype based on our event-driven

continuous monitoring framework. We evaluated our system with various use

cases for each component and our results showed an event-driven continuous

69

monitoring system could analyze vulnerable configurations and calculate risk

scores in a seamless and timely manner.

6.2 FUTURE WORK

Our future work includes the refinement and extensions of the event-driven continuous

monitoring framework. The current approach cannot perform continuous monitoring for

the registry events after the reinstallation of product followed by the uninstallation. This

problem is attributed by one of followings: inability to create trace logs, stopped agent,

and data corruption [30]. The inability to create trace logs is the main reason that

subscriber of events cannot receive the event notification from the provider. We will

further study to overcome this issue so that we can even detect any changes in system

configurations caused by the uninstallation of products. In addition, our system is focused

on Microsoft Windows operating systems. However, we can extend the system to support

the different operating systems or environments in a seamless manner. We plan to extend

our approach to support various environments based on CIM-based approach. In addition,

we will investigate a more efficient and effective way to enhance an ontology-based

security assessment including streaming reasoning and robust knowledge base for

vulnerabilities.

70

7 REFERENCES

 [1] Mirko Montanari, Roy H. Campbell, “Multi-aspects security configuration

assessment”, SafeConfig, November 9, 2009

[2] John Pescatore, “Dealing with Federal Continuous Monitoring Security

Requirements”, NIST SP 800-137, October 2012

[3] Stephen Quinn, Karen Scarfone, David Waltermire, “Guide to Adopting and Using

the Security Content Automation Protocol (SCAP) Version 1.0”, NIST SP 800-117,

January 2012

[4] David Waltermire, Stephen Quinn, Karen Scarfone, Adam Halbardire, “The

Technical Specification for the Security Content Automation Protocol (SCAP)”, NIST SP

800-126, September 2011

[5] Ron Ross, “The Future of Cyber Security, NIST Special Publication 800-53, Revision

4”, June 2013

[6] Guntars Bumans, “Mapping between Relational Databases and OWL Ontologies: an

Example”, Scientific papers, University of Latvia, Vol. 756, 2010

[7] MAN LI, XIAO-YONG DU, SHAN WANG, “Learning ontology from relational

database”, Machine Learning and Cybernetics, August 2005

[8] Department of Homeland Security Federal Network Security Branch, “Continuous

Asset Evaluation, Situational Awareness, and Risk Scoring Reference Architecture

Report (CAESARS)”, September 2010

[9] Distributed Management Task Force (DMTF), “Profile for CIM”, August 2009

[10] Jos de Bruijin, “Using Ontologies (enabling knowledge sharing and reuse on the

semantic web)”, DERI-2003, October 2003

[11] Ora Lassila, Ralph R. Swick, “Resource Description Framework (RDF) Model and

Syntax Specification”, W3C, February 1999

[12] Dan Brickley, R.V. Guha, “RDF Vocabulary Description Language 1.0: RDF

schema”, W3C, February 2004

[13] Eric Prud’hommeaux, Andy SeaBorne, “SPARQL Query Language for RDF”, W3C,

January 2008

71

[14] Jiewen Huang, Daniel J. Abadi, Kun Ren, “Scalable SPARQL Querying of Large

RDF Graphs”, VLDB 2011

[15] Stephen D. Quinn, Murugiah Souppaya, Melanie Cook, Karen Scarfone, “National

Checklist Program for IT products – guidelines for checklist users and developers”, NIST

SP 800-70, February 2011

[16] National Institute of Standards and Technology (NIST), “Guide for applying the risk

management framework to federal information system”, February 2010

[17] National Institute of Standards and Technology (NIST), “Guide for assessing the

security controls in federal information systems and organizations”, June 2010

[18] James Murray D. “Windows NT Event Logging 1
st
 Edition”, September 1998

[19] http://www.informationweek.com/government/security/federal-cybersecurity-

incidents-rocket-6/231700231

[20] Deborah L. McGuinness, Frank van Harmelen, “OWL web ontology language”,

http://www.w3.org/TR/owl-features/, February 2004

[21] W3Counter for Global Web Stats, www.w3counter.com/globalstats.php, September

2013

[22] NHS and NIST, National Vulnerability Database (NVD), “automating

vulnerabilities management, security measurement, and compliance checking”,

http://nvd.nist.gov/scap.cfm

[23] Peter Mell, Karen Scarfon, and Sasha Romanosky, “A complete Guide to the

Common Vulnerability Scoring System (CVSS)”, Version 2.0, Forum of Incident

Response and Security Teams, http://www.first.org/cvss/cvss-guide.html

[24] JuAn Wang, Minzhe Guo, Hao Wang, “Ontology-based Security Assessment for

Software Products”, CSIIRW, April 2009

[25] Bill TSOUMAS, Dimitris GRITZALIS, “Towards an Ontology-based Security

Management”, AINA, 2006

[26] Dinesh Chandra Verma, “Principles of Computer Systems and Network

Management 2009 edition”, 2009

[27] Edgar R. Weippi, “Improving Storage Concepts for Semantic Models and

Ontologies”, Idea Group, 2009

http://www.informationweek.com/government/security/federal-cybersecurity-incidents-rocket-6/231700231
http://www.informationweek.com/government/security/federal-cybersecurity-incidents-rocket-6/231700231
http://www.w3.org/TR/owl-features/
http://www.w3counter.com/globalstats.php
http://nvd.nist.gov/scap.cfm
http://www.first.org/cvss/cvss-guide.html

72

[28] Carlos Ordonez, “Evaluating Join Performance on Relational Database Systems”,

Journal of Computing Science and Engineering, December 2010

[29] J. Patrick Thompson, “Web-Based Enterprise Management Architecture”, IEEE

Communications Magazine, March 1998

[30] IBM, “IBM Trivoli”, Monitoring, Version 6.1, September 2006

[31] Fang Yu, Zhifeng Chen and Yanlei Diao, “Fast and memory-efficient regular

expression matching for deep packet inspection”, Architecture for Networking and

Communications Systems, 2006

[32] Mark Dowd, John McDonald, Justin Schuh, “The Art of Software Security

Assessment: Identifying and Preventing Software Vulnerabilities 1
st
 edition”, Nov 2006

[33] National Institute of Standards and Technology (NIST), “Federal Desktop Core

Configuration (FDCC)”, http://fdcc.nist.gov/

[34] MITRE corporation, “Common Platform Enumeration (CPE)”, http://cpe.mitre.org/

[35] Anreas Ekelhart, Stefan Fenz, Markus Klemen and Edgar Weippl, “Security

Ontologies: Improving Quantitative Risk Analysis”, HICSS, 2007

http://fdcc.nist.gov/
http://cpe.mitre.org/

73

APPENDIX

 AGENT

1) ID and password to get information of both system and configuration

2) Agent console displaying the specific procedure for checking

configuration of the machine

 Vulnerability Server

o User and Agent Panel

74

1) OVAL Server IP for agent connection

2) IP range to search agent installed system

3) Information table displaying target system information

o Result Report Panel

1) Reported result classified by IP address of the target system

2) Report display by double click

o Assessment Panel

1) Username for IP address of the target system

2) Date and time for each document as XML file format

3) Detailed information of document for each file

4) Graphical analysis for selected document

75

o Analysis Panel

1) Target system selection for analysis

2) Given weights from security administrator

3) Analysis result based on gathered information

o XML Parser Panel

1) Pre-processing OVAL XML file to parse XML file into each definition

76

 OVAL Ontology Server

o Log Panel

1) Log console for describing connections with target computers when server

is started

o Activity Panel

1) Stored security standards displayed in Stored Configuration table

2) Analyzed configuration table shows newly analyzed OVAL XML file

definition

3) Newly added definitions displayed in the bottom table

77

o History Panel

1) Server start / stop history displayed

78

APPENDIX:

 AGENT

The agent monitors and captures suspicious events from the target system

based on the given ID and Password. The Table shows detected

vulnerability of test ids as yellow and definition ids as red. And the

Console displays the processing procedure of agent tool.

79

 Vulnerability Server

o User and Agent Panel

Through the User and Agent Panel, administrator can set up the OVAL

Ontology server IP to provide an address to the agent installed in the target

computer. Server can trace agent tool over the network by given IP range

and display detected agent in IP range.

o Result Report Panel

Result report panel displays detected vulnerabilities in the target system

with its detection time. When a security administrator double clicks each

attribute, the reported result of detected vulnerability will be provided.

80

o Assessment Panel

The assessment panel gives graphical analysis of each document

containing results of the detected vulnerability in the target system. Table

shows vulnerabilities occurred in the target system and graph reflects

vulnerability result of each document.

o Analysis Panel

Based on given IP address, the server collects information which are the

detected vulnerabilities in the target system. It calculates priority of the

vulnerabilities by the given weights from security administrator at the

table.

81

o XML Parser Panel

The server parses and splits each vulnerability definition based on OVAL

XML file in given path. This pre-processing helps performance of

vulnerability server to verify existing vulnerability in the target system. If

the definition already exists in the specific path, it will show id column

with gray color background.

 OVAL Ontology Server

o Log Panel

Logs reveal when and which agent tool requested the vulnerability

information in the network.

82

o Activity Panel

The parsed definitions from OVAL XML file are stored in the database.

‘stored configurations’ tab shows stored information. Newly analyzed

information based on give path of OVAL XML file is displayed in

analyzed configuration and definitions which are not stored in the database

are visible in the bottom table.

o History Panel

Log History table logs the server start / stop by security administrator.

83

