Automated Event-driven Security Assessment
by

Jeong-Jin Seo

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree
Master of Science

Approved January 2014 by the
Graduate Supervisory Committee:

Gail-Joon Ahn, Chair

Stephen S. Yau
Joohyung Lee

ARIZONA STATE UNIVERSITY

May 2014

ABSTRACT

With the growth of IT products and sophisticated software in various operating
systems, I observe that security risks in systems are skyrocketing constantly.
Consequently, Security Assessment is now considered as one of primary security
mechanisms to measure assurance of systems since systems that are not compliant with
security requirements may lead adversaries to access critical information by
circumventing security practices. In order to ensure security, considerable efforts have
been spent to develop security regulations by facilitating security best-practices.
Applying shared security standards to the system is critical to understand vulnerabilities
and prevent well-known threats from exploiting vulnerabilities. However, many end users
tend to change configurations of their systems without paying attention to the security.
Hence, it is not straightforward to protect systems from being changed by unconscious
users in a timely manner. Detecting the installation of harmful applications is not
sufficient since attackers may exploit risky software as well as commonly used software.
In addition, checking the assurance of security configurations periodically is
disadvantageous in terms of time and cost due to zero-day attacks and the timing attacks
that can leverage the window between each security checks. Therefore, event-driven
monitoring approach is critical to continuously assess security of a target system without
ignoring a particular window between security checks and lessen the burden of exhausted
task to inspect the entire configurations in the system. Furthermore, the system should be
able to generate a vulnerability report for any change initiated by a user if such changes

refer to the requirements in the standards and turn out to be vulnerable. Assessing various

systems in distributed environments also requires to consistently applying standards to
each environment. Such a uniformed consistent assessment is important because the way
of assessment approach for detecting security vulnerabilities may vary across applications

and operating systems.

In this thesis, I introduce an automated event-driven security assessment framework to
overcome and accommodate the aforementioned issues. I also discuss the implementation
details that are based on the commercial-off-the-self technologies and testbed being
established to evaluate approach. Besides, I describe evaluation results that demonstrate

the effectiveness and practicality of the approaches.

il

TABLE OF CONTENTS

Page

1. INTRODUGCTION......ctiiiiiitaiteetetee ettt sttt ettt et e sbe e e 1
L.1 OVERVIEW ..ottt et e eeee 1
1.2 STATEMENT OF THE PROBLEM.........coiiiiiiiiiiiieeeeee e 4
1.3 OUTLINE OF THE THESIS ...t 6

2. REALTED WORKooiiiiiieee ettt 7
3. BACKGROUND TECHNOLOGY ..cccuteiiiiiiiiaiieiienieeiieeeeite et 11
3.1 COMMON INFORMATION MODEL........cooctiiiiiiiniinienieeeeeeeeeeeeee 11
3.1.1 WINDOWS MANAGEMENT INSTRUMENTATIONccccovvviiiiiiiniens 13
3.1.2 IMPLEMENTATION OF CIM IN WMI ..o, 15

3.2 ONTOLOGY ottt ettt ettt e s bt e st e 16

3.2.1 SPARQL PROTOCL AND RDF QUERY LANGUAGE PROCEDURE 18

3.3 OPEN VULNERABILTY AND ASSESSMENT LANGUAGEcccccccuee.e. 20
3.3.1 USAGE OF OVAL DEFINITION......cccccccimiiiiiiiiniiieienientcceeeeere e 21
3.3.2 OVAL STRUCTURE AND ITS USE ...c.coiiiiiiiiiiieeieceeeeeeceeeeee 22

4. EVENT-DRIVEN CONTINUOUS MONITORING SYSTEM FRAMEWORK..... 29

4.1 GENERAL OVERVIEWcccooiiiiiiiiiiiiiiiiiccciee e 30

4.2 EVENT-DRIVEN CONTINUOUS MONITORING METHODOLOGY 31

4.3 VULNERABILITY INFORMATION PROVIDER METHODOLOGY 38

il

4.3.1 OPERATING SYSTEM BASED TEST IDS.....ccccciiiiiiiiiiiiiiiiiiiicees

4.3.2 DETECTION OF RELATING VULNERABILITIY PROCEDURE

4.4 SECURITY ASSESSMENT METHODOLOGYccoooieiiiiiiiiieiienienreeeee

4.4.1 MEASUREMENT OF SECURITY RISKccccooiiiiiiieeee

5. IMPLEMENTATION AND EVALUATIONcccooiiiiiiiiiieeeceeeceeeeeeee

5.1 IMPLEMENTATION AND ISSUESccoiiiiiiiiiiiieceeececeeeee e

5.1.1 AGENT

5.1.2 ONTOLOGY SERVERcccoiiiiiiiiiiiiiiitetceteeeeeeee e

5.1.3 VULNERABILITY SERVERccciiiiiiiiiieeeeceeceee e

5.2 RESULT & EVALUATIONcooiiiiiiiiiiieneceeeeeeeeeeeeee e

6 CONCLUSION ...ttt

6.1 CONTRIBUTIONccoiiiiiiiiiiiictce et s

6.2 FUTURE WORKooiiiiiiiiiicceee e

7 REFERENCES

v

1. INTRODUCTION

1.1 OVERVIEW

The government, defense, and private sectors have been struggling to keep computer
systems away from security breaches. Among many useful methods to secure systems,
Security Assessment has been considered as an effective method to measure assurance of
systems based on security standards and the status of compliance with baselines [32].
Such standards and baselines could help systems avoid well-known risks and describe the
weakest points of systems by allowing rigorous security analysis and discovering
configurations that cause potential risks in systems. Furthermore, Security assessment
enlightens parties to understand security goal precisely, and thus it may mitigate security
risks and ensure an appropriate level of system assurance.
US federal government has recognized the importance of security assessment and started
to develop plans for using Microsoft’s operating system based on specific security
configurations, which stem from US Air Force’s common security configuration for
Windows XP. This initiative was expanded to deal with other operating systems such as
10S, Linux, and HPX [33][34]. The Office of Management and Budget (OMB) and
National Institute of Standards and Technology (NIST) developed Federal Desktop Core
Configuration (FDCC) baseline for the purpose of security management, which prevents
security problems as early as possible caused by malfunctioned operating system and
faulty configurations which have been found by security testers or attackers [33]. The
United State Government Configuration Baseline (USGCB) evolved from FDCC

replaces the FDCC baseline for Information Technology (IT) products widely deployed

across agencies [34]. However, under increasing number of products and various
operating systems, establishing standards and measuring security risks are getting harder
to collect and test all of security configuration resources by security analysts. The FDCC
and USGCB teams decided to work together with organizations and companies for
collecting vulnerability information with XML-based well-structured format and
maintain information into one repository to facilitate easy sharing process and
comprehensive protection. As a result, the XML format of vulnerability information has
been discussed, analyzed, stored, and disseminated by central place, MITRE Corporation.
This XML-based specification was named as Open Vulnerability Assessment Language
(OVAL) for the purpose of a single security standard that is both human- and machine-
readable and covers various operating systems and its applications [20][21].

The main purpose of both FDCC and USGCB is to develop and implement security
configuration baselines, and gather security assessment results to provide the current
status of system assurance to stakeholders. In other words, it allows them to determine
how much security problems could be occurred in a target system with the help of
security baselines. However, both departments mainly focus on the detection of
vulnerabilities in the system. Consequently, Federal Information Security Management
Act (FISMA) was initiated to prioritize risk-based security assessment and real-time
continuous monitoring of security controls as a critical focus of compliance and security,
due to a dramatic increase in security incidents at federal agencies [19]. For example, the
reported security incidents among 24 key agencies increased more than 650% in the last
five years but ironically these federal agencies have periodically performed security
assessment based on security configuration baselines.

2

Therefore, the need of new continuous security monitoring that depends on system
environments has been recently addressed in the security community. The previous
monitoring approaches have been mainly dedicated to share security incidents by
stacking security issues up in the repository as much as possible. By using the gathered
information, the traditional security monitoring approach periodically measures system
assurance since it is tedious and costly to evaluate the entire system with various
standards. However, it is critical to perpetually monitor the previously discovered
security issues in a target system since it would be worthwhile to detecting new risks.
Every events in the target system with respect to users’ behavior such as installing
software packages or patching updates should be considered to perform security
assessment so that we can achieve a more comprehensive assessment to reflect any
changes and modifications on the system’s configuration. Thus, the periodic security
assessment is not sufficient enough to measure the assurance of systems.

We reiterate that we need event-driven continuous monitoring system is necessary to
consider the newly changed configuration that may draw security problems on the
system. Without evaluating system environments reflecting to the system configuration
that can be frequently changed by users, continuous security assessment is the most
effective approach to reduce and eliminate potential risks. In addition, as mentioned
above, diverse environments and various software applications that change system
configurations are another obstacle to hinder the accurate assessment of systems. To
perceive comprehensive security risks is increasingly tough even to security experts
because it is difficult to understand or define different domains of security problems. We
thus need a comprehensive and domain-independent approach that can be used in

3

multiple environments in a seamless manner. There are many commercial tools to
discover and share vulnerability information to the public for the purpose of avoiding
security risks. Without having the integrated data to provide the commonly
understandable security information to each computer environment, it is also hard to
measure system assurance comprehensively. In this thesis, we leverage the notion of
ontology to build a system that can support various environments for performing efficient

high-level reasoning and making better decision.

1.2 STATEMENT OF THE PROBLEM

There are several questions that this thesis attempts to address. First, Security
Assessment (SA) is crucial part of measuring assurance status of systems, but most SA
techniques have been focused mostly on how to define and detect vulnerability or
vulnerable configurations with the periodic system check. Security administrator
performs security assessment periodically because it is obligated to comply with the
security standards and it helps discover inappropriate configurations in the system and the
potential issues that can be missed without deep inspection of the system. So, it might be
enough to realize current system status but the drawback of periodic security
measurement is that configurations could be changed any time by users. Event-driven
security assessment is strongly demanded because of this reason. For example, suppose a
security administrator sets the security measurement task up for twenty-four hours and a
user changes one of system configurations an hour after the measurement was performed.
If the changed configuration meets the conditions of vulnerable configurations, then

attackers can still have twenty-three hours to use this security configuration breach for

their malicious purpose. By this reason, event-driven continuous monitoring should be

carried out.

Second, applying proper security standards corresponding to each system helps systems
keep safe. Many companies and organizations generate and provide OVAL-based
security assessment practices to the public. Many standards with various approaches help
understand a wide-range of security issues. However, it is not even easy for security
administrators to determine which standards should be applied in a target system
considering the characteristics of a system environment since computer configurations
could be different based on users’ preferences of operating systems and applications. And
each standard has different perspectives to interpret configurations so it is not
manageable without having comprehensive understanding on each standard. So, it is
fairly a time consuming task to know which standard should be applied properly in a
target computer and how to apply it. Also, it is necessary to have data not only
consolidating security information for the system, but also capturing characteristics of
different environments properly. Moreover, the structure of data should be expandable

since security risks in the system keep growing continuously.

Third, the environments of a system can vary based on the role and services that the
system provides. There exist many operating system dependent security assessment tools.
However, more intuitive but system-independent security assessment is required. By
using system-level implementation, tool is applicable to the various environments in a
seamless manner. This tool provides security assessment consistency for diverse

environments.

Last but not least, security assessment with the specific viewpoint of security
administrators is more effective since their interests on a particular aspect of
vulnerabilities in a system would help clearly recognize current risks and its affects to the
system. In other words, providing user-centric security assessment helps security
administrators monitor security gaps between security countermeasures and their point of

view on vulnerabilities.

1.3 OUTLINE OF THE THESIS
The thesis is organized as follows. Chapter 1 addresses motivation of this work and
problem statements including the overview of security assessment standard and the
importance of event-driven comprehensive security measurement system, followed by the
related work in Chapter 2. In Chapter 3, we also overview background technologies that
are leveraged to realize the proposed security assessment approach. Chapter 4 describes
an event-driven continuous monitoring framework and elaborates each component in our
framework. Furthermore, we show the architecture of system-independent event-driven
monitoring system. The implementation details including algorithms and evaluation of
our system are discussed in Chapter 5 and Chapter 6 concludes this thesis along with the

contributions and future works.

2. REALTED WORK

Risk assessment has been part of core security methods. Most risk assessments have
been performed with risk analysis and monitoring. While evaluating security disciplines,
applying undifferentiated security disciplines is not straightforward since each
environment has its own nature. Also, the security administrators who analyze
vulnerabilities existed in the system may want to see analysis results based on their
preferences. In this thesis, we focus on an event-driven system analysis approach to
identify risks and then show results in accordance with the preferences of the security
administrators. To achieve this, we first review relevant methods that we leverage in this
thesis including Security Information and Event Management (SIEM), Common
Information Model (CIM), and ontology. To accomplish event-driven risk assessment in
different environments, we introduce continuous monitoring system that can work under
various system settings. We then discuss the integrated security requirement framework

and risk assessment method to check security compliance.

Many companies have adopted Security Information and Event Management (SIEM) and
introduced real time tools to mainly identify systems’ weaknesses by investigating
system configurations based on security policies and compliance requirements. Previous
government reports show that proper review of vulnerability and SIEM had been done
early, but the correlation between continuous monitoring and SIEM has not been

achieved. Security assessment has been rather periodically performed so far [2].

Most organizations have to patch and configure their products for the security reason and

their products are maintained by the security postures at any given time to keep the

systems safe. Furthermore, organizations are obligated to be compliant with sets of
security requirements. To support such a critical obligation, Security Content Automation
Protocol (SCAP) was introduced and published by NIST [3]. To avoid any unnecessary
steps in security assessment, SCAP works with OVAL. By taking advantages of SCAP,
maintaining enterprise systems, inspecting system security configuration settings, and
examining signs of potential compromises in the systems have been extremely efficient
[4]. SCAP can collect vulnerability information from different vendors and integrate
information into definitions that contain checking methods so that security administrators
can examine security risks with a given set of compliance requirements. The current
version of SCAP performs measurement of system assurance and monitoring of security
setting [5]. The SCAP uses top-down approach for the measurement and OVAL is the
main step of the assessment process, which contains security contents about the way to
measure a specific machine’s state associated with system details. Based on this system
details, OVAL generates assessment results by expressing the state of each machine. To
achieve goal of sharing information, OVAL enforces structural standard but it cannot

provide flexible measurement because of this structural dependency.

CIM and Web-Based Enterprise Management (WBEM) architecture [29] are another
related work. There are many approaches that took advantage of CIM and WBEM to
achieve their security goal [25]. In these approaches, the CIM is mostly used to collecting
and gathering data from operating system configuration. Also, CIM is utilized to retrieve
data from a system and provide such data to check the current security status in the
system. Even though these approaches resulted in an effective set of security controls and

risk management process, it may increase the burdens of data management since data
8

storage can be quickly filled due to the infinite number of events incautiously caused by
end users. Such events might cause security breaches in the system so each reflected data

should be compared or matched to the overall security standard.

The ontology represents a set of relational concepts within domain and the relationships
among its concepts of domain can be represented with CIM. In other words, CIM defines
classes and relations can be represented by ontology [29]. There exist several research
approaches to make connection between system information and security features, using
both ontology and CIM at the same time [35]. However, making ontology and expanding
the data relevant to vulnerable information still need to be studied. . Especially, gathering
information by CIM and generating ontology based on the gathered information are
costly. Suppose we deal with the cloud-based environments and there exist many
different configurations in the virtual machine (VM) depending on users’ preferences.
Under such environments, ontology has to cover all configuration changes in each VM
but it will be a time-consuming task. Therefore, it is necessary to develop systematic
procedures for leveraging CIM and ontology to represent vulnerabilities in a more

effective manner,

Government agencies and organizations started to focus on developing continuous
monitoring systems. As a result, the Federal Network Security (FNS) Branch of
Department of Homeland Security launched the Continuous Asset Evaluation, Situational
Awareness, and Risk Scoring (CAESARS) [8]. The objective of their project is to build a
concrete vendor-neutral architecture and incorporate the main elements of the

Department of State (DOS).

Prasentation, Analysis [

Aeporting : isk Scoring——.
Subsystem Subsystem

~——Sensor Subsystem-—-\

National
Wulnerability
Database (NVD]

k- S

Figure 1: Conceptual Description of the CAESARS System

CAESARS system has integrated security postures with determining the gaps between
current state and security baseline and ensuring that the every system and application
does not contain tested potential security problematic configurations. For ensuring that
every system meets security policies and compliance requirements, CAESARS system
provides four subsystems as shown in Figure 1: sensor subsystem, database/repository

subsystem, analysis/risk scoring subsystem, and presentation and reporting subsystem.

10

3. BACKGROUND TECHNOLOGY

3.1 COMMON INFORMATION MODEL

Distributed Management Task Force (DMTF) published the CIM standard to
exchange management information about managed elements that is the structure of the
information contained among multiple parties. By using CIM, software, which manages
information, does not need to be written again for converting operations or information
since CIM attempts to unify and extend the existing instrumentation and management
standards using Object-Oriented Constructs and Design (OOD) [26]. CIM model
leverages OOD-based techniques to have richer representation of management data. The
architecture of CIM is convertible to Unified Modeling Language (UML) which can be
represented between CIM classes and CIM associations, either ways. So, the CIM can not
only describe classes and its relationship among classes of objects, but also enables to
have various relationships with other managed elements. The CIM is composed of two
parts: CIM infrastructure specification and CIM schema. The CIM infrastructure
specification provides managed elements and its relationships by allowing specialization
of common base elements to access specific features of the system. The system needs to
provide its information as an object through the CIM managed elements. The CIM
schema is a conceptual schema which enables the CIM client to communicate with
managed elements in a system. CIM schema covers most elements in the computer
product, such as computer systems, operating systems, networks, middleware, services
and storages. The strength of CIM schema is that it can be extended seamlessly with the

common functionality defined in CIM schema.

11

Users can specify, visualize and document software systems using UML from the Object
Management Group (OMG) [9]. The UML-based specification is converted to the
corresponding CIM MOF file and vice versa. The following example is a package for the

mapping between CIM MOF file and UML elements.

Package
CIMSchema
Package
CIM.mof CIMSchema::
#pragma include “Device.mof” Package CIM
A _|
Device.mof
[uML Package Package
PackagePath(“CIM::Device”)] CIM::Package CIM::Package
Class CIM_DeviceA{ default Device
String pa;
o A A
(S:tla'ss CII;’/I_DewceB{ Package default::Class CIM_DeviceB| |Package Device::Class CIM_deviceA
ring pb;
} +Propery pa +Property pb

Figure 2: Mapping between CIM MOF file and UML elements

In Figure 2, the CIM DeviceA has the UMLPackagePath qualifier, so its value gets
information under a target package path of a device as UML elements shows. For the
CIM DeviceB class, the UMLPackagePath 1is not specified so the default
UMLPackagePath is applied and vice versa. This is a simple example that shows how
CIM schema is applied to MOF files. UML package whose package path under a target
package shall own the UML class which a CIM class is mapped with the inheritance.
This general mapping between CIM MOF and UML elements allows CIM to support any

computer environments.

12

3.1.1 WINDOWS MANAGEMENT INSTRUMENTATION

Windows Management Instrumentation (WMI) is a set of extensions to the
Windows Drive Model (WDM), which is the framework for device drivers that provide
system interfaces to provide information and notification based on CIM and WBEM.
WMI enables to managing windows-based personal computers both locally and remotely
by Desktop Management Interface (DMI), which is a standard framework that tracks and
manages components in desktop, laptop or server. By leveraging existing management
applications, WMI can also generate and provide comprehensive management as a
uniform and reference model by acquiring management data from various heterogeneous

sources in a common way.

‘ C/CH+

Client

Scripts ‘

WMI consumers
(management
applications)

A

v

WMI Scripting API ‘

)

WMI COM API

A

A

WMl infrastructure

A

A

WMI Core WMI
(CIM Object Manager) Repository
A A 4
——
WMI providers and — v
managed objects
‘ CIM Inter-Op ‘
v v
‘ SNMP Wi ‘ ‘ CIMv2 Wi ‘ e
provider provider (instrumentation objects)
! l '
SNMP WMI Windows (Win32) ‘ -NET WMI provider ‘
provider Managed entity T
.NET managed
Application/entity

Figure 3: WMI Architecture

13

The main components of WMI architecture stem from CIM components. Those
components are WMI provider, the CIM object manager (CIMOM) and CIM repository

as illustrated in Figure 3.

WMI providers monitor and communicate with physical and logical system components
made up with operating system services and utilities, hardware and applications. WMI
providers are an extension of WDM and send its data information into WMI repository
with the managed format described in MOF files. These providers mainly provide
information as a set of managed objects in response to the requests coming from CIMOM
received in a WMI consumer. The MOF files can be compiled by MOF compiler in WMI

and added into WMI repository for the managed data.

CIMOM manages the data transfer among WMI providers, the CIM repository, and
management applications. The procedure of transferring data is made in the following
steps: the WMI provider retrieves information from resources and CIM repository stores
information requested by WMI consumer layer. CIMOM creates indication subscription
in the CIM repository and contacts WMI provider to receive the requested information
from clients. The CIMOM sends the received information from the provider to the WMI
consumer. The data can be manipulated by WMI Query Language (WQL), which is
written in a SQL-like format. And WMI has a function to notify events coming from the
provider both locally and remotely. WMI event notification is capable of monitoring the
state of the systems across the network. There are two kinds of event notification:
synchronous and asynchronous event notifications. Synchronous event notification is

paused until the method call returns the collection of objects. In contrast, asynchronous

14

event notification allows continuous execution of WMI methods or provider methods

while returns the collection of objects.

CIM repository is the storage to store the registered information that providers and
applications provided with the managed format added in the repository by MOF files.
The data in CIM repository can be easily out-of date, therefore, CIMOM executes queries
to extract the changed data dynamically from the repository. This helps consumers

receive the recent event information that providers give.

3.1.2 IMPLEMENTATION OF CIM IN WMI

WMI is an infrastructure to support CIM model and Microsoft Windows-specific
extension of CIM. However, all schemas in the WMI repository are CIM-based schemas.
Only “cimv2” namespace, which obtains data from Microsoft Win32 APIs, is CIM
schema-based such as CIM core, system devices and application models. For example,
Windows 7 introduced Win32 PowerPlan WMI class. This class resides in the cimv2
WMI namespace so that any script or code can trigger this information to receive power
status of current machine from the client by executing WQL. When the CIMOM receives
the request for information, the CIMOM checks an appropriate provider if the provider
support dynamic data or notification of events of the requested information. If not,
CIMOM forwards the request to the appropriate provider to return the requested
information from resources. The return data format of WMI provider is described in
CIM. The result format is standardized so any environment can use this data format to
receive data and use it. There are many useful CIM classes--especially CIM_RecordLog

class that can log and filter out other logs by names. By using this class, a system can

15

derive notifications of event information from a provider. WMI already have running
Win32 classes to record log files for the event so that system can get event information
by using WQL. Using .NET framework, applications can be developed using data from
WMI classes. It means the system can assess management information in an enterprise
environment. If the provider does not exist in certain management information related to
CIM, the system can create a provider based on CIM class and receive information from

the created provider, which allows the system to access all WMI data.

3.2 ONTOLOGY

Knowledge sharing and reuse have many challenging issues [10]. The sharing and
reuse of data is currently achieved but still lacks understanding of data semantics between
entities. Sharing information in knowledge means the transfer from the sender to the
receiver that could not use the same format for data representation in most cases. In this
reason, extra care must be taken when the messages are transferred. The information is
transferred in the way of structured format that is understandable to both sender and
receiver. The message should be also transferred between sender and receiver who may
use different formats. It means each party needs to process the transferred information on
the knowledge base through the use of logical language. Moreover, the architecture of
relational database does not represent n : m relationship [27]. The additional table is
needed to transform »n : m relationship into a / : n and a / : m relationships. This
necessary step needs to be solved without schema modification. The lack of standard
causes many unnecessary steps to share and reuse data between two sides. The effort to
generate standardized results in the new way of sharing knowledge, ontology. Ontology

can solve this problem by using formal and real-world semantics. Ontology provides
16

formal semantics, which are machine and human understandable data format. Ontology
attempts to detect every possible domain and support broad axioms for the expression of
knowledge and it is ideally formal vocabularies shared by a group that is interested in a

specific domain.

In the area of semantic web, ontology is used in various research fields such as
knowledge engineering, database design, and information retrieval and extraction. The
meaning of human understandable is that a word is in natural language and its
relationships are reasonable to the human. The example of human understandable
relationship is is-a relation, which denotes an association between super and sub
concepts. The relationship describes the fact that one super concept is more general than
another sub concept. The more general concepts are senior to the more specialized

concepts in an is-a hierarchy as shown in Figure 4.

N
& Ferson |
F
s A
Is-a Iz-a
= —-'f- HZ"\-— .
rz,.f"-- -\-""‘--\l‘ /.-""_ _H"""x._\
| Student | Ilrﬂeseacher)
-, /
e il s __H-A’H
I5-a Is-a_ ls-a lz-a
e o Wt >
- By - By : .
MCS PhD Y, =4 I’f i
; | i | Professor |
\ student Y, \ student Y, X ¥,
H"'H—_,—o—"'"f "\.____.r_'__'_,_-' .-___,_,-—'— . \H""“-_ _,-'-"";f
Instance of f: \
I (Post Doc |
&
Jahn \'\-\._____'_'_,.p"'/

Figure 4: is-a hierarchy example

The relationship between entities may make many different conclusions. For example,

both student and researcher can be a person. PhD student can be student and researcher,
17

but MCS student cannot. This conclusion can be drawn by both computer and human
since the formal nature of the relation can be explained respectively in this diagram. Real
world objects can be described in the concepts. For example, John is instance of PhD
student. The instance of relation means an actual concept derived by the PhD student.
And all super concepts have is-a relation so that John must be an instance of the concepts
such as PhD student, Student, Researcher, and Person. Ontology brings advantage of data

and relation representation with several features such as flexibility and interoperability.

3.2.1 SPARQL PROTOCOL AND RDF QUERY LANGUAGE

The Resource Description Framework (RDF) [11] is the first language developed
for the semantic web. RDF includes machine readable metadata to existing data on the
web. RDF Schema (RDFS) [12] extends RDF with some basic (frame-based) ontological
modeling primitives such as classes, properties and instances. Instance-of and subclass-of
relationships are also introduced through RDFS. RDF has the object-attribute-value
triple. It is commonly written as (O, 4, V) [13][14]. Figure 5 is an example of RDF graph

with this structure.

// “John”

. _————_ hasFirstNameOf ——

hasLastNameOf

IV

—

—

Figure 5: RDF graph example

In Figure 5, an oval describes the resource and arrows that connect two resources show

the predicate of the resource. The basic building block can be represented as follows:

18

(hasNameOf, #john1, #johnsmith)
(hasFirstNameOf, #johnsmith, “John”)
(hasLastNameOf, #johnsmith, “Smith”)

Figure 6: RDF triples example

RDF graph in Figure 5 is converted to RDF triples in Figure 6 with a predicate of each
connection of resources. These simple three statements become very complicated in
XML serialization. This is one of benefits that we can get from ontology. The XML
schema describes how XML document ought to be ordered and combined in the
predefined structure. In contrast, RDF schema does not describe the syntax of the RDF
description, but the interpretation of each statement. This means RDFS defines classes
and sub-classes for the class hierarchy, properties and its hierarchy. RDFS has the benefit
of increasing formality of their subject and standard entailment of relationship among

data.

The official W3C document describes SPARQL as follows [13]: “Most forms of SPARQL
queries contain a set of triple patterns called a basic graph pattern. Triple patterns are
like RDF triples except that each of the subject, predicate and object may be variable. A
basic graph pattern matches a sub-graph of the RDF data when RDF terms from that
sub-graph may be substituted for the variables.” SPAQL is generally graph matching
execution [14]. For example, the query in Figure 7 returns the all football club that is

based in Barcelona.

19

Select ?manager ?club

Where{ FootballClub
?manager hasManagerOf ?club. N
?club hasTypeOf FootballClub. hasTypeOf
?club hasRegionOf Barcelona. I

}

hasManagerOf

I
hasRegionOf
\ 4

?Manager Barcelona

Figure 7: SPARQL Query Example

In Figure 7, the query is written in the SPARQL query language and this example shows
that it gets data set, which is strictly associated with two edges. One edge is ‘hasTypeOf
which connects between club and FootballClub objects, and other is labeled as
‘hasRegionOf”, which is limited to the data set in Barcelona entity. The entities which
match these conditions are allocated to the variable name of ‘?Club’ and the manager, is
returned if an entity meets the both edges. A simple SPARQL query can be converted

into an SQL statement.

3.3 OPEN VULNERABILTY AND ASSESSMENT LANGUAGE

FDCC and USGCB published the checklist for checking vulnerabilities in the
configuration of computer environments [15]. Security checklist is stored in National
Vulnerability Database (NVD), which includes many kinds of security configuration
including operating systems, applications and so on. The XML-based format for the
checklists is specified in the Open Vulnerability and Assessment Language (OVAL) that
is fundamental part to check the presence of vulnerabilities and configuration issues in a
target system. This means that OVAL-based checklist called OVAL definition describes

the technical details about security vulnerabilities and configurations in XML-based

20

format. Security baseline in SCAP uses OVAL for checking baseline settings. OVAL is
used to determine which vulnerabilities exist on a system and generate reports, and then
system administrator deploys software patches or gets security countermeasures from

assessment tools and takes proper actions based on organizational discipline or policies.

3.3.1 USAGE OF OVAL DEFINITION

OVAL is a standard to standardize the assessment information across the various
security tools and services. The information security community has developed OVAL
definitions by collaborating to create OVAL language and maintaining definitions in the
OVAL repository from many participants and stakeholders. Industry, academy and
government organizations try to share their vulnerability information through OVAL
definitions. This effort helps share security issues and protects systems in a professional
manner. OVAL works in three main steps: collecting characteristics from systems for
testing, testing the presence of a machine state, and evaluating systems. For the collection
of characteristics from a target system, it collects information of target system, system
configurations, and other security relevant configurations in a standard XML format. By
gathered system characteristics, assessment tool could receive vulnerability information
associated with system. Any mismatched configurations will be eliminated or further
examined. The standardized OVAL that encodes the vulnerability details of a specific
machine state can check the system whether the system has any vulnerabilities,
configuration setting meets the security policy, and patch is performed in the wide range
of computer systems. There are many operating system based schemas to test a specific
OS platform and its applications. Core schema and individual component schema tests

basic and detailed system states of operating system platforms or applications,
21

respectively. The result schema defines a standard XML format for generating an
evaluation report. The report contains current configuration information of a system
against OVAL definitions. The result schema allows administrators to compare the
system with standards for verifying the existence of vulnerabilities or configurations

which do not match security policies on the system

3.3.2 OVAL STRUCTURE AND ITS USE
The OVAL definition schema consists of two part of schema: core schema and a

number of component schemas.

The core schema provides a structure of an OVAL definition to express metadata that is
independent of an OVAL definition, which includes CVE identifier, platform under
affected attribute, and description of the definition. Component schema is different from
core schema and it defines the vulnerability, configuration and security issues within an

OS platform and its applications.

Demﬂtﬁ\

Metadata
/ Extended
/Affected Qf@@i@ Cir@ Qmmon Def|n|t|on
pIatfornQ product >

Figure 8: OVAL Definition Core Structure

\

/\

22

In Figure 8, core schema has many components of the definition. The structure of the
OVAL definition contains two main categories: metadata and criteria. Metadata includes
information of each definition and refers to CVE. The description in metadata shows how
this vulnerability could happen. The criteria in Figure 8 show how to draw this
vulnerability by specifying which security check should be performed on the system. It
has two categories: extend_definition mainly deals with the configuration of application,
hardware, or operating system and criterion is to scan configurations by checking

whether it meets any specific conditions.

To provide vulnerable information to different environments, we need to implement a
flexible database which handles various structures for the target environments. Classical
relational database or XML has limitations to provide such flexibility. To represent RDF
triple mentioned in Figure 6, the classical relational database needs an additional table to
link values and join operation to return data to the requester. The XML also needs many
lines to represent these data and relationships in the system. With the help of ontology,
this problem could be handled by using RDF triple. Taking advantage of this flexibility,

we can share various vulnerability data with different environments.

23

<definition id="[E R FRnNERIEREEERE] version="1" class="vulnerability">

<metadata>
<title=0OWA For Exchange Server Data Validation XSS Vulnerability</title>
<affected family="windows">
<platform=Microsoft Windows Server 2003 </platform=
<platform>Microsoft Windows Server 2008</platform:
<product=Microsoft Exchange Server</product=
</affected>
<reference source="CVE" ref_id="CVE-2008-2247" ref_url="http:/ /cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2247"/>
<description=Cross-site scripting (X55) vulnerability in Qutlook Web Access (OWA) for Exchange Server 2003
5P2 allows remote attackers to inject arbitrary web script or HTML via unspecified e-mail fields, a different vulnerability than CVE-2008-2248.</description:
<oval_repository=
<dates>
<submitted date="2008-07-08T14:18:00">
<contributor organization="Secure Elements, Inc."=Jeff Ito</contributor>
</submitted>
<status_change date="2008-07-11T10:55:59.110-04:00">DRAFT</status_change:
<status_change date="2008-07-28T04:00:11.225-04:00">INTERIM </ status_change>
<status_change date="2008-08-18T04:00:25.262-04:00">ACCEPTED</status_change>
</dates>
<status:>ACCEPTED</status>
< /oval_repository>
</metadata:>
<criteria operator="AND">
<extend_definition comment="Microsoft Exchange Server 2003 Service Pack 2 is installed" definition_ref="oval:org.mitre.oval:def:1869" /=
<criterion comment="owaauth.dll is less than 6.5.7653.38" test_ref="oval:org.mitre.oval:tst:8555"/>
</ criteriax
< /definition>

Figure 9, OVAL definition in XML

In Figure 9, core schema is described. For example, the title of this schema is OWA For
Exchange Server Data Validation XSS Vulnerability. And its affected family is Microsoft

Windows operating system and the reference shows the CVE identifier.

The component schema contains a specific path (object) and values (state) that identify
the system configuration, which matches the vulnerability. Definition is composed of
many different vulnerable configurations. Each criterion has its own test that contains an
object and a state with a specific path and certain value, respectively. The matching of
two paths and values declares a security issue but it may not a real vulnerability at this
point. Extended definition is to check the installed software. The combination of the

criterion and extended definition can finally declare a specific vulnerability.

24

Definition

Criteria

Extended
Definition

Criterion

Variable

Figure 10: Criteria components schema of OVAL definition

In Figure 10, the structure of the component schema is illustrated. By checking object and
state in a test, system administrators verify whether the test hits the vulnerable
configuration on the system. In Figure 11, a specific example in this test has one object

that shows the file ‘owaauth.dll’ and its state ‘6.5.7653.38” with the path.

<file_test id="oval:org.mitre.oval:tst:8555" version="1" comment="owaauth.dll is less than 6.5.7653.38" check_existence="at_least_one_exists"
feheck="all" xmIns="http:/ /oval.mitre.org /XMLSchema/ oval-definitions-5#windows">
<object object_ref="oval:org.mitre.oval:obj:6223"/ >
<state state_ref="oval:org.mitre.oval:ste:3464" />
< /file_test=

SSiW)JII4 AL B oval: org.mitre.oval:obj version="1" xmlns="http:/ /oval.mitre.org /XMLSchema/oval-definitions- 5#windows" >
<path var_ref="oval:org.mitre.oval:var:425" var_check="all"/>
<filename>owaauth.dll</filename>

</file_object=

<file_state id {IEIRTGRNIIERUEIBIEERIEN version="1" xmlIns="http:/ /oval.mitre.org /XMLSchema/ oval-definitions-5#windows ">

<version datatype="version” operation="less than">6.5.7653.38< /version=
=</file_state=

Figure 11: Criterion of test in OVAL XML

25

OVAL criteria have two operators: ‘and’ and ‘or’. The combination of ‘and’ and ‘or’
helps define a vulnerability in the OVAL definition. Criterion variable refers to another

object, which shares the same path.

To use OVAL in many places, we design the basic structure of OVAL ontology to

include attributes described in the OVAL definition, test, object and state related to the

environments.
Qeferean
i comment -
version
Version hasIDof hasVariablelDof

hasVariablelDof
has|Dof L

hasIDof Variable ID

- hasTestIDof

haleof—Qest |Dj hasStatelDof
_ F hasTestIDof —

State ID

QlisQ—hasIDof—b Definition ID

hasIDof

hasTestIDof

I hasStatelDof

/ hasIDof Object ID] .
Platform / Version

VAN /Jijai/OhiectlDOf haSObiEC{DO’fiiwn
= @
Figure 12: OVAL Ontology: Basic Structure

In Figure 12, we show the basic structure of the OVAL definition applied in ontology.
Definition ID 1s an unique identifier and Test ID is the attribute which could be
duplicated in different Definition IDs. So, connections between Definition ID and Test
ID can be reusable in other relations. This basic structure is helpful not only
understanding structure of OVAL ontology, but also further expanding information in
different attributes. For example, the registry appears in only Microsoft Windows

platforms. As mentioned previously, object has the path of the vulnerability so that a

26

registry path information can be added to the Object ID. In the same way, the value of
registry is added in the State ID. This expansion allows ontology to support diverse
structures of OVAL definition and have the tool return its data for taking care of many
different systems by using relationships in RDF triple. Also, ontology enables users to
add any relationship into ontology without schema modification. In addition to such
advantages, we attempt to improve our structure for enhancing the performance in

returning information.

Definition
i/ OR
w:/ And \1 w:/ And
Criterionl Criterion2 Criterion3 Criterion4

test test test test

test test test test

Figure 13: OVAL Criteria Operators

Every definition has its own criteria. Figure 13 shows a decision path based on logical
operators to facilitate various criteria. For example, the definition indicates that it would
be vulnerability if either criteria 1 and 2 or criteria 3 and 4 meet conditions mentioned in
tests. In OVAL XML file, the published assessment tool should check all criteria until a
criteria match conditions in the definition. Also, it is constructed as a hierarchical
structure, which facilitates top-down approach. For instance, it would first check the

version of operating system and product in metadata of a definition. Then it starts

27

checking criteria until it finds matched combination of criteria. To overcome the
performance issue of such a top-down but exhaustive approach, we introduce the notion
of clustered area for checking the system effectively. The subsequent section will discuss

our enhancement.

28

4. EVENT-DRIVEN CONTINUOUS MONITORING FRAMEWORK

The continuous monitoring has been recognized as a critical strategy and it could be
realized by sharing incident information among government agencies and various
organizations. As mentioned in previous chapters, this strategy has mainly focused on the
way for continuously detecting and publishing new vulnerabilities or configuration
problems. Figure 14 briefly describes the risk management framework proposed by NIST
[16][17]. Based on this framework, this thesis concentrates on tasks in the phase 6:
continuous monitoring. The life cycle of the framework determines whether the system
meets the security requirements periodically but does not consider any changes with
respect to the user’s behavior such as installing applications or patching updates. Even
though security assessment periodically generates and maintains vulnerability
information in the security repository, ensuring system assurance and protecting target
systems would be in vain without considering various vulnerability information and
continuously monitoring configuration changes. Therefore, the system should perform
event-driven comprehensive security assessment and environment independent

monitoring.

PHASE 1. PHASE 2. PHASE 3.
CATEGORIZE > SELECT > IMPLEMENT
Information System Security Controls Security Controls
A
A\ 4

PHASE 6. PHASE 5. PHASE 4.

MONITOR < AUTHORIZE < ACCESS
Security Controls Information System Security Controls

Figure 14: Risk Management Framework
29

Normally, the process of security monitoring deals with detection of risks in the system
and active management of the detected risks. By adopting this method, security risks
must be checked whenever suspicious events occur. In this thesis, we extend such
conventional processes to include event-driven monitoring that facilitates usage reduction

of system resources and event-related configuration check.

VULNERABILITY M Net
SERVER work

AGENT

(Gathering and scanning system information)

Result Analysis

OVAL
< Definition
Pt interpreter

Common Information
Model

—Operating system:

Comm T ¢
unica or—\ | AGENT
Founded e B
Vulnerability Windows, Linux, iOS
. ._ .)
! ! ! —~Mobile————————————
OVAL ONTOLOGY ﬂg Workstation Workstation Workstation | fe——]
SERVER <C€L""‘ o AGENT
National OVAL xml N o
Vulnerability file Android, i0S
Database (NVD) L
Yy
OVALDB Tovar | —Cloud
» OVAL -\
Generator Repository = E=R minnsiote
g ' AGENT
Ontology ‘o EC2, skyDrive
Generator rrrer ol e
J
Communicato
Vulnerability _ J
Information >
Provider
)
~ y,

Figure 15: Event-driven continuous monitoring framework

4.1 GENERAL OVERVIEW

To provide comprehensive vulnerability information and environment independent
event-driven continuous monitoring in the target system, we propose the event-driven
continuous monitoring framework. The proposed framework has three main domains as

is illustrated in Figure 15: vulnerability server, OVAL ontology server, and agent. Each

30

domain is designed to perform specific tasks as follows: ontology server is to generate
vulnerability information from OVAL fed by National Vulnerability Database (NVD)
and provide security data to the agent through the network. To provide information that
can support a target system in different environments, we also introduce high-level
reasoning with vulnerability information to extract data based on environmental
characteristics given by agents. Agents play an important role for gathering and scanning
system information based on ontology. By using CIM discussed in the previous chapter,
agents can be deployed in not only different operating systems, but also various devices
such as mobile and cloud platforms. Agents can get notification of configuration changes
by using CIM event classes. The role of vulnerability server is to search machines with
the deployed agent in the network, receive detected vulnerabilities from agents, and
verify if those vulnerabilities really exist in a target system. For analyzing and verifying
the target system, we also use an OVAL interpreter to generate a report. OVAL
interpreter validates the target system and generates the results for the security

administrators.

4.2 EVENT-DRIVEN CONTINUOUS MONITORING

Minimizing computation costs and increasing assessment reliability of a target
system are primary roles of the agent. We present an agent model that can detect security
vulnerabilities in the system. Usually, vulnerability is considered as a logical combination
of properties that can be presented in the target system. Properties in the system can vary
depending on the nature of environments and security problems are associated with
vulnerabilities in the system. One simple example of vulnerability is a specific running

process (e.g. httpd), a specific open port (e.g. 80), and a specific version of the system
31

(e.g. 2.6.10.rc). In other words, vulnerability may require several properties. To monitor
events from a system, CIM event log which is one of CIM model for operating system
information is used. WMI which is Microsoft extension of CIM is to support the CIM
model for performing retrieval and event notification of the system. With such benefits of
the system, data is accessed by COM/DCOM API in providers. There are many built-in
providers in WMIL. Among many providers, event providers handle event-driven
continuous monitoring, which captures events and notifies the consumer. Windows NT
event log provider provides access to data and event notification from the Windows NT
event log [18]. When Windows NT is booted, it starts the Service Control Managers
(SCMs). The win32 program event logging service is started up automatically when SCM
started. Once an event is occurred in a device driver, or an application, it sends the report
to the event logging service. The service stores the information that can be categorized as
one of three event log files located in the local system disk: Application Event Log file,

Security Event Log file, and System Event Log file.

Event Viewer

EVETVWR.EXE
—7
= ;

MESSaRe Event Logging API

Files

ADVAPI32.DLL

v

Event Logging

Service
EVEN$G.EXE

Application
Event Log File

N

Security Event
Log File

System Event
Log File

Figure 16: Event log service in Win32 program

32

WMI consumer in figure 3 can also retrieve a particular event from event repository for
the further analysis. Figure 16 shows the structure of Win32 event logging service and
how event logging service displays events from each log file. There exist two ways to
access the event log files: local and remote. By using scripts or execution of a program
that a system provides, event log file can be locally accessible. Also, the event logging
service can be accessed by processes running on the local system. With remote procedure
calls (RPCs), a remote computer can also access the event logs on the local system. All
requests such as write, read, clear and backup operations on remote event logs are
forwarded to the service using RPC. Both ways are transparent to the calling process. If
WMI consumer requests and receives every event from log files checks security breaches
related to the single event, automated security assessment requires heavy interactions
with a running operating system to get system information and causes performance
overhead. So, it is necessary to only extract data from related certain changes of a path
described in security standards. This means that the system monitors and gathers data
specified in the OVAL definition, instead of getting every event from the system. In this
thesis, we narrow down the scope of this task to focus on Microsoft Windows operating
systems. Every registry event is stored into Windows NT registry. The EventLog registry
key 1s composed of event log sub-keys and event source keys. Event log sub-key stores
the event log information for a specific registry event. Sub-key is mapped to the event
source key. When an event source key is added to the registry, the name of the event
source is automatically added to the source value of the corresponding event log sub-key
by the event logging service. Event logging service has functions to log the registry and
file related events such as creating, modifying, and deleting the value of registry or file.

33

By using this event log service, changing information of certain file or registry can be

monitored and used for the comparison between current and standard values.

CIM has an abstraction of event logger class for the system event log. In CIM, a CIM
indication represents the occurrence of an event that changes the state of the environment
of the component of the environment. For example, indicating the one service in the
operating system is started or stopped or a certain application is installed so configuration
is changed accordingly. An instance of the CIM Indciation class represents the concrete
indication of the occurrence of an event. Modeling CIM life cycle events of
InstIndication includes instance creation, deletion, modification, method invocation and
read access. From the security perspective, a system needs to distinguish interesting
events from all collected events. This helps save resource usages and improves
performance of security assessment by narrowing down the assessment scope of current
system. For example, WMI provides WMI Registry Event Classes that can obtain registry
information to interact with vulnerability information provider. Registry Event Classes is
derived from _SystemClass class. The Registry event classes have four classes:
RegistryEvent, RegistryKeyChangeEvent, RegistryTreeChangeEvent, and
RegistryValueChangeEvent. RegistryEvent is an abstraction class for deriving other
registry event classes. RegistryValueChangeEvent focuses on the changed value of a
specific key since it can facilitate the specific path and value specified in the OVAL-
based security standard. Other classes such as RegistryKeyChangeEvent and
RegistryTreeChangeEvent monitor subkeys so additional process steps are needed. The
indication of an event is made by Windows Query Language (WQL), which is the subset

of ANSI Structured Query Language (SQL) in Microsoft Windows. The syntax of WQL
34

is similar to SQL. WQL makes a system to get specific event information by narrowing
the scope of an event. File changes in Microsoft Windows are also detected by using
WMI. By comparing between changes and security standards, a system can determine

whether changes on system configuration can affect the level of system security.

—Agent ~
AGENT
(Gathering and scanning system information)
Computer Properties Collector
Common Information Model
—Operating system———— i
AGENT) Vulnerability Information |—» >
oo Receiver «| 3
Windows, Linux, i0OS o
o
\ J] S
Mobil 3
(Vonte A Vulnerability Information s
[e]
AGENT Parser DE:*
Android, i0S i
_) Scanner
—Cloud N Contm.uous Vulnerability]
Monitor Checker
AGENT L ?
EC2, skyDrive
_ Y, Information Collector
o J

Figure 17: Agent Diagram

The agent architecture is depicted in Figure 17. To achieve continuous monitoring in
various environments, the agent needs to monitor any events related to security risks and
generate results when changes violate standard configuration. The agent is generic based
on CIM object so that it can be used not only any operating systems, but also any other
environments such as mobile and cloud as shown in Figure 17. The continuous
monitoring in an agent starts with collecting system properties that is basis to get basic
configuration and compliance information from standards. The agent sends such
computer characteristics to the server and receives security vulnerability information to

35

check security risks and monitor future changes with respect to the vulnerability
described in the security standard. Based on collected computer information, ontology
server extracts and provides configurations, compliances, and vulnerability information
to the agent. The agent parses such information from ontology server and checks initial
system state of a target system. This initial check of the target system leads the system to
retrieve current vulnerabilities against standards and notify which vulnerabilities are
found. After the initial check, the agent continuously monitors events associated with the
vulnerability information received from ontology server. For configuration checking, the
agent has different comparison methods because each operating system has its own
structure. For example, Microsoft Windows operating system has registry as hierarchical
database manager. Registry contains information how and what program is installed in
while other operating systems store individual files in the file system. Scanner scans and
checks each value based on security data received from OVAL ontology server.
Continuous monitoring thread captures events from providers continuously and

vulnerability checker thread compares captured events and standards for each event.

The agent detects vulnerability based on the following 4-tuples: (R, F, W, M), where R is
the set of registry vulnerability; F is the set of file vulnerability; W is the set of WQL

vulnerability; and M is the set of Metabase vulnerability of IIS configurations.

Consider R, F, M, and W has each subset as follows:

RN = {Rjy,...,R;}, where RN is the set of registry (1)

FN = {F,,...,F,}, where FN is the set of file (2)

36

MN = {My,...,M,}, where MN is the set of Metabase (3)
WN = {W;, ..., W,,}, where WN is the set of WMI 4)

Each component is represented as the composition of path and value of each

configuration:
R; = A(Registry path, Registry value,3(partial order)) (1)-1
F; = A(File path, Registry value, A(partial order)) (2)-1
M; = A(Metabase path, Metabase value, 3(partial order)) (3)-1
W; = 3(WMI Query,3(value),I(partial order)) (4)-1

WMI query checks WMI information with two elements: value and existence. Existence
is to check the existence status of certain query described in W;. From (1), (2), (3), and

(4) definitions, the notion of vulnerability is formally defined as follows:
Vulnerability = {UOSiSjS(]sksn (RL- X F; X My X Wl)},
where R; € RN,F; € FN,M; € MN,W, € WN (5)

The following example shows how this definition can be realized with real world cases:
Consider OVAL definition has a vulnerability description
{oval:org.mitre.oval:def:996} which deals with file and print sharing service in Microsoft
Windows operating systems. For instance, Microsoft Windows 95, Windows 98, and
Windows ME do not properly check the password for a file share, which allows remote

attackers to bypass access controls by sending a 1-byte password that matches the first

37

character of the real password. This vulnerability is defined with the following
composition of configuration properties: Vulnerability = {R; X R, X F;}. This definition
includes two registries and one file value. The first registry checks a key path of
HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion which value is
Windows 98. The other registry checks the existence of the following path
SYSTEM\CurrentControlSet\Service\UitiMan{5c773859-bb96-48fa-875b-

6a58aae072f4}. In addition, the value of the following file %windir%\System\vserver.vxd
is checked to determine whether its value is less than 4.10.2001.0. Once these R/, R2,
and F meet the each condition, the system declares a vulnerability entitled
oval:org.mitre.oval:def:966 is detected. Information collector waits for an event which is
triggered by any environmental changes. However, by processing only related
information, our approach enhances performance by reducing the number of

comparisons.

43 VULNERABILITY INFORMATION MANAGEMENT

To provide security standards to the agent in a seamless manner, we introduce
ontology as a security information provider. The system has to handle various existing
documents containing security problems published by different organizations. Even
though each standard document has a structured format, its structures and attributes vary.
Therefore, making a generic structure regarding to the security standards is needed. To
address this issue, we use ontology because it provides not only data and its relationships,
but also foundation of high-level reasoning. Particularly, a formal logic based on well-
defined data and knowledge bases in ontology helps users deduce the implicit and

inherent knowledge. In our system, ontology can extract and provide information about
38

operating system vulnerability, application security issues, and security metrics as
mentioned in OVAL. Based on preloaded data from ontology, agent can monitor and
generate reports of current system status associated with vulnerabilities based on OVAL.
To reduce errors to generate ontology from OVAL XML, the data structure is needed to
verify each vulnerability definition since OVAL definition has different structures in

criteria part.

The ontology approach consists of two parts: the first part is vulnerabilities based on the
operating systems and its dependencies of operating systems and the second part is to get
vulnerability with various structures. The second part of ontology approach needs two

inputs: security event and its operating system.

The ontology is coded in OWL (Web Ontology Language [20]) and the Jena API which
supports various types of OWL. The base case for algebra is a set of triple patterns which

is called basic graph patterns (BGP). The example of BGP is as follows:

{(?X, name, 7name), (?X, email, ?email)}

In this example, we can retrieve information of name and email of an entity X. A graph
pattern expression from basic BGP is based on dom(pt) which is the domain of pu and p(P)

which is the set obtained from a basic graph pattern P. The example of BGP is as follows:

p = {?X — R1, 7name — john, ?email — j@ed.ex}

P = {(?X, name, ?name), (?X, email, ?email)}

u(P) = {(R1, name, john), (R1, email, j@ed.ed)}

39

mailto:j@ed.ex
mailto:j@ed.ed)

The mapping pl, and p2 are compatible if and only if they agree in their shared

variables: p1(?X) = u2(?X) for every ?X € dom(ul) U dom (u2).

ul = {?X — R1, 7name — John}

pu2 = {?X — R1, ?email — j@ed.ed}

ul U p2 = {?X — R1, 7name — John, ?email — J@wed.ex}

The evaluation of the BGP P over a graph G is denoted as [[P]]s, which is the set of all
mappings p such that dom(p) is the set of variables in P and pu(P) is the subset of G. The
triple patterns and BGP are used for both system information extraction and detection of

vulnerability based on OVAL language.

4.3.1 OPERATING SYSTEM BASED SECURITY TEST

Figure 18 and 20 show OVAL definition and criterion which are connected to test
id. It also shows the extended definition that includes reference to the other definition in
OVAL language. Metadata in OVAL definition contains many attributes and one of
attributes is an affected attribute. An affected attribute has two sub attributes: platform
and product and the further information are described in [21]. Platform has the operating
system information that the definition can be applied to. By providing platform
information in xml, the identified operating system will be checked by each definition.
Product indicates that the definition is applicable when a specific application is installed
in a target system. Breaking the OVAL language into components, a schema enables
tools to reduce process overhead and execution time. However, the drawback of this

approach is that schema structure is difficult for a user to navigate since its structure

40

mailto:j@ed.ed
mailto:J@ed.ex

varies so it would have many different structures to be covered. Definition combines one
or more tests using logical operator AND or OR operator. It wraps metadata and criteria
to understand what and how processes will be taken for checking vulnerability on the
target system. Definition has a unique id which starts with ‘oval:’ followed by three letter
code ‘def’, and ending with integer. Each id is associated with criteria that outline what

will be tested. The criteria consist of one or more tests with logical AND or OR operator.

Again, the process overhead and execution in continuous monitoring are important
factors to achieve in our framework. In case that OVAL language continuously performs
checking and validating tests and reference definitions, the system resources will be
easily exhausted and execution time would be dramatically increased. Thus, our approach
uses only environment related data via ontology. The basic idea is to enumerate all

configurations including their values and potential vulnerable settings on a target system.

In Microsoft Windows operating systems, there are four types of vulnerability: File,
registry, WQL, and Metabase. To get vulnerability information based on type, we provide

a formal definition used in SPARQL for the extraction of the data from basic definition:

|[{(11(POPT 13(P)) FILTER s (P)}]|

= {ne € {[ls (PDI], OPT [z (P)1] }| e satisfies s (P3) 3 (©6)

In the equation 6, the set u, (P;) obtains vulnerability information based on operating
system in a target system, while the set u,(P,) handles null value which causes incorrect
set of values. The set u3(P3) categorizes the type of vulnerability returned from the test.

This method shows vulnerability information is first extracted and then it is categorized

41

by type based on the target system. The operator OPT is an extension of mappings in M,
with compatible mappings in M, and FILTER returns the value only if it satisfies the u

defined in dom(u).

4.3.2 DETECTION OF VULNERABILITIY
Guided by the SPARQL protocol, RDF query language and BGP in ontology
framework, we harness the expressiveness of ontology to classify OVAL definition
information from the following dimensions: 1) metadata including detailed information
of vulnerability definition; 2) criteria containing regulatory checking method; and 3)
domain-specific taxonomies of related test cases based on OVAL. Using object-oriented

ontology into an interconnected definition, it can be easily expanded to address any

domains.
Definition
i et =
Metabase Criteria
.-'-"ﬂ?__"‘"—-___ T
e / \“-\- H""i
PR
ﬂ x?u. ¥ ¥
Affected Definition Definition test
_.-"'f R"'\-\.___ _,__:-'-"'-'_ ._\-""'\-_____
el ™k =" ¥ ——y
Platform Product Object State Variable

A

Figure 18: OVAL structure

In Figure 18, OVAL structure is described. The structure of OVAL varies based on
operating system because each operating system has its own system. The part of metadata

shows information related to definition like operating system product, which causes

42

potential security issues. And criterion in a criteria part includes vulnerability path and
value that will be used for checking each configuration. For example, when an event
including installing application or updating patch occurs, agent tries to discover
corresponding objects and states from standard. These objects and states compose one
and more test ids so agent sends its test id to server for identifying additional information
related to a single vulnerability definition. When server receives information from the
agent, it starts to figure out additional information. Ontology for OVAL was derived from
OVAL structure. However, OVAL structures vary so ontology is the best way to address

the connection of anomalies among different operating systems.

Definition 1D

™ - . -

hasTi-tleDf_-f hasClzs OF I HEEC"-"Elde-ﬂhas"."ersiuan

1 i B

" o R
e ¥ a'l \ L e
Title Class 1K CVE ID Yersion
ril
_haPmduct0f ————hasPlatformOf
_—hswFamibyOf— ™
- ’*‘ ¥ 4
Farnily Product Platformm

Figure 19: Metadata structure in ontology

Figure 19 shows how metadata structure for a definition is constructed based on OVAL.
Each definition has a unique ID and the definition ID is straightly linked to attributes in
metadata for providing accurate information. The direct link from the definition ID to its
attributes can reduce unnecessary steps to reach the attributes that should be extracted.

For example, the system will use CVE ID associated with detected vulnerability
43

definition to calculate Common Vulnerability Scoring System (CVSS) scores. To
calculate risk scores based on event, ontology provides additional test id which relates to

vulnerability from detected events.

— =— 3 Definition ID ———a—— — —

- ey —

s o 5 * Thasidof TR
.--"’Ff 'l.:hhh“'“h-_ Y T o
I hasExDefOf hasTestiDOf hasidOf ™ hasidOf
Y o] \ ~
= b
b \ \
hasldOf Test 1D \ \
kY —
\ e 1 \
hasRefDefOf \ hasDbjectOf hasStatedf | |
\‘/” i hasVariahle| DOF
___» ObjectiD State ID Variable 1D
== Hm ™, \
/f hasHivef haskeyDF hasMameOf hasvalueOf ;:I
/ — L. B e /
\| Hive | | Key | | Marme | | value | P
---_\—____ _'_'_'_,_:-'-'-F

T hasOhbjectRefOf. -

Figure 20: Criteria structure in ontology

As illustrated in Figure 20, the definition ID has at least one test id and one extended
definition. Extend definition refers to another definition for verifying the configuration of
the target computer such as application, operating system and hardware. Referenced
definition has its own metadata and test id for the information. Definition can include
more than one test id. As shown in Figure 13, the vulnerability can be detected by
matching conditions of criteria. So, it is unnecessary to check all test ids. Instead, we
introduce the notion of clustered test ids to overcome exhaustive check with the

conditions in all test ids,

44

/ RN
\
hasIdOf hasTestIDOf: hasTestIDOf hasTestIDOf |hasTestIDOf hasldOf
1 \
| hasIgiOf haslf:IOf |
TestID 1 Test ID 2 Test ID Test ID
Clustered area 1 Clustered area 2

Figure 21: Clustered test ids

Clustered test id is constructed based on the type of operator. As shown in Figure 21, it
implies that Test Ids 1 and 2 are clustered with ‘AND’ operator , while clustered areas 1

and 2 are associated with ‘OR’ operator.

44 SECURITY ASSESSMENT METHODOLOGY

As mentioned earlier, NVD [22] provides not only standardized information of
most software products available today, but also risk level of each product by score
associated with CVE included in OVAL. The score is from CVSS [23] which is the tool
that enables security administrator to quantify the severity and risk of individual product.
However, CVSS could not be used directly to measure vulnerability in a particular
product because the design of CVSS only aims at an individual vulnerability. Due to this
reason, it is sometimes ignored that one product installed in a target system could cause
multiple vulnerabilities in the system. Moreover, most risk assessment approaches based
on CVSS do not reflect the concerns from security administrator who performs and
demands such security assessment tasks. The risk level can vary based on different
viewpoints on the assessment results. For example, if a security administrator is more

concerned with the impact on the system, the assessment results should give more weight

45

on the impact of a particular vulnerability. To achieve this goal, we use CPE, CVE and
CVSS to gather risk information assess the security posture of the software with the given
weight provided by security administrators. In the subsequent chapters, we present our
approach to obtain vulnerability measured by OVAL and store vulnerability information
into our repository. Then, we analyze the collected information using CPE, CVE and

CVSS based on exploitability and impact aspects.

4.4.1 MEASUREMENT OF SECURITY RISK

Rigorous and continuing risk assessment substantially helps protect systems from
risks and threats. If we use CVSS scoring system to measure risks in the system, we have
to deal with many CVSS scores since one product may have multiple vulnerabilities and
the vulnerability has many CVSS score based on status of product. It is necessary to
consider all vulnerabilities for calculating a risk score based on CVSS scores. Moreover,
the importance of computer is varied depending on the purpose of each system so that
security administrators may need to perform security assessment along with their own

security concern.

The CVSS base score metrics contain six vectors: Access Vector (AV), Access
Complexity (AC), Authentication (AU), Confidentiality Impact (CI), Integrity Impact
(IT), and Availability Impact (Al). Three factors, AV, AC, and AU show current state of
exploit techniques or code availability. It measures availability of exploit codes that could
increase the attack vector when it is available. For example, suppose web browser has a
set of ‘network’ in AV, ‘none’ in AU, and ‘low’ in AC. It describes that vulnerability

exists in a web browser if network is accessible, no authentication is required, and this

46

sever is easy to access. The impact of the system indicates how much it could be

compromised by the identified vulnerability.

When OVAL generates the results in XML format, Common Platform Enumeration
(CPE) is included for defining and explaining the conformance of IT products [34]. CPE
has three categories: operating system, application, and hardware. In our approach, we
check the system including running applications, operating system, and hardware with

OVAL and categorize the detected vulnerability scores by CPE.

As we mentioned above, we categorize CVE based on CPE. Suppose a software product
is p in CPE and the number of vulnerability is n associated with the product p which is

denoted as follows:

n
p= Z pi
=1

All CVEs in a product p is 7 which is represented as follows:
T= AV x AC x Al x Il x CI x Al

We first separate the CVSS scores into two groups. The one of groups is categorized by

exploitability as follows:
InT 3 EXjand T 3 EX;

EX; = {AV;, AC;, AU, 1I;, CI;, Aly} and EX; = {AV}, AC;, AU, 1I;, CI;, Al}}

EX; = EX; where AV;=AV;, AC; = AC;, and AU; = AU;

47

This means that a group is categorized only if the scores of AV, AC, and AU are identical
while, II, CI, and Al do not need to be same. The exploitability-based risk score is
represented as follows:

n
EX = Y (EXy)
l

The set of impact /Mj corresponding to the EX®* is IM®*, the impact-based risk score is
formulated as follows:

n
IMex = z (IMy),

Jj=1

In addition, we calculate the vulnerability of IT product based on weights from the
security administrators. Each weight shows the importance of concern on each vector: w,,
wp and w, denotes the importance of operating system (o), importance of hardware (/)
and the importance of application (a), respectively. Also, we introduce two additional
inputs from security administrators to express their concerns between exploitability and
impact factors: we represents the exploitability weight and wiy, shows the impact weight.
By using these weights and vulnerability scores grouped by CPE, we can compute the

overall vulnerability scores.

Exploitability-based scoring method is represented as follows:

pi(osi)=(wa*o+wﬁ*h+wy*a)

n EXlex m IMex
St rovex + .
’ Zi=1 (;-lzl EXjEX) * Wex Zi—l <Zm IMex) * Wim

48

The assessment categorized by impact is formulated as follows:

pi(osi)z(wa*o+wﬁ*h+wy*a)

n Exim m IMM™
* —_— | * W, + Z * W
Zi=1 (;}=1E jlm> ex o1 <Zm IMLm) im

If the vulnerability is categorized by exploitability, the same exploitability will be added

to the group without considering impact values.

As shown in the formula above, we define the risk level based on CPE and CVSS by the
given weights from security administrator. Given information in the server, we first
analyze the installed IT products by CPE and identify possible combination of
exploitability (4V, AC, AU) and impact (II, CI, AI) values. These combinations can be
basic characteristics of the vulnerability and it reflects IT product characteristics as well.
The combination of exploitability and impact can be 27 possible cases, respectively. So,
there exist 54 cases as security metrics that we can use to evaluate. For each case, we can

also rank vulnerability among others based on security administrator’s point of view.

49

5. IMPLEMENTATION AND EVALUATION
In order to realize the proposed approaches in Chapter 4, we implement the automatic
system to measure security vulnerability in a target system and generate risk analysis

results. In our implementation, we focus on the Microsoft Windows operating systems

As mentioned in Figure 14, the architecture consists of three components: OVAL
ontology server, vulnerability server, and agent. OVAL ontology server is the server
providing vulnerability information to the agent in conjunction with the target computer’s
characteristics and it also returns relevant vulnerabilities. Vulnerability server verifies
certain vulnerability and invokes risk assessment in a target system. The role of agent is
to provide system characteristics and monitor potential fault configurations that can be
exploited by the attacker. In subsequent chapters, we will discuss how we implemented

each component and evaluation results.

5.1 IMPLEMENTATION DETAILS

Our framework is realized as an event-based monitoring system. Figure 22 shows a
high level architecture of our system with three components. The left part of architecture
is ontology server that can support information to the agent which runs in various
environments. The agent exists in the middle to provide continuous monitoring
vulnerable events that may cause vulnerability in the system. And the rightmost
component in the architecture is the vulnerability server, which is used by security

administrator to figure out the level of risk for a target system.

50

OVAL ONTOLOGY SERVER Netwark AGENT Netwerk VULNERABILITY SERVER

{supporting the vulnerability information) - (Gathering and scanning system information) _ (Re-checking target machine and generating report)

ml OVAL DB Common Information Model
Generator i —Operating system—————— Result Analysis
i
/’__L_\ ‘ AGENT |

I €
| I nd
Detected 7 3 =
Ontology OVAL winerability Windows, Linux, iOS
Generator R : e OVAL
epository Definition
— Vaineraniity acEll interpreter
Information AGENT
‘ I
Android, 105 (—(urr'mml:atu
vuinerability
—______&
Founded
< o Vulnerability

Vuinerability e CloudE
Information
] AGENT

Detected :
vuinerability EC2, skyDrive

L3

ommunicafor
Vulnerability
Information

Provider

[
vy

Figure 22: Event-driven Continuous Monitoring Architecture

In this chapter, we first discuss implementation details of each component in the event-
driven continuous monitoring framework. Then, we articulate the features of our security

assessment.

5.1.1 AGENT

Agent modules are implemented in Java and j-Interop library which enable
systems to interoperate with COM and DCOM components. The agent delivers computer
characteristic of the installed machine, receives the server information from vulnerability
server, finds matched vulnerability on the current configuration and monitors events
relating to the ones specified in the standards. The agent has functionalities to gather
system characteristics and send characteristics to vulnerability server. Once vulnerability
server picks an agent in a target system, vulnerability server sends server information so
that the agent can collect vulnerable configurations from ontology server. The
vulnerability information receiver module passes the received security configuration

information to parse through configuration information with the regular expression.

51

~—Agent -

Computer Properties Collector

l

Vulnerability Information
Receiver

!

Vulnerahility Information
Parser

l

Scanner

Vinerabilivy
Infarmatran

il

103je3UNWWoY Juady

Continuous Vulnerability
Monitor Checker

vt

Event Provider

i}

Figure 23: Agent Diagram

The scanner component consisting of two sub modules: continuous monitor and
vulnerability checker in Figure 23. The vulnerability checker is to scan vulnerability
information from vulnerability information parser and figure out existing security
problems on the system. The continuous monitor is mainly focused on the event which
can trigger security issues on the system. The continuous monitor subscribes specific
paths described in security standards in OVAL ontology server for detecting vulnerable
events caused by end users. Once the vulnerable events are occurred and detected by the
continuous monitor, the Subhandler in scanner requests additional information to the
server with respect to the matched events. Vulnerability checker re-scans additional
information in the system and determines current changes related to security breaches on
the system. And detected vulnerabilities in the target system are sent to the vulnerability

server by Subhandler.

52

(—Scanner ~

Continuous Vulnerability
Monitoring Checker

File Metabase Regular
Event Event Expression
Handler Handler Handler

Mormal
SubHandler [« Handler

¥
[

Registry
Event Handler

101EUNWILIOD

L]

Figure 24: Continuous Monitor Diagram

Continuous monitor consists of three threads to check multiple events at the same time.
Security standards for Microsoft Windows operating systems mainly deal with four
configurations: registry, file, Metabase and WQL. Event handler monitors the changes
and reports vulnerable configurations. Of these event handlers, WQL is not event-driven
so it does not need to be monitored. Three event monitors keep watching the changes of
system configuration continuously. Each event handler receives the notification of an
event from WMI repository. One of handlers is the RegistryEventHandler which waits
for an event related to the registry path and wvalue. This handler wuses
RegistryTreeChangeEvent class in WMI class which observes a path and its sub-path in
the registry by using two conditions: hive and root path of a specific path.
RegistryTreeChangeEvent can capture three events: creation, modification, and deletion
of sub-registry path or value. However, this RegistryTreeChangeEvent class does not
monitor a non-existent path so that pre-creation is required before starting to monitor.
Another handler is the FileEventHanlder which gathers the collection of data from WMI
by using InstanceOperationEvent. This _ InstanceOperationEvent class monitors

particular files, including files that do not exist in the logical drive currently. The

53

__InstanceOperationEvent consists of three classes: [InstanceCreationEvent,
__InstanceDeletionEvent, and __ InstanceModificationEvent. Each class stores events of
creation, deletion, and modification of specific information on a file, respectively. The
CIM DATAFILE class represents the collection of data related to a target file. By using
these two classes, scanner can get which and how file is changed by an event. The last
handler is MetabaseEventHandler which uses CIM DATAFILE to look at Metabase file
which is the collection of data for Internet Information Service (IIS). As the handler uses
CIM DATAFILE, it can detect changes on file modification of the Metabase file in the
system. The continuous monitoring function has SubHandler which handles sub-
procedures when an event is considered as vulnerability captured by each EventHandler.
SubHandler requests the event detected by SubHandler and checks additional
vulnerability information to confirm if security problems occur. SubHandler has its own
thread until finishing the task so that the agent could have many SubHandlers depending
on the number of events. SubHandler has different functions comparing with
EventHandler that handles regular expressions. Since OVAL definition provides a path or
a value of the vulnerability information based on a regular expression so that SubHandler
needs to manage regular expression in a proper manner to capture fault configurations in

the system.

Algorithm 1 Intitial Checker

1: procedure INITIAL CHECKER

2 character < collectSystemCharacteristics()

3 dataList « getVulnerabilityInfoFromServer(character)
4: foundList + Checker(dataList)
5
6:

subChecker(foundList)
end procedure

54

Algorithm 1 shows how an initial check works without a regular expression. Initial
checker compares security standards with system configuration since the target computer
might have potential security problems in the current system configuration. The initial
checker starts with the collection of system specifications. When it gathers system
characteristics, it sends the collected data to ontology server and gets vulnerability
information. Vulnerability information is then used to check the target system. As
summarized in Algorithm 2, the checker receives data list from the initial checker and
takes types to check vulnerabilities associated with the type of vulnerability. As
mentioned earlier, Microsoft Windows operating systems have four types of vulnerability
determined by the configuration check. The tool scans configurations and compares it
with the vulnerability information from the previous procedure in Algorithm 1. The agent
sends the detected vulnerability information to vulnerability server and vulnerability

server generates a report based on the initial check.

Algorithm 2 Checking Computer System
procedure CHECKER(datalList)
while datalist is not null do
type + getVulnerabilityType (data)
4: if type = registry then
found + registryCheck(data)
else if type = file then
found + fileCheck(data)

8: else if type = metabase then
found + metabaseCheck(data)
else
found + wqlCheck(data)
12: end if

if found eq true then
foundList « data
end if
16: end while
return foundList
end procedure

55

As discussed earlier, we use both normal expression and regular expression to compare
the results from the initial configuration check. The algorithm 4 shows how to check a
target system in regular expression. The regular expression handler continues to check if
the registry path exists. The registry paths that are matched with regular expression will
be stored and re-scanned to discover all sub-paths. If there is no certain path comparing
with security standards, the path will be removed from the path list. After collecting all
paths matched with this regular expression, the agent starts checking values in the target

system.

Algorithm 3 Regular Expression Handler

1: procedure REGEXHANDLER(data)
2 insert data substring into datapath])|
3 i+ 0
4 while i = (datapath array length) do
5 for £ = 0 to (paths array length) do
6 currentpath + parths(k]
7 end for
8: totalpath < currentpath + datapath]i
o: if datapathli] is exist then
10: pathsi] = datapathli]
11: else
12: remove pathsi]
13: i—i-1
14: break;
15: end if
16: i+—i+1
17: end while
18: if i = (datapath array length) then
19: value + get information by data path
20: if value = data value then
21: vulnerahility found
22: else
23: vulnerability not found
24: end if
25: end if

26: end procedure

5.1.2 ONTOLOGY SERVER
Ontology server was implemented by JAVA, MySQL, Apache JENA and SPARQL.

Apache JENA is widely used ontology builder which is Java framework for semantic

56

web applications. Ontology server uses OVAL definitions but data extraction procedure
is different from the methods used by OVAL. To utilize security standards for a target
system based on system characteristics received from the agent, we first transformed and
stored OVAL definitions into ontology server so that we can build a well-defined

knowledge base based on OVAL.

OVAL ONTOLOGY SERVER

(supporting the vulnerability information)

—
L | OVALxml file N OVAL DB
Rep(())snory Generator
r
OVAL from xccdf \/\
Ontology o
Generator s 5
Database 3
=
>
2.
=
OVAL \I/uflnerabi.lity < S
Ontolo: nformation
National ey Provider
Vulnerability 7

Database (NVD)

Agent Info Agent
File Checker

Vulnerability Source

Figure 25: Ontology Server Diagram

Ontology server has several components for providing information to the agent. The
OVAL DB generator parses and stores OVAL to database. The database is able to
produce XML files that include the OVAL definitions. Criteria contained in OVAL
definitions have different structures so there is possibility to occur errors while
transforming ontology to OVAL XML files directly. Therefore, we leverage database to
maintain OVAL information and reduce potential errors in the transformation [7]. As

shown in Figure 25, DB generator parses OVAL XML file and stores it into database.

57

Since there are many criteria that contain vulnerability information by object and state,
several tables can be created in database. In other words, one definition may have

multiple criteria for defining vulnerability.

_] file_obj v _] file_sta v
ID VARCHAR(30) ID VARCHAR(30)
version VARCHAR(1) Version SMALLINT(&) m wmi_obj v
smlns VARCHAR(50) Xmlns VARCHAR({50) ID VARCHAR(30)
Filepath VARCHAR(100) datatype VARCHAR({10) Version SMALLINT(8)
:l criterion v Filename W ARCHAR(50) operation VARCHAR(15) i O ¥mIns VARCHAR(50)
Index INT(11) > vaue VARCHAR(50) I Mamespace Y ARCHAR(50)
Criterial_Operstor VARCHAR(3) N 5 > | Wal VARCHAR(50)
[>
Criterial_Com ment ¥ ARCHAR{200) I 1 — _6 I
"> Criterial_ex_def test_ref VARCHAR(3D) | M M |
|] test v |
Criterial_criterion_comment1 Y ARCHAR{200)] — — — — R |
N test_ID VARCHAR(30) -
O Criteria1_criterion_test_ref1V ARCHAR(30) | | | _ reg_obj v
o o | | > test_Version SMALLINT(E) |
Criterial_criterion_comment2 ¥ ARCHAR(200) | | | ID VARCHAR(30)
test_Comment VARCHAR(200]
> Criteria1_criterion_test_ref2 VARCHAR(3D) B——1 I -0+ - 200 g ——a Version SMALLINT(s)
) | | test_chk_existence VARCHAR(20)
> def id VARCHAR(30) | | XmIns VARCH AR (50)
| test_Chk VARCHAR({10)
> | | —— Hive VARCHAR(50)
| test_¥XmIns VARCHAR(50) |
¥ | | 0 | Key_Op VARCHAR(10)
— — 4 — — — Ol O file_object_ID VARCHAR(30) B
l_ _____ _1- o Key_value VARCHAR(50)
i Fam_state_ID VARCHAR(30)
| Key_name VARCHAR(20)
= Q I O reg_object_ID VARCHAR(30) .
metadata v -
_| definition v | & fam _object_ID VARCHAR(30)
Index INT(11
ndex INT(11) def ID VARCHAR(30) L — — — O < wmi_object_ID VARCHAR(3D) -
@
def_ID VARCHAR(30) 41 def Version SMALLINT(5) < reg_state_ID VARGHAR(30) | I reg_sta v
Title VARCHAR(200) I) def Cless VARCHAR(20) & file_state_ID VARCHAR(30) I 1D VARCHAR(30)
Family VARCHAR(10) | > > | Version SMALLINT(s)
Platform 1V ARCHAR(10] | I .
(10) - i :]E v [¥mlns VARCHAR(50)
Platform 2 V ARCHAR(10) * é - 9 Datatype VARCHAR(10)
Platform 3 V ARCHAR (10) _1 reference v m 5 "] fam_sta v Value VARCHAR(10)
amily_obj =
Platform4 Y ARCHAR(10) ref_ID VARCHAR(20) ID VARCHAR{30) .
Platform 5 ¥ ARCHAR(10) f)] ID VARCHAR(30)
» ref_Source VARCHAR(3 i
Description VARCHAR(200) f_ i (40) Yersion SMALLINT(E) LS
» ref U VARCHAR(40)
< o) Comment VARCHAR(100) Coment VARCHAR(50)
& def 1D VARCHAR (30 "
] xmins VARCHAR(50) %m Ins VARCHAR(50)
> ~ Family VARCHAR(10)
>

Figure 26: OVAL Repository database structure

To retrieve vulnerability information from database, the join operation should be
committed. However, join operation combines tuples from different relations so it is
relatively expensive operation [28]. Instead of optimizing join operation, we use ontology
generator to create ontology file. The ontology generator retrieves data from database and

generates ontology file by using Apache JENA library. By using the notion of clustered

58

area, the server efficiently extracts data related to detected vulnerability in the system. In
Chapter 5.2, we provided the detailed information how the ontology is constructed and
handles the relevant tasks. The other component in ontology server is vulnerability
information provider. The vulnerability information provider uses SPARQL to extract
data from owl file that contains security data and its relation. This component has two
functionalities to support the agent. One is to deliver security standards to the agent based
on system characteristics gathered by the agent in a target system. The characteristics
include MAC address, operating system, IP addresses, user id, password, and so on. The
other is to supply test-based vulnerability information in the OVAL definition to the

agent.

<Criteria operator="0OR">
<Criteria operator="AND" comment="Adobe Reader §"=
<extend_definition comment="Adobe Reader & Series is installed” definition_ref="owal:org.mitre.oval:def.6380"/ >
<criteria operator="0OR" comment="Adobe Reader 8, the sub-version is wulnerable"=>
<criterion comment="Adobe Reader is less than 8.2.1" test_ref="owval:org.mitre.oval:tst 2061 8"/ =
<criterion comment="Adobe Reader library is less than 8.2.1" test_ref="oval: org.mitre.owval:tst: 20935"/ >
< /criteriax
<fcriteria=
<criteria operator="AND" comment="Adobe Reader 3"=
<extend_definition comment="Adobe Reader @ Series is installed” definition_ref="owal:org.mitre.oval:def.6523"/ >
<criteria operator="0OR" comment="Adobe Reader 9, the sub-version is wulnerable"=
<criterion comment="Adobe Reader is less than 9.3.1" test_ref="owal.org.mitre.oval:tst. 20888"/ >
<criterion comment="Adobe Reader library is less than 3.3.1" test_ref="owval: arg.mitre.owval:tst: 20828"/ =
</ criteria=
<fcriteria=
=<criteria operator="AND" comment="Adobe Acrobat 8"
<extend_definition comment="Adobe Acrobat 8 Series is installed" definition_ref="owal:org.mitre.oval:def. 6452"/ >
<criteria operator="0OR" comment="Adobe Acrobat &, the sub-version is vulnerable"s
<criterion comment="Adobe Acrobat is less than 8.2.1" test_ref="owal org.mitre.oval:tst. 21083"/ >
<criterion comment="Adobe Acrobat library is less than 8.2.1" test_ref="owal arg.mitre.oval tst: 20897"/ =
</criterias
<fcriteria=
<criteria operator="AND" comment="Adobe Acrobat 9"
<extend_definition comment="Adobe Acrobat 3 Series is installed" definition_ref="owal:org.mitre.oval:def:6013"/ =
<criteria operator="0R" comment="Adobe Acrobat %, the sub-version is vulnerable"=
<criterion comment="Adobe Acrobat is less than 9.3.1" test_ref="owal org.mitre.oval:tst: 20398"/ >
=criterion comrment="Adobe Acrobat library is less than 9.3.1" test_ref="owal: org.mitre.oval:tst: 20841 "/ =
</criteriaz
<fCriteria=
<fcriterias

Figure 27: OVAL definition criteria

Figure 27 shows a sample OVAL definition. This OVAL definition has four different
criteria that cause security issues in Adobe Reader. If the agent detects

oval:org.mitre.oval:def:6390 in the system and then ontology server returns two test IDs

59

such as oval:org.mitre.oval:tst:20618 and oval:org.mitre.oval:tst:20935 for helping the

agent check the related vulnerability in the system.

5.1.3 VULNERABILITY SERVER

Vulnerability Server was implemented in Java. Based on the retrieved
vulnerability information, this server re-verifies vulnerabilities that are detected by the
agent in the target system. This server has three modules: result analysis, auto
assessment, and agent management. Result analysis module helps security administrators
generate a report based on the detected vulnerabilities. This module contains two
components: security assessment and report display. Security assessment shows
significant vulnerabilities in a target system based on the importance factor described in
Chapter 4.4. Report display component provides analysis results of the target system. The
second module is auto assessment that has three components: oval parser, oval merger,
and verification tool. Oval parser is to split oval definitions by ID and oval merger
merges only related IDs to scan the target system. The part of agent management mainly
controls each agent and this module allows each agent to access both vulnerability server

and ontology server. In other words, only authorized agents can access both servers.

The interpreter in auto assessment module only receives the merged oval information
related to events acquired from agents. Since the oval definition interpreter needs
information from a target system, the property handler helps the interpreter establish a
session with a target system remotely by creating config.properties. Once auto
assessment module receives vulnerability data from the agent, auto assessment module

generates the vulnerability result through result analysis module including vulnerability

60

information from document and the level of risk based on weights from security

administrators.

Figure 28 depicts the above-mentioned procedures and Algorithm 4 summarizes our risk

VULNERABILITY SERVER

Result Analysic

Security Assessment

Repeort Display

T Auto A ant
ommunicator ———,
OVAL
Definition Detectgc_l
Interpreter Vu;ner?hnw
{Provided by NIST) ecelver
[]
_B.‘__ Property Handler
Config.
properties ¥
OVAL MERGER ovaL
_b. Defintion
Merged [#
L OVAL PARSER [+ oval
XML file
Agent M t
Agent |« » Agent Management
List

JolB2|UnNIWoY 13AIas ANjigeiauinp,

calculation approach mentioned in Chapter 4.4.1.

61

Figure 28: Vulnerability Server Architecture

Algorithm 4 Risk Assessment
procedure RISK CALCULATION(os, app, hw, ex, im, list)
maxIm = 0

1:
2:
3 maxEx = 0

4: for 0 to epearray.length do

5 for 0 to category.length do
6 impact = 0

T exploitability = 0

for 0 to cve.length do
impact + impact + cve.impactScore

10: exploitability < exploitability + cve.exploitability
11: end for
12: category.setlm(impact)
13: category.setEx(exploitability)
14: maxIm ¢ maxIm + impact
15: maxkEx < maxEx + exploitability
16: end for
17 end for
18: for 0 to cpe Array.length do
19: result = 0
20: for 0 to cpeArray.category.length do
21: result « ((category.getEx()/maxEx) * ex) + ((category.getlm()/maxlm) * im)
22: category.setScore(result)
23 end for
24: end for

25: end procedure

5.2 EVALUATION RESULTS
In this chapter, we describe comprehensive and analytical evaluation results of our

system to demonstrate the feasibility and scalability of our approach.

In order to test the effectiveness our solution, we measured the extraction time to retrieve
vulnerability information from ontology. Our experiment was performed with a desktop
computer (Core2 quad 9650 3.0 GHz CPU, 16GB RAM), and multiple Microsoft
Windows operating systems including Windows XP, Windows Vista, Windows 7, Server
2003 and Server 2008. The extraction task is divided into two parts. One part is to
measure the number of test-based vulnerability retrieved for a particular operating
system. As mentioned earlier, our tool should check and obtain the path of the
vulnerability before starting to launch a monitoring task. Therefore, this measurement

shows whether our system legitimately retrieves relevant vulnerability.

62

Test-based Vulnerability

800 B Registry
M File
600

400

200

0
Windows XP Windows 7 server 2008

Windows vista senver 2003

(1) Number of retrieved vulnerability

Elapsed Time

4 B Registry
M File

0.8
Windows P Windows 7 server 2008

Windows vista server 2003

(2) Vulnerability retrieval time

Figure 29: Performance measurement in ontology

Figure 29 shows the number of vulnerability retrieved from OVAL ontology and the

performance in extracting vulnerability information based on registry and file from

ontology.

The other part is to retrieve tests and definitions from OVAL ontology server. Figure 30

shows that the extraction time is consistent--no matter how many test ids are retrieved

from ontology. In ontology, each definition contains two types of criterion: test and

extended definition. The test contains paths and values for the vulnerability while the

extended definition mainly refers to the other definition.

The number of retrieved vulnerability in ontology

1200

o
=)
=]

m
o
=]

N
o
=]

Mumber of Related “ulnerahilities
2
=]

[~
o
=]

o

= tet21180
tst 20847
st 20828
tet2588
st 40559
tst 11787
tet 20561 |
tst3123 |
tst 10688
tst27443
st |
tst2916 |
st 11127 |-

<

ulnerability

63

Time measurement of retrieved vulnerability in ontology
B

Time (sec)

Detected Vulnerahility

(1) Number of Retrieved Vulnerabilities (2) Respond Time of the Vulnerability

Figure 30: Performance measurement in ontology

Figure 30 (1) shows the number of vulnerabilities retrieved from ontology and (2)
describes the extraction time of retrieved vulnerabilities regarding to the detected
vulnerability in the agent. In Figure 30 (1), there are more than 1,000 vulnerabilities
extracted by one test id occurred in target machine. We found two reasons why one test
id could have a relation with many test ids. One reason is that there are many criterions
which have a AND relationship with detected test id in the definition. And the other
reason is that test id is used in the multiple definitions. In figure 30 (2), we analyze the
different reasons for time variations: detection test id in clustered area and refer to
different definition. The case of detection which is made in clustered area in Figure 21
decreases the extraction time. Based on analyses from both graphs, we derive the result
that extraction time takes at most 5 seconds in many different numbers of retrieved

vulnerabilities.

For the measurement of performance in agents, we built a testbed in a cloud by using
Openstack. Each virtual machine image represents one of the following systems:
Windows 7 and Windows Server 2008 respectively. For brevity, our measurement

ignored network latency but focused on the vulnerability assessment.

64

Windows 7
Envrionment Number Of Registry Check Number Of File Check
Repistry Time {sec) File Time (sec)
Core 1, 2GB RAM 319 24.314 81 12.388
Core 2, 2GB RAM 319 14.887 &1 15.536
Core 4, 2GB RAM 319 17064 8l T.254
Windows Server 2008 R2
Envrionment Number OF Registry Check Number Of File Check
Registry Time (sec) File Time (sec)
Core 1, 2GB RAM Fi 2.728 3 0.141
Core 2, 2GB RAM 7 2.979 3 0.062
Core 4, 2GB RAM 7 3.308 3 0.078

Table 1: Initial Evaluation in Agent Tool

As summarized in Table 1, the performance in single core and 2GB RAM takes 24
seconds to check the system but takes 15 seconds to scan and detect the vulnerability in
the system. However, the results between dual core and 4GB RAM and quad core and
8GB RAM did not indicate any significant changes. In other words, our agent could

perform the tasks in a timely manner without producing any unexpected overhead.

Based on the risk assessment approach introduced in Chapter 4.4.1, we have performed
several experiments to determine how the weights from security administrators can affect
our assessment results. The assessment considers at most 54 groups of vulnerability in a
product found in a target system and each group is categorized by either exploitability or
impact. The dataset is collected from XML files by jJOVALAJi tool. For instance, our tool
checks vulnerability with a locally installed product in a target system and tested it again
in vulnerability server with JOVALJdi. In order to analyze results with given weights, we
performed several experiments in a desktop computer (CPU 2.80GHz, 4.00GB RAM,

Microsoft Windows 7 operating system).

65

APACHE

0.02

Mozilla Firefox

0.03
0.015 A 0.023
0.01 x 0.016 \ //\
A\ /
0.005 0.009 x \

0 0.002
AVINIACIMIALN AVINIAC LIALS C:PIENIAN AV MIAC WAL CiMIMIAP CIMIPIAN
AVUAC LALLM CININIAG CNIMNIAR AV MIACHIALN C:.ClCIAC
W 1ioa0e Il 1AMI0.50.5 10,8101 | REGIORTOREN ROUIGEE 1MM10.9/0.1
(1) Assessment Result in Apache (2) Assessment Result in Firefox

APPLE Safari

0.06

0045 \

0.03

WA

a

AV:NIAC MAUN CPIMIAN C.PILPIAP
AV LIACMIAUN C:CICIAC
W 1miooe Il AANI0S0S 111110.9/0.1

(3) Assessment Result in Safari

Figure 31: Assessment Results

Figure 31 illustrates the analysis results based on the different viewpoints from security
administrator. All CPE values set to 1 because we mainly concentrate on changes in
CVSS score based on given weights from security administrator. Figure 3 (1) shows that
Apache product has vulnerabilities in the system but the most critical vulnerability in the
system has been changed depending on the value of exploitability and impact. For
example, the significant vulnerability was changed after setting up the exploitability
impact to 0.9 and 0.1, respectively. We could obtain similar results in Mozilla Firefox

and Apple Safari products. In addition, the result shows that these weights not only

66

change the most significant vulnerability but also affect the ranking of vulnerabilities. As

a matter of fact, none of critical vulnerability is affected.

Adobe Reader Windows Mail
o1 0.02
0.07 __,.—//_\ 006
0.05 / 0.012
0.025 / \ 0.008 I
/
0 0.004
AVIACMAL:N CCICIAT AVNIACMIAUN C:CICIAC CICINIAN
AVNIAC:LAUN CPILPIAP
W inA0s W 1AA0E0S 11 A10.9/0.1

W 1Am0ans W 1AM0505 1M110.910.1
(1) Assessment Results in Adobe Reader (2) Assessment Results in Windows

Figure 32: Assessment Results (Less Change)

We have observed that some experiments show almost constant results under different
weights. Figure 32 illustrates both products were not affected by weights from security
administrator. However, CPE factors such as operating system, application, and

hardware, could change the significant vulnerability and ranking of vulnerability

67

6

CONCLUSION

In this thesis, we have proposed an innovative security assessment system that is

designed to facilitate not only event—driven continuous monitoring, but also automated

risk assessment accommodating various environmental requirements. Event-driven

continuous monitoring system is capable of monitoring suspicious events, which could

lead security risks based on security standards in OVAL. Also, the proposed system can

be easily adapted to various environments in a seamless manner. In addition to the event-

driven continuous monitoring, we have also introduced the tool that can provide and

expand vulnerability information with high-level reasoning and decision-making. Our

experiments demonstrated we could accomplish the comprehensive security risk

assessment based on security administrator’s view point.

6.1

CONTRIBUTION

The major contributions of this thesis are summarized as follows:

1.

We articulated the need for event-driven continuous monitoring including
identified challenges and design criteria in building corresponding security
assessment systems.

We proposed systematic approaches to realize event-driven continuous
monitoring framework that automatically assesses vulnerabilities and calculate
risk scores based on multiple viewpoints from security administrators.

We implemented a proof-of-concept prototype based on our event-driven
continuous monitoring framework. We evaluated our system with various use

cases for each component and our results showed an event-driven continuous

68

monitoring system could analyze vulnerable configurations and calculate risk

scores in a seamless and timely manner.

6.2 FUTURE WORK
Our future work includes the refinement and extensions of the event-driven continuous
monitoring framework. The current approach cannot perform continuous monitoring for
the registry events after the reinstallation of product followed by the uninstallation. This
problem is attributed by one of followings: inability to create trace logs, stopped agent,
and data corruption [30]. The inability to create trace logs is the main reason that
subscriber of events cannot receive the event notification from the provider. We will
further study to overcome this issue so that we can even detect any changes in system
configurations caused by the uninstallation of products. In addition, our system is focused
on Microsoft Windows operating systems. However, we can extend the system to support
the different operating systems or environments in a seamless manner. We plan to extend
our approach to support various environments based on CIM-based approach. In addition,
we will investigate a more efficient and effective way to enhance an ontology-based
security assessment including streaming reasoning and robust knowledge base for

vulnerabilities.

69

7 REFERENCES

[1] Mirko Montanari, Roy H. Campbell, “Multi-aspects security configuration
assessment”, SafeConfig, November 9, 2009

[2] John Pescatore, “Dealing with Federal Continuous Monitoring Security
Requirements”, NIST SP 800-137, October 2012

[3] Stephen Quinn, Karen Scarfone, David Waltermire, “Guide to Adopting and Using
the Security Content Automation Protocol (SCAP) Version 1.0”, NIST SP 800-117,
January 2012

[4] David Waltermire, Stephen Quinn, Karen Scarfone, Adam Halbardire, “The
Technical Specification for the Security Content Automation Protocol (SCAP)”, NIST SP
800-126, September 2011

[5] Ron Ross, “The Future of Cyber Security, NIST Special Publication 800-53, Revision
4”, June 2013

[6] Guntars Bumans, “Mapping between Relational Databases and OWL Ontologies: an
Example”, Scientific papers, University of Latvia, Vol. 756, 2010

[7] MAN LI, XIAO-YONG DU, SHAN WANG, “Learning ontology from relational
database”, Machine Learning and Cybernetics, August 2005

[8] Department of Homeland Security Federal Network Security Branch, “Continuous
Asset Evaluation, Situational Awareness, and Risk Scoring Reference Architecture
Report (CAESARS)”, September 2010

[9] Distributed Management Task Force (DMTF), “Profile for CIM”, August 2009

[10] Jos de Bruijin, “Using Ontologies (enabling knowledge sharing and reuse on the
semantic web)”, DERI-2003, October 2003

[11] Ora Lassila, Ralph R. Swick, “Resource Description Framework (RDF) Model and
Syntax Specification”, W3C, February 1999

[12] Dan Brickley, R.V. Guha, “RDF Vocabulary Description Language 1.0: RDF
schema”, W3C, February 2004

[13] Eric Prud’hommeaux, Andy SeaBorne, “SPARQL Query Language for RDF”, W3C,
January 2008

70

[14] Jiewen Huang, Daniel J. Abadi, Kun Ren, “Scalable SPARQL Querying of Large
RDF Graphs”, VLDB 2011

[15] Stephen D. Quinn, Murugiah Souppaya, Melanie Cook, Karen Scarfone, ‘“National
Checklist Program for IT products — guidelines for checklist users and developers”, NIST
SP 800-70, February 2011

[16] National Institute of Standards and Technology (NIST), “Guide for applying the risk
management framework to federal information system”, February 2010

[17] National Institute of Standards and Technology (NIST), “Guide for assessing the
security controls in federal information systems and organizations”, June 2010

[18] James Murray D. “Windows NT Event Logging 1* Edition”, September 1998

[19] http://www.informationweek.com/government/security/federal-cybersecurity-
incidents-rocket-6/231700231

[20] Deborah L. McGuinness, Frank van Harmelen, “OWL web ontology language”,
http://www.w3.org/TR/owl-features/, February 2004

[21] W3Counter for Global Web Stats, www.w3counter.com/globalstats.php, September
2013

[22] NHS and NIST, National Vulnerability Database (NVD), “automating
vulnerabilities management, security measurement, and compliance checking”,
http://nvd.nist.gov/scap.cfm

[23] Peter Mell, Karen Scarfon, and Sasha Romanosky, “A complete Guide to the
Common Vulnerability Scoring System (CVSS)”, Version 2.0, Forum of Incident
Response and Security Teams, http://www.first.org/cvss/cvss-guide.html

[24] JuAn Wang, Minzhe Guo, Hao Wang, “Ontology-based Security Assessment for
Software Products”, CSIIRW, April 2009

[25] Bill TSOUMAS, Dimitris GRITZALIS, “Towards an Ontology-based Security
Management”, AINA, 2006

[26] Dinesh Chandra Verma, “Principles of Computer Systems and Network
Management 2009 edition”, 2009

[27] Edgar R. Weippi, “Improving Storage Concepts for Semantic Models and
Ontologies”, Idea Group, 2009

71

http://www.informationweek.com/government/security/federal-cybersecurity-incidents-rocket-6/231700231
http://www.informationweek.com/government/security/federal-cybersecurity-incidents-rocket-6/231700231
http://www.w3.org/TR/owl-features/
http://www.w3counter.com/globalstats.php
http://nvd.nist.gov/scap.cfm
http://www.first.org/cvss/cvss-guide.html

[28] Carlos Ordonez, “Evaluating Join Performance on Relational Database Systems”,
Journal of Computing Science and Engineering, December 2010

[29] J. Patrick Thompson, “Web-Based Enterprise Management Architecture”, IEEE
Communications Magazine, March 1998

[30] IBM, “IBM Trivoli”, Monitoring, Version 6.1, September 2006

[31] Fang Yu, Zhifeng Chen and Yanlei Diao, “Fast and memory-efficient regular
expression matching for deep packet inspection”, Architecture for Networking and
Communications Systems, 2006

[32] Mark Dowd, John McDonald, Justin Schuh, “The Art of Software Security
Assessment: Identifying and Preventing Software Vulnerabilities 1* edition”, Nov 2006

[33] National Institute of Standards and Technology (NIST), “Federal Desktop Core
Configuration (FDCC)”, http://fdcc.nist.gov/

[34] MITRE corporation, “Common Platform Enumeration (CPE)”, http://cpe.mitre.org/

[35] Anreas Ekelhart, Stefan Fenz, Markus Klemen and Edgar Weippl, “Security
Ontologies: Improving Quantitative Risk Analysis”, HICSS, 2007

72

http://fdcc.nist.gov/
http://cpe.mitre.org/

APPENDIX

e AGENT

AGENT
o (D PASSWORD [PASSWORD VULNERABILITY SERVER -
® Mixed Based ontorocyserver Il
MNumber Date TestID Class
14 20131026 oval:org.mitre.ovaltst 42358 initial -
5 2013M10/26 oval.org.mitre.ovaltst:21340|initial =
(i] 20131026 oval.org.mitre.ovaltst 11318 |initial |
7 20131026 oval.org.mitre.ovaltst 41785 initial
t&3 201310/26 ovaliorg.mitre.ovaltst: 41971 initial
S 20131026 oval:org.mitre.ovaltst 41907 |initial
[l il D
START

1) ID and password to get information of both system and configuration

2) Agent

console displaying the
configuration of the machine

specific procedure

e Vulnerability Server
User and Agent Panel

@)

[USER & AGENT | RESULT REPORT | ASSESSMENT | ANALYSIS

XML PARSER

for

OVAL SERVER IP 102112056 | CHANGE IP
IP ADDRESS RANGE | | o | [STARTSEARCH | | STOP SEARCH
| start Server | | Stop Server
NUMBER MAC ADDRESS D LASTESTIP
1 00-1C-EF-63-F6-61 10.144.44.67
B FA-15-35-5B-E6-8A administrator 10.90.90.209
3 FA-18-35-4D-6C-85 sefcom 10.00.90.208
4 FA-16-35-40-50-38 sefcom 10.80.90 217
5 00-05-94-3C74-00 sudouser 172.31.21.130

73

checking

1) OVAL Server IP for agent connection

2) IP range to search agent installed system

3) Information table displaying target system information
o Result Report Panel

USER & AGENT | RESULTREPORT | ASSESSMENT | ANALYSIS | XML PARSER

® By IP address

IPaddress e
¢ [C310.141.100 246
[remote-10_9_7_25.html
[remoate-10_9_7_25_+1 html
[remote-10_9_7_28.html
[remoate-10_9_7_28_+1 html
[remote-10_9_7_40.html
[remote-10_9_7_41.html
[remoate-10_9_7_44 html
[remote-10_9_7_44_+1.html
[remote-10_9_7_53.html
[remote-10_9_7_53_+1 html
[remote-10_9_7_59.html
o [310.141.107.207
o 3 10.141.165.134
o9 10.144.44.67
o 23 10.144.46.186
- [310.211.18.17
o [910.211.19.24 [l
o 3 10.90.80.209
o [910.90.80.217

= 4400

1]

1) Reported result classified by IP address of the target system
2) Report display by double click
o Assessment Panel

USER & AGENT " RESULT REPORT | ASSESSMENT | ANALYSIS | XML PARSER |

User Name
Inventory : 14.2%

10.141.107.207 [=] | winerability : 85.7%

Compliance : 0.0%

Date
Title Content Title

ulnerability ovalorg.ritre.ovald... [WebkKit Element Ru
inventory oval:org.mitre.ovalid... |Apple Safariis insta...
ulnerahility ovalorg.ritre.ovald... |Apple Safar Search ..
ulherability oval:org.ritre.ovald... [Webkit Floating Poi
ulnerahility oval:org.mitre.ovalid... |Apple Safari Local H..
ulnerahility ovalorg.ritre.ovalid... Webkitin Apple Saf.
ulherahility ovalorg.ritre.ovald... |OPTIONS Request ...

1) Username for IP address of the target system
2) Date and time for each document as XML file format
3) Detailed information of document for each file
4) Graphical analysis for selected document
74

o Analysis Panel

USER & AGENT | RESULTREPORT | ASSESSMENT | ANALYSIS | XML PARSER

IP ADDRESS PRODUCT PRIORITY VECTOR SCORE
Adnbe Shockwave P 2 AV RAC AT 035110536

101107207 |'| Adobe Shockwave F... 1 CiCA AT 037487063
Adohe Shockwave P 3 A NIAC LALLM 0.032473974
&dobe Shockwave P... 4 TN AP 0.008708713
Snple Safari 1 AV IIAC Mg N 0.09434427
Anple Safari 2 CiCACIAT 0.092287494
Anple Safari 3 AV LIAG MBI 0.02207642
Apple Safari 5 C:PIMIAT 0008350473
Apple Safar 4 C:PILPIAP 0.015772717

APPLICATION EXPLOITABILITY

I | [0 |

HARDWARE IMPACT

I | o2 |

0s

I ANALYZE

1) Target system selection for analysis

2) Given weights from security administrator

3) Analysis result based on gathered information
o XML Parser Panel

USER & AGENT | RESULTREPORT | ASSESSMENT | ANALYSIS | XML PARSER

[se015IDeskiop\SEFCOMVuInerableServerioval_spliteriovalxmi| Openafile. | [paRse | [seur || stop |

OVAL Definitions 1Ds

1) Pre-processing OVAL XML file to parse XML file into each definition

75

OVAL Ontology Server
o Log Panel

& =
[OVAL Server | actuty | History

OVAL Server Log

START STOP.

1) Log console for describing connections with target computers when server
is started

o Activity Panel

= == =0 |
OVAL Server | Activity | History

STORED CONFIGURATION(S) ANALYZED CONFIGURATION(S)
NUMBER EFINTION ID DESCRIPTION NUMBER DEFINITION ID
i Gval org.rmilre. oval-de 100001 The mstall funchion i Firefox 1.0.3 allows remate.. |~ [T val-org.milte ovalder 9998 -
oval org.mire.oval-de1 00002 refox 1.0.3 allows remote aftackers to execute .. = oval:org.milre oval:def 9943 =
oval org.mitre. ovalder10000: retox before 1.0.5 and Mozilla before 1.7.9 does oval:org.mitre oval:der99a7
ovalory.mitre. oval:def:100004 reTox hefore 1.0.5, Mozilla befare 1.7.9, and Net, gvaliarg.mitte oval der992s
vl art. mitre.ova et 00005 retox before 1.0.5 and Mozilla before 1.7.9 does Joval:or.ritte oval:der999s
ovalorg.mitre.oval-def-1000 refox before 1.0.5 allows remote altackers to st ovalorg.mitte oval:def 994
ovalorg.mire.oval:def1 000 A tegression eror in Firefox 1.0.3 and Mozila 1.7 oval:org.milre oval:def 9943
oval org.mitre.oval:ge£1000 Firefoxbefore 1.0.5, Wozila before 1.7.8, and Net. oval:org.mitre oval:der99a3
ovalorg.mitre.oval:def:1000 Firsfaxhefore 1.0.5 allows remate afiackers to st (gvalarg.mitre oval ¢er99g1
ovaliorg mitre.oval:cier:1 000 The InstallTriager install method in Firefo: hefare Joval:or.ritre oval:der99a0
vl org.itre.oval:de1000 Firefox1.0.3 and 1.0.4, and Netscape 8.0.2, allo (ovalor.mitte ovalder99a
ovalorg.mitre.oval:def.1000 Firefoxbefore 1.0.5, Thunderbird before 1.0.5, Mo ovalorg.mire oval:def 9969
ovalorg.mire.oval:def1000 The browser user interface in Firefox before 1.0.5 (Galiorg.milte oval der 8988
oval org.mitre.oval:ge£1000 Firefox before 1.0.4 and Mozila Suite before 1.7 8 oval:org.mitte oval:der99a7
ovalorg.mitre.oval:def:1000 Firsfax hefore 1.0.4 and biozilla Guite before 1.7.0. gvalarg.mitte oval der99es
ovaliorg mitre.oval:cier:1 000 The InstallTriager install method in Firef: hefare Joval:or.ritte oval:der99as
ovalorg.mitre.oval-def.1000 The privileged "chrame” Ul code in Firefax hefore ovalorg.mitte oval:def 9964
8 oval org.mire.ovaldef100018[The nafive of nstalTrigger and .|+ | |18 oval:org.mire oval:def 9983
Hurmber DEFINTION 1D
i valorg rrilre ovalder 3898

D

oval:org mire oval def
aval:org milre vl deraga7
ovalorg mitre oval.derg 896
(aval:arg mitre oval der9gas
oval-org mire oval def 9834
loval:org milre oval def 9593
loval:org milre oval deragaz
jovalorg mitre oval.der9e9t
ovalorg fritre oval ders830
oval-org mitre oval def 939
oval-org milre oval def 3389

oval-org mitre oval def 95

1) Stored security standards displayed in Stored Configuration table

2) Analyzed configuration table shows newly analyzed OVAL XML file
definition

3) Newly added definitions displayed in the bottom table

76

o History Panel

OVAL Server | Activity

LOG HISTROY

NUMBER DATE MEMO
i P FET) erver otart -
021 567 o
302 672 o
3024 102 al
102 711 A C
302 470 =
eI 792 emer
0366 782 ener H
-03-07 32 erver
o -03-07 63 erver
1 X 51 erver
X 606 erer
X 165 ener
X ener
- 4 erver
X erver
X erer
X 7 ener
X 153 ener
X 144 ener
X ener
X 1 erver
X 704572 erer
X 70491 ener
X 704431 ener
- 7 T erver
X 704847 erver
X 7 erer
b 050317 erer
] X 7 ener
1 X 747 ener
2 - 7 8! erver
3 X 91042 erver
4 2013 :04:6 erer —
o0 azs =

1) Server start / stop history displayed

77

APPENDIX:

e AGENT

The agent monitors and captures suspicious events from the target system
based on the given ID and Password. The Table shows detected
vulnerability of test ids as yellow and definition ids as red. And the
Console displays the processing procedure of agent tool.

AGENT
o |ID PASSWORD |PASSWORD VULNERABILITY SERVER -
@ Mixed Based ontoroey servir [l
Mumber Date TestID Class

201310/26 oval:org.mitre. oval:tst 42359 initial -
5 201310126 oval:org.mitre.oval:tst. 21340 |initial =
li] 201310126 oval:org.mitre.oval:tst. 11318 |initial |
7 201310126 oval.org.mitre.ovaltst 41785 |initial
i 201310126 oval.org.mitre.oval:tst 41971 |initial
G 201310126 oval:org.mitre.oval:tst 41907 |initial

[4]

] Il [»

START

78

e Vulnerability Server
o User and Agent Panel
Through the User and Agent Panel, administrator can set up the OVAL
Ontology server IP to provide an address to the agent installed in the target
computer. Server can trace agent tool over the network by given IP range
and display detected agent in IP range.

USER & AGENT | RESULTREPORT | ASSESSMENT | ANALYSIS | XML PARSER

OVAL SERVER IP 10.211.20.56 ‘ CHSNCEIE |

IP ADDRESS RANGE | | o | | sTARTSEARCH | [sTOP sEARCH |
‘ Start Server | ‘ Stop Server |

NUMBER MAC ADDRESS D LASTESTIP

1 00-1C-BF-63-FE-51 f 10.144.44.67

B FA-16-3E BB EB8A administrator 10.00.90.208

3 FA-16-3E-4D-6C-85 sefcom 10.90.90.208

4 FA-16-3E-4D-5D-38 sefcom 10.90.90.217

5 D0-05-2A-3C7A-D0 sudouser 172.31.21130

o Result Report Panel
Result report panel displays detected vulnerabilities in the target system
with its detection time. When a security administrator double clicks each
attribute, the reported result of detected vulnerability will be provided.

|| USER & AGENT | RESULT REPORT | ASSESSMENT | ANALYSIS | XML PARSER

|| ® ByIP address

[IPaddress E
-3 10.141.100.246
[remote-10_8_7_25 html
[remote-10_9_7_25_+1.html
[remote-10_8_7_28 html
[remote-10_9_7_28_+1.html
[remote-10_9_7_40.ntml
[remote-10_8_7_41 html
[remote-10_9_7_a4.html
[remote-10_8_7_44_+1 html
[remote-10_9_7_53.html
[remote-10_9_7_53_+1.html
[remote-10_8_7_59 html
& £ 10.141.107.207
[10141 165134
o [27 10144 44 67
o [10144 46 186
= [3102111817
~[3102111924 Lt
& [2310.90 90 209
o [310.90.90.217 |

=S . P =

79

o Assessment Panel
The assessment panel gives graphical analysis of each document
containing results of the detected vulnerability in the target system. Table
shows vulnerabilities occurred in the target system and graph reflects
vulnerability result of each document.

=@] E

[USER & AGENT | RESULT REPORT | ASSESSMENT | ANALYSIS | XML PARSER |

User Hame
Inventary : 14.2%
[10.141.107.207 [*] | winerability : 85.7%
Compliance : 0.0%
Date

Title Caontent Title
ulnerahility ovalorg.rire.ovald... [Webkit Elernent Ru.
inventory ovalorg.rnitre.ovald... [Apple Safari is insta
ulnerahility oval.org.mitre.oval.d... |Apple Safari Search ...
ulnerakhility ovalorg.mitre.ovald... Webkit Floating Poi..
ulnerability ovalorg.rmitre.ovald... [Apple Safari Local H...
ulnerahility oval.org.mitre.ovald... WebKit in Apple Saf.
ulnerakhility ovalorg.mitre.ovald... [OPTIONS Requesti...

o Analysis Panel
Based on given IP address, the server collects information which are the
detected vulnerabilities in the target system. It calculates priority of the
vulnerabilities by the given weights from security administrator at the

table.
[USER & AGENT | RESULT REPORT | ASSESSMENT | ANALYSIS | XML PARSER

IP ADDRESS PRODUCT PRIORITY VECTOR 5CORE
Adobe Shockwave P F] A HIAG WAL 0351104636

‘10'141'107'207 |'| Adobe Shockwave P 1 CCICING 0.37487063
Adobe Shockwave F. E] (AN HIAC: LA 0032473974
Adobe Shockwave F. 4 CNIERAR 0008708713
Apple Safari 1 A5 HIAC AL 009434427
Apple Safari F] C.CICIAC 0.092297484
Apple Safari E] AN LA MIAUN 0.02207642
Apple Safari 5 CPILNIAN 0008350473
Apple Safari] CPIPIAP 0016772717

APPLICATION EXPLOITABILITY

I | [o:1 |

HARDWARE IMPACT

I | [os |

0s

h ANALYZE

80

o XML Parser Panel

The server parses and splits each vulnerability definition based on OVAL
XML file in given path. This pre-processing helps performance of
vulnerability server to verify existing vulnerability in the target system. If
the definition already exists in the specific path, it will show id column

with gray color background.

USER & AGENT

RESULT REPORT | ASSESSMENT | ANALYSIS | XML PARSER

|S eo15\Deskiop\SEFCOMWVuInerableServe r\oval_splmenoval.xmll ‘Open a File..

PARSE

SPLIT

STOP

OVAL Definitions 1Ds

OVAL Ontology Server
o Log Panel

Logs reveal when and which agent tool requested the vulnerability

information in the network.

81

OVAL Server | Activity

History

OVAL Server Log

START STOP.

o Activity Panel
The parsed definitions from OVAL XML file are stored in the database.
‘stored configurations’ tab shows stored information. Newly analyzed
information based on give path of OVAL XML file is displayed in
analyzed configuration and definitions which are not stored in the database
are visible in the bottom table.

OVAL Server | Activity | History

e

STORED CONFIGURATION(S) ANALYZED CONFIGURATION(S)
NUMBER DEFINITION ID DESCRIPTION NUMBER DEFINITION 1D
i val org mitre oval-der100001 [The install function in Firefox 1.0.3 allows remote_| | [T (oval-org milte oval der8aag -
oval.org. mitre.oval.der. 100002 refox 1.0.3 allows remole attackers 1o execule ... |= [ovalorg.mitre.oval:derg9g: =
oval:org mitre. Dval:def100003 refoxkiefore 1.0.5 and Mozilla hefore 1.7.9 does oval:org mitte oval der9aa7
vl org mitre_oval-def 100004 refox before 1.0.5, Mozilla before 1.7.8, and Net oval:org.milte oval def399
aval org mitre.oval-def-10000: refox before 1.0.5 and Mozilla hefore 1.7.8 does loval:org.milte oval def 3a%
val org mitre_oval:der100006 refox before 1.0.5 allows remote atackers 1o st loval:org.milte oval deraag
oval.org. mitre.oval.der.10000. A rearession error in Firefox1.0.3 and Mozila 1.7... [ovalorg.mitre.oval:derg9g:
oval:org mitre. oval:de 100008 Firefox before 1.0.5, Mazilla befors 1.7.9, and Net oval:ong mitte oval der99g
vl org mitre.oval-def 100009 Firefox before 1.0.5 allows remote altackers to st oval:org.milre oval def3931
] aval org mitre oval-def 100010 The InstallTriggerinstall method in Firefox before [loval:org.milte oval der 940
1 wal org mitre_oval:der100011 Firefox 1.0 3 and 1.0.4, and Netscape 8.0.2, alla 1 loval:org.milte oval deraag
oval.org. mitre.oval.der. 1000 Firefox before 1.0.5, Thunderbird before 1.0.5, Mo ovalorg.mitre.oval.der, 9889
oval:org mitre. oval:cef1 000 [The browser user inteiface In Firefox hefors 1.0.5 {valorg mitte aval derass
vl org mitre.oval-def1000 Firefox before 1.0.4 and Wozilla Suite hefore 1.7.8 loval:org.mite oval def 9987
aval org mitre.oval-def 1000 Firefox before 1.0.4 and Wozilla Sufte hefore 7.8 oval:org.milre oval der g%
val org mitre_oval:der1000 [The InstallTriggerinstall metho in Firefox before oval:org.mite oval derga
oval.org. mitre.oval.der. 1000 [The privileged "chrome” Ul cade in Firefox before... [ovalorg.mitre.oval:dergg!
] vl arg mitre.ovalder100018 [The native Implementations of InstalTrigger and _[~| |18 owalorg. mitre oval dergas: -
Number DEFINTION ID
i [0al0rG mitte oval ders99a 2
oval-org mire oval def 9898 =
oval-org milre oval def §337
oval-org mitre oval der 959
lovalorg mitre.oval.derg9g:
ovalorg fritre oval:der 999
oval-org milre oval def
oval-org mitre oval def
oval-org mitre oval der 8591
0 ovalorg mitre oval der83a0
1 0val0rg mitre oval.der
2 ovalorg fritte oval der 883 Ul
3 oval-ora mitre oval.der 8988

GAUsersiisent S\Deskioploval xanl

Open aFile...

o History Panel
Log History table logs the server start / stop by security administrator.

82

OVAL server | Activity | History

LOG HISTROY
NUMBER DATE MEMO

i FIEL] G} e Sta =
201310 67 erver Stal
201300 72 erver Sta
201300 02 e rver Sta

20131 1 erver Sta =
2013 470 e Sta
013 792 art Server

013 1792 op Server]
2013- art Gerver
o 2013 op Server
1 2013 1 art Server
F] 2013-1 5 op Server
E] 2013 185 ari Gerver
4 2013 0p Server
5 2013 4 art Gerver
Iﬁ 2013 art Gerver
h7 201 3-1 op Server
e 2013-1 2 op Server
| 2013 163 art Server
Iz_n 2013- 144 0p Server
1 2013 8 ar Gerver
1 2013 5l art Server
3 20131 T T2 op Senver
4 2013 70491 ari Gerver
s 2013 7:04:431 0p Server
6 2013 7:04327 art Gerver
7 2013 7:04:347 op Server
|22 2013-1 7 op Server
|29 2013 7 0p Server
I@ 2013- 7 op Server
1 X 7047 erver
5] 7045 st Server
3 8047 art Server

4 2048 ar Gerver |

40 -

&3

