

[bookmark: _Toc220385074]
Microsoft Office SharePoint Server Custom Application Development: Document Workflow Management Project
Author:
Eric Charran, Microsoft Corporation
Date published:
February 2009
Applies to:
Microsoft® Office SharePoint® Server 2007
VSTS Rangers:
This content was created in a VSTS Rangers project. “Our mission is to accelerate the adoption of Microsoft® Visual Studio® Team System by delivering out-of-band solutions for missing features or guidance. We work closely with members of Microsoft Services and MVP communities to make sure that their solutions address real-world blockers.” Bijan Javidi, VSTS Ranger Lead
Summary:
This white paper reviews the successful Microsoft Consulting Services (MCS) design, construction, and deployment of a custom Microsoft® Office SharePoint® Server 2007 application to a mid-market enterprise customer. This documentation will serve to educate and familiarize customers who are planning to undertake similar custom Office SharePoint Server 2007 application projects within their own organizations. The guidance and experiences come directly from a real-world field implementation and contain patterns and practices in addition to descriptions of the problem, business challenge, the solution's technical structure, and the staffing model that was used to implement the application.
The audience for this document includes customers who are interested in conducting a software development life cycle for a custom application that will be built on the Microsoft SharePoint Products and Technologies platform. This document not only discusses the project's goals and vision from inception, but also follows the project through staffing by identifying successful team models. The solution's physical design and best practice considerations are documented and provide background and context for the presented lessons learned.
Included are the details surrounding the project's vision, requirements, and architecture developed by MCS for the client. The documentation guides customers through how the solution was implemented. The document also focuses on the implementation of established practices for Office SharePoint Server development and guidance. This includes the application of existing reference architecture documentation and specific guidance on Application Life Cycle Management (ALM) considerations when developing a custom Office SharePoint Server 2007 application.
Note: The SharePoint guidance patterns and practices article can be found at http://go.microsoft.com/fwlink/?LinkID=141526&clcid=0x409, and the Application Lifecycle Management Resource Center for SharePoint Server can be found at http://go.microsoft.com/fwlink/?LinkId=141560.
Note that this document does not contain the names of Microsoft clients or customers. The customer name that is used is that of the fictitious Contoso organization.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft, SharePoint, and Visual Studio are trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

Table of Contents
Overview	1
Challenge	4
Vision and Scope	4
Functional Requirements Summary	5
Desired Benefits	5
Key Functions	5
Audience	6
Contract Contributors (50 users)	6
Approvers (20 users)	6
Review Board (10 users)	6
Senior VP (4 users)	6
Availability	6
Products and Technologies	7
Team and Project Structure	7
Vision and Functional Requirements (Stakeholders)	7
Application Life Cycle Development	8
Product Implementation	9
Solution Architecture	10
Physical Architecture	10
Design Philosophy	10
The Contract Entity	11
Approach to Security and Sensitivity	13
Scalability and Concurrency	14
Archival and Removal Strategy	15
The Approval Process	15
Information Architecture and Taxonomy	16
Development Approach	17
Implementing ALM with Local and Remote Resources	17
Implement Consolidated ALM Support Structure	17
Create the Development Environment	18
Functional Development	20
Deployment Development	22
Daily Build Process	23
Deployment Procedures	24
Guidance and Lessons Learned	24
Modifications to Web.config	24
Complex Content Types and Lists	24
Segregating Entity Metadata	25

[bookmark: _Toc221326575]Overview
Contoso provides an outsourced financial and human resources management service to medium and large organizations. Contoso's legal department conducts the authoring and processing of legal documentation regarding the terms of service and length of engagement between Contoso and the organizations that subscribe to its management services. The Contract Management Operations group within the Contoso legal department previously had a manual procedure that involved several checklists and paper-based processing to author, route, and approve these contract documents. These documents and their accompanying paper-based checklists, approval forms, and sign-off sheets were routed via e-mail to various approvers in different functional areas of the organization to approve or reject. The contract drafters or authors were responsible for tracking their own documentation within the approval process and were responsible for routing (or rerouting, depending on approval or rejection) to the appropriate parties or review boards.
The process by which this interaction happened is shown in the following illustration.

[image:]

The original business process required the users to draft a contract by using a predefined template in Microsoft Office Word 2003. There were several predefined templates that represented various types of contracts in addition to their supporting documents. Users had to independently create and manage the association of these documents together by referencing the documents to each other and by resorting to commonly named document taxonomy to identify and track them as a group. These documents were stored on the local user's computer until the user was ready to begin the process. If the documents required collaboration, users sent copies to other contributors with tracked changes turned on within Word. The contributors returned the documents to the original author, who undertook a manual merge process in Word before submitting the documents to approvers, as shown in the following illustration.

[image:]
Following the collaboration and authoring period, authors then submitted the documents to a designated approver. The approver was an employee who had approval capability in several different functional areas and departments. The original author had to decide which approver to send the document to, based on the contract's subject and the department's jurisdiction. The author used e-mail to send the contract documents as a set to the approver.
The approver, depending on department and functional area, received multiple sets of contract documents to approve via e-mail, as shown in the following illustration. The user opened each relevant set of documents, examined them for completeness, and engaged in a business decision-making process to either approve or reject the set of documents. The approver could also choose to forward contracts that met threshold criteria (such as deal size and amount of revenue) to a review board.
[image:]

If the approver decided to approve the document, he or she noted approval in an e-mail message and sent it back to the original author. The approver kept track of the documentation's approval status and acceptance date in a shared Microsoft Excel® spreadsheet. Conversely, the approver could choose to reject the contract documents. The rejection could occur because of incorrectly filled out or inapplicable accompanying documentation or other business reasons. The user who received the approved or rejected documents would either publish the contract and obtain signatures or modify the contract (or its associated documents) and resubmit to the approver.
The review board existed as a virtual set of users from multiple departments that provided a degree of quality assurance and scrutiny to certain sets of contract documents that exceeded predefined approver thresholds. The review board process is outlined in the following illustration.
[image:]
After the contract documents were approved, the approver sent the document by e-mail to the review board. The review board approved or rejected the contract. If circumstances warranted, the review board sent the documents to a senior vice president for final approval. After approval or rejection was obtained, a member of the review board sent the documents by e-mail back to the original author for revision or publication.
[bookmark: _Toc220385078][bookmark: _Toc221326576]Challenge
The process described in the previous sections was a highly manual process that required significant coordination on the part of all parties involved. Routing and receiving multiple drafts of the same document through collaboration via e-mail introduced significant confusion as to which were the final copies of the documents that were approved. In many instances, participants in the process were required to locate lost information from overwritten versions in their e-mail systems to replace missing or accidentally overwritten information.
The process was primarily people-dependent and required the originator to frequently request status updates of the approvers to determine where the contract was in the process. In many cases, communicating the urgency of the process was difficult because there was not a formalized system to capture desired publication dates, urgency, or priority.
Business rules for approval were manually enforced, which required approvers and the approval board to use reference material to determine completeness, accuracy, and approval of a contract. In many instances, if these attributes were missed or misunderstood, an unfavorably binding or unacceptable contract might have been published. There was no centralized library and the documents existed in multiple stores, in multiple states at the same time. There were instances of accidental overwriting, lost work, and incorrect e-mail transmissions or submissions of corrupted documents to approvers. Because of a lack of a centralized store, users who had equipment failures lost instances of documents that they had not yet sent to anyone.
From a process control and regulatory perspective, Contoso's management grew uncomfortable with the process and required a measurable and automated method of preserving productivity that would prevent work from being lost in accidents, and that would enforce a threshold and approval cycle that would be system maintained. Although the existing process model was well documented and followed, management required the process to be unilaterally enforced and robust enough to accommodate all the variations in business logic and contract processing.
[bookmark: _Toc220385079][bookmark: _Toc221326577]Vision and Scope
Contoso's vision as documented by MCS was to implement a solution that provided an automated means to support collaboration on documents in a single enterprise repository, while ensuring that those same documents were routed through an automated approval process. The solution had to eliminate the loss of productivity and data associated with manual document management and had to provide a single document repository that would support creation and collaboration of all contract types. The solution would eliminate the need for sending documents by e-mail and would be able to provide contributors with a centralized location for versioned documents.
The solution would also provide a framework for easily defining (and altering) the business process for document approvals. Not only should the solution route the documents and be able to guide approvers through the process based on attributes of the documents themselves, but the solution should be able to provide tracking and an auditable record of the process for each document.
The solution should also contain a process and repository for published and finalized documents. After a certain period of time, these documents would be funneled into a records management repository where they would be maintained and recalled as required.
The solution should be secure and enforce proper access rights down to the contract documentation level. This would ensure that only contributors who were granted rights to a document would have access.
[bookmark: _Toc220385080][bookmark: _Toc221326578]Functional Requirements Summary
The following sections outline a summary of the benefits desired from the application, key elements of functionality, required availability, and the intended audience.
[bookmark: _Toc220385081][bookmark: _Toc221326579]Desired Benefits
Prevent lost productivity and user responsibility for maintaining document integrity by providing a centralized version-controlled environment to allow collaboration among peers on contract creation.
Enforce a documented and auditable automated system for routing contract documents for approval.
Eliminate document transmission by e-mail during the approval process and maintain only one copy of the documents in a single repository during the approval process.
Automatically enforce various thresholds and routing rules for the approval process without user intervention.
Conduct secure document editing and collaboration, in addition to notification of workflow events and processes.
Enable users to search for contract documents and to search inside contract documents that are in process or published.
Ensure that the approval process can be modified by power users or business users without excessive delays in the application development life cycle.
Provide enterprise level backup and availability for the collaboration and approval process and its components.
[bookmark: _Toc220385082][bookmark: _Toc221326580]Key Functions
Empower contributors so that they have the authority to create new versions and edit a centrally controlled set of documents that represent a contract.
Allow contributors to extend the editing and authoring role to other peers within Contoso's legal department.
Enforce security on a set of contract documents (which represents a single contract) to those specified by the original author and those involved in the approval process.
Provide automated notification of collaboration, approval, or rejection, and of process completion requests to only those individuals involved in the contract.
Implement a customizable automated process for routing contracts through the approval and publication process.
Maintain a set of predefined templates from which users can easily create contract documents.
Allow users to easily identify and associate contract documents in the centralized storage location and throughout the approval process.
Make it possible for users to conduct security-trimmed searches on the in-process documentation and on the published contract documents.
Make it possible for users to manually send the contract entity to a records repository for archiving.
[bookmark: _Toc220385083][bookmark: _Toc221326581]Audience
The audience for the solution represents the various roles and profiles that are outlined in the contract approval process. The Contoso legal department wants to segregate access of the in-progress documentation from access to the published documents. The entire legal department should have access to the published documentation that is not yet archived. Only those users who are responsible for creation, approval, and publication of the contract documents should have access to the in-progress documentation.
[bookmark: _Toc220385084][bookmark: _Toc221326582]Contract Contributors (50 users)
Contract contributors are those individuals who are members of the Contoso legal department who receive service engagement requests from clients and draw up legal contracts from specified templates. The contract contributors author the contract documents, ensuring that they are filled out correctly and completely. During this process, contract contributors can extend their efforts to other peers within the legal department only. Those peers will be granted access to the contract document as equal contributors. Those with the authority to collaborate on the document will be able to begin the approval process.
[bookmark: _Toc220385085][bookmark: _Toc221326583]Approvers (20 users)
The approvers represent those individuals in various functional areas and departments who need to approve the contract before publication. These individuals review the documentation and ensure that it is complete and complies with company policy before granting approval. They can reject the document if these criteria are not met.
[bookmark: _Toc220385086][bookmark: _Toc221326584]Review Board (10 users)
The review board is a subset of approvers who are designated by administrators of the application. The review board examines approval escalations by first-level departmental approvers. The review board is responsible for applying additional corporate rules and scrutiny to the contract before approval and may choose to escalate when required.
[bookmark: _Toc220385087][bookmark: _Toc221326585]Senior VP (4 users)
The senior VP group is a collection of Contoso legal department vice presidents who have the authority to approve or reject escalations from the approval process.
[bookmark: _Toc220385088][bookmark: _Toc221326586]Availability
The collaboration solution must support the efforts of the legal department 24 hours a day. This will enable users and approvers to continue working in a flexible fashion outside core business hours. The solution must provide enough redundancy and scalability to maintain a reasonable level of responsiveness and performance even if a component of the solution's physical architecture is compromised.
In the event of a catastrophic failure or other unfavorable environmental event that affects the entire solution's structure, data loss of more than a day's worth of work is unacceptable. In this circumstance, the solution must be capable of being restored on alternate hardware within a 24-hour period and work must be able to resume with minimal loss of data and progress.
[bookmark: _Toc220385089][bookmark: _Toc221326587]Products and Technologies
The solution is based on Office SharePoint Server 2007. Office SharePoint Server 2007 provides significant benefits that the Contoso legal department can use to meet its desired benefits and feature requests. The specific elements that were used in the development of the custom application that is based on Office SharePoint Server 2007 are specified in the following list. The development staff also implemented a superset of these products to develop, test, and implement the solution.
For more information on establishing a development environment for custom Office SharePoint Server 2007 applications, see the article Setting Up Development Environments for the 2007 Microsoft Office System. The product and technology mix is shown in the following list:
Server technologies
Windows Server® 2008 Enterprise
Microsoft SQL Server™ 2008
Microsoft Office SharePoint Server 2007
Information Worker Collaboration Technologies
Office 2003
Office 2007
Developer and implementation technologies
Virtual PC 2007 with SP1
Microsoft Visual Studio® 2008 with SP1
Windows SharePoint Services 3.0 Tools: Visual Studio 2008 Extensions, Version 1.2
Office 2003
Office 2007
Windows Server 2008 Enterprise
SQL Server 2008
Office SharePoint Server 2007
Visual Studio Team System 2008 Team Foundation Server with SP1
[bookmark: _Toc220385090][bookmark: _Toc221326588]Team and Project Structure
The project team consisted of several key personnel within the Contoso legal department in addition to key executive sponsors. The implementation team consisted of MCS consultants who have backgrounds in administration, information architecture, and custom application development and deployment of Office SharePoint Server 2007.
The outline of the team structure is presented in the following illustrations and descriptions.
[bookmark: _Toc220385091][bookmark: _Toc221326589]Vision and Functional Requirements (Stakeholders)
The vision and functional requirements team structure is shown in the following illustration. The team consists of key stakeholders from the Contoso legal department and key MCS consultants who were involved in the planning and scoping of the project's implementation.

[image:]

The Contoso legal department is composed of the individuals within the business who specified the requirements through envisioning and signed off on the functional and feature specifications. This group consists of the individuals who will gauge whether the solution meets the business need. This group includes a Contoso executive sponsor to provide oversight, in addition to sufficient organizational drive to coordinate Contoso resources to work with MCS to get the solution into production.
The Contoso program manager was present in this phase to provide controlling scoping and resource coordination for the envisioning and requirements definition process. The Contoso program manager facilitated various team meetings, ensured when issues or questions arose that the right stakeholders were quickly and appropriately involved. Most importantly, the Contoso program manager, along with the MCS program manager, assisted the group in defining a scope for the project's overall implementation in addition to those features in the first phase. The Contoso program manager was responsible for communicating these adjustments and requirements to the Contoso Project Management Office (PMO).
The MCS program manager was responsible for guiding and assisting the Contoso program manager and for facilitating the stakeholder envisioning session. The MCS program manager provided guidance and experience in terms of the goals of the envisioning session and its importance and placement in the application life cycle.
The MCS delivery manager provided a valuable perspective on envisioning, which allowed Contoso to plan features and scope accordingly so that the critical features were implemented successfully in the application's first phase.
[bookmark: _Toc220385092][bookmark: _Toc221326590]Application Life Cycle Development
The application life cycle development team consisted of personnel who were responsible for designing, developing, and delivering the custom application, as shown in the following illustration.
[image:]
The MCS architect was responsible for using a holistic understanding of application development best practices, Office SharePoint Server application life cycle management, and administration and information architecture to create a solution that met the business requirements. The MCS architect was responsible for originating the design and working with the Contoso software architect to ensure feasibility and appropriateness of implementation in the enterprise.
The Contoso architect's responsibility was to ensure that the solution was not only of a sound technical design to meet the business requirements, but also a solution that Contoso could take ownership of and implement within its enterprise.
The MCS developers consisted of lead and functional developers who worked to understand the architecture and implement the features.
[bookmark: _Toc220385093][bookmark: _Toc221326591]Product Implementation
The production implementation team, shown in the following illustration, consisted of those roles that installed and supported the production solution.
[image:]
The Contoso IT department consisted of Office SharePoint Server 2007 administrators and supporting horizontal IT services, which included Active Directory® domain management, server hardware administration, network and infrastructure services, and database administration. The IT department worked to ensure that the hosted Office SharePoint Server environment met the requirements of the solution.
The MCS architect was responsible for working with the Contoso software architect to involve the Contoso IT department in the particulars of the solution's implementation. Specifically, once the architecture was established, both software architects contacted the IT department to discuss feasibility of implementation and requirements the department needed to provide for hosting the application.
[bookmark: _Toc220385094][bookmark: _Toc221326592]Solution Architecture
The solution architecture consisted of the physical design of the custom application, in addition to the information architecture and taxonomy. The following sections outline the concepts related to the physical design and the structure of the site.
[bookmark: _Toc220385095][bookmark: _Toc221326593]Physical Architecture
Although the establishment and architecture of the Office SharePoint Server 2007 farm in the Contoso enterprise was outside the scope of this project, the architecture team had to be aware of the farm's configuration and its information architecture and taxonomy. The architecture team had to have a detailed understanding about Contoso's use of the farm to craft the custom application's information architecture and ensure that it matched and fit in with the farm's already implemented Web applications and sites. In addition, the architecture team had to have an understanding of the services that were supported and configured in the farm so that the custom application might be able to utilize them. This prevented the development team from creating an application that could not be supported, given the existing configuration of the farm.
[bookmark: _Toc220385096][bookmark: _Toc221326594]Design Philosophy
The design philosophy for the application centered around ensuring that custom code development was curtailed. Contoso's legal department communicated early in the project that the solution must have a low total cost of ownership (TCO) and must be easily modified by experienced or power business stakeholders when changes to process or procedure were required. The legal department did not want to engage in a custom application development life cycle to alter the solution to meet with changing process or business needs. Therefore, the architecture of the solution adhered to the following guidelines.
Simplicity and Use of Existing Features
The application must use the existing or out-of-the-box features of Office SharePoint Server 2007 wherever possible.
The design goal is to have a no-code or low-code custom application that can be easily modified.
Creating new functionality or extending functionality that was built into Office SharePoint Server is beyond the scope of what Contoso wanted to provide as part of this solution.
Use existing features to meet the business requirements and use custom work only as necessary to provide a user interface to simplify the collaboration and approval process.
Security
The application must use existing identity stores for authentication and authorization.
The application must use SharePoint groups and user profiles that are imported from Contoso Active Directory Domain Services to present contact and presence information about the creators and reviewers of contracts.
Automated Workflows
Workflows that are exposed through a custom application that is hosted by Office SharePoint Server will meet the core goal of automating the manual branching approval process for contracts.
Because Contoso wants to be able to alter the workflows without conducting an application development life cycle, Microsoft Office SharePoint Designer 2007 workflows will be used.
When faced with complexity that cannot be accommodated by standard Office SharePoint Designer workflows, the architecture and development team will then consider creating custom Office SharePoint Designer workflow activities.
If custom Office SharePoint Designer workflow activities do not meet the requirements, a workflow foundation project will be designed and implemented by using Microsoft Visual Studio tools.
Consolidated User Interface
The application must provide users with a consolidated custom user interface that integrates into the site's structure. This allows users to use the familiar SharePoint list presentation, while providing an integrated custom application page that replaces the new and edit form functionality for a standard list. By customizing the view, new, and edit forms, the custom page can easily conduct business logic validation on creation and updates of a contract, conduct lookups, and provide assistance in specifying information such as field values. The customized view page provides an overview of the contract, including related documents, its status in the approval workflow, and a listing of common actions that are available on the contract and its associated documents. Integration of this presentation within the site's shell allows users to use standard methods for interacting with a SharePoint list while gaining significant productivity benefits related to contract processing.
Manageable Configuration
One design tenet was to ensure that the application's core behaviors and processes could be modified by power users or administrators where feasible. Because of this tenet, storing configuration, log, and preference data for the application in the Web.config file for the Web application was not a valid approach. As a result, the application maintains this information within a collection of lists that accompany the metadata inside the site itself. Users who have the proper security context can easily modify the data (with training) by using the Office SharePoint Server UI, without having to manually edit Web.config files.
If it had been anticipated that entries might have to be placed in the Web.config file outside the normal means accommodated by the .wsp file, a deployment pattern to programmatically modify the Web.config file by using the Office SharePoint Server API would have been selected and implemented as part of a feature receiver.
[bookmark: _Toc220385097][bookmark: _Toc221326595]The Contract Entity
When evaluating the functional requirements and the desired features, MCS realized that the system must be designed around the best possible accommodation of the contract. Therefore, MCS began to model a logical view of the contract itself.
The logical design for the contract is depicted in the following illustration.
[image:]

Because the contract was a composite entity, its constituent elements were broken down into manageable components. The contract was split into these constituent parts primarily to segregate sensitive data from the Microsoft Office Word document. To prevent Word from exposing contract metadata as part of the document's properties, the contract metadata was separated out into a separate list. This allowed the solution to keep metadata from appearing in Word's Document Information Panel and from being modified by users directly.
Contract Metadata
The contract consists of contract metadata and includes elements such as those in the following list:
Those individuals who contributed to and authored the contract and were involved in its creation
Reviewers in the Contoso legal department who did not have approval rights, but were requested to serve as quality assurance on the contract before approval submission
Relevant dates, including the effective date of the contract and the date that the contract terminated
Core contract attributes such as the contract's name, creation date, and functional business unit or area
This metadata is stored in a designated list within the contract's site.
Contract Document
The contract document is the Microsoft Office Word document that represents the contract's actual contents. The Word document contains the legal content that constitutes the contract.
Storing the Contract
The design is for the documentation to be kept in a document library and the contract's metadata to be kept in a separate list. The association between these two components in Office SharePoint Server 2007 is a list lookup column. This associates the contract with the contract document and ensures that it is easy to view and manipulate the contract through a custom interface, as shown in the following illustration.

[image: cid:image007.png@01C99BF7.496D5860]

As depicted in the illustration, the list that contains the contracts (the Contracts list) is the user's primary interface to the contract entity. The Contracts list contains a custom view and edit form that replaces the standard list item view and edit forms. The custom form (implemented as a custom .aspx page) draws together the contract metadata and the contract document and displays them in a single view.
Any interactions classified as transactions on the contract or its associated document are facilitated by the Contracts list's custom view and edit form. These transactions include the following operations:
Updating the contract's metadata
Collaborating on a contract document (for example, adding, updating, checking in, checking out, and versioning)
[bookmark: _Toc220385098][bookmark: _Toc221326596]Approach to Security and Sensitivity
The requirements of the solution called for each contract (both the list item and the document) to be concealed from other site members who were not part of the virtual collaboration team for a specified contract. A collaboration team consisted of the contract's owners, contributors, and approvers who allowed the contract to transition through the approval process.
Because of this requirement, each contract and its associated document implements item level security. Therefore, upon creation, when a contract list item is created or updated, the application must read owner, contributor, and approver information from the list item and apply the appropriate level of permissions to the contract list item and its document.
This requires the solution to break permission inheritance on the contract list item, remove any materialized permissions, and enforce the permissions for those specified in the contract list item. This activity happens upon creation or update of the list item to ensure that any changes to the personnel specified in the list item are persisted into the item's security SACL .
Based on the physical implementation of the logical contract entity as defined earlier in this paper, a synchronization procedure had to ensure that any change to permissions on the contract item was persisted to the associated contract document in the Contract Document library. The following illustration outlines the security implementation architecture.
[image:]
As depicted in the illustration, the custom form attached to the Contracts list is responsible for collecting and validating contract information and ensuring that the contract gets created or updated with the appropriate data, in addition to ensuring that the contract's physical elements have synchronized item level permissions. The code in the form conducts the operations specified in the illustration by using the Office SharePoint Server API to break inheritance, eliminate any existing permissions, and unilaterally reapply permissions.
Of significant note here is that while the document is in the approval process, a different security context applies. As a result, the code in the form prevents updates to the contract and its associated documents while the content approval status indicates that a review is happening.
[bookmark: _Toc220385099][bookmark: _Toc221326597]Scalability and Concurrency
The application's concurrency requirements were researched and documented. These concurrency estimates were critical to ensuring not only that the custom application would support the operations required by the business, but also that the application did not negatively affect the operations and ability of the production SharePoint farm to support the organization.
The following list contains rudimentary concurrency estimates that were documented by Contoso after a review of its previous paper-based and manual process. The estimates that follow are based on a population of approximately 100 users for the system.
Simultaneous approval processing - 20
Simultaneous collaboration (uploading, downloading, check in, check out, version submissions, and version alterations) - 40
Simultaneous contract metadata updates - 35
Following the study of the manual process to arrive at these estimates, the application's architecture was constructed to ensure that these levels of concurrency would be easily accommodated. Design choices and decisions were made that ensured that the baseline performance of the Office SharePoint Server environment under typical load would not be affected. MCS worked with the administrative staff who supported the production implementation of the SharePoint farm (where the solution would eventually be hosted) to obtain testing results and a baseline of the peak concurrency requirements for the farm. Once obtained, these results were used to ensure that a design was implemented that did not threaten the production farm's ability to serve the organization.
[bookmark: _Toc220385100][bookmark: _Toc221326598]Archival and Removal Strategy
The scale of the solution in terms of the number of contracts to be actively in process or collaborated on at a single time is not significant. However, the requirement for Office SharePoint Server to maintain individual SACL assignments for list items in a single list required the Contoso legal department to think about how documents, once complete, should be removed from the active collaboration application and into a persisted static store.
MCS recommended the creation of a document center or records center. This would allow for the development of a custom procedure and workflow to migrate the contract list item and its document into a single repository. Because the security of this repository would be enhanced by using existing Office SharePoint Server security capabilities and because appropriate users would be granted read-only access, the elements of the contract could even be merged back together into a single document library. The records center could organize the content based on content type for retrieval when required. Creation of a customized records management strategy would alleviate the uncontrolled growth of approved contracts in the application's main collaboration lists. However, this endeavor was beyond the scope of this project's initial implementation.
[bookmark: _Toc220385101][bookmark: _Toc221326599]The Approval Process
The approval process was designed to emulate the previous manual procedure of routing copies of the contract and its documents through e-mail. By using the custom Office SharePoint Server application, a single master copy of the contract remains, versioned and access controlled. Implementing a workflow made possible an automated approval process that did not require excessive document copying, e-mail messages, or alternative notification strategies.
Because the mandate was to have the approval process easily understood and modifiable by designated business users, the approval process was implemented as an Office SharePoint Designer workflow. This allows the Contoso legal department to benefit from task assignment and notifications, the collection of approvals for a contract, and branching logic for specific circumstances (for example when one party approves and the other party rejects). Because the Contracts list contains the metadata that most closely resembles the contract entity, the workflow is designed to be attached to that list and manually started by the contract owner when an approval cycle is requested. Because the Contracts list has content approval specified (with the ability to see draft items), the approval workflow uses Office SharePoint Designer tasks to update the approval status depending on the outcome of a task completed by an approver.
If at any time during the workflow an approver rejects an item, the contract owner is alerted. This allows the user to view the contract list item and understand the reasons for rejection (by viewing a comment column on the contract list item that is updated by the workflow, which is based on feedback captured through the completed task).
[bookmark: _Toc220385102][bookmark: _Toc221326600]Information Architecture and Taxonomy
The information architecture design of the solution extends from the structure of the site collection and its components such as document libraries and lists that contain workflows, to the specification of reusable content types within the site. Currently the application resides in the root of the site collection where content types and lists are defined. The following illustration outlines the structure of the site collection and how the Office SharePoint Server application exists within Office SharePoint Server 2007.
[image:]
As depicted in the previous illustration, the site collection houses the Contract Collaboration top-level Web site. This Web site is the most important part of the application. Contained within this site is the Contracts list that contains the contracts metadata, in addition to the Contract Documents document library, which contains the contract itself. There are a variety of lookup lists that provide additional functionality to the application for the purpose of validating data and user input when a contract is modified, and for containing application-level configuration and setting data.
The application relies on the establishment of content types and their assignment to lists. Each list has a custom content type associated with it. Content types often contain lookup columns that are sourced from other lists. Thus a content type cardinality matrix was created to track and familiarize developers with the interdependency of content types.
[bookmark: _Toc220385103][bookmark: _Toc221326601]Development Approach
The approach to development consisted of establishing a software development life cycle process that has an ALM platform to support it. The technical team established development tracks that simultaneously addressed development for deployment and functional development for the application. These two development tracks directly used tools, techniques, and practices found in the following article, SharePoint Guidance patterns and practices (http://go.microsoft.com/fwlink/?LinkID=141526&clcid=0x409).
MCS configured foundational elements for development. The foundational elements included a software development life cycle management platform that was accessible to all project members. In addition, a collection of developer tools and technologies were established and distributed to all development team members.
[bookmark: _Toc220385104][bookmark: _Toc221326602]Implementing ALM with Local and Remote Resources
The development team consisted of MCS personnel who conducted development and architecture activities both on site at Contoso and remotely from several Microsoft offices around the country. Because of this arrangement, the requirement for developers to work against a single version control repository and conduct consolidated builds and releases for Contoso's consumption and deployment was very important.
The goal was for MCS to design a working arrangement for all project personnel to conduct ALM while accommodating Contoso's business, technical, and project governance resources, in addition to MCS's remote and on-site personnel. The following sections describe the practices and procedures that were implemented to create the ALM processes for the project.
[bookmark: _Toc220385105][bookmark: _Toc221326603]Implement Consolidated ALM Support Structure
The implementation of an ALM support structure for Contoso's custom SharePoint application development project was based on the recommendations found in the following article, which is part of the Team Foundation Server Resource Center: Using Team Foundation Server to Develop Custom SharePoint Products and Technologies Applications (http://go.microsoft.com/fwlink/?LinkId=141530).
This article contains the guidance for using Microsoft Visual Studio Team System 2008 Team Foundation Server as the ALM platform for the project. With this platform, MCS was able to connect Contoso's business stakeholders, project management, and governance personnel (from both Contoso and from MCS's engagement management team), in addition to providing a method of conducting builds, version-controlled development, and reporting status of the project to all involved.
Although the features of Team Foundation Server are beyond the scope of this white paper, there are several capabilities that were used to provide the development team with productivity, whether they were on site at Contoso or working off site. For physical accessibility of geographically dispersed Contoso and MCS personnel involved in the project, the MCS team made use of a hosted instance of Team Foundation Server. The hosted service provided by Microsoft to internal business groups allowed for the extension of the Team Foundation Server capabilities to field personnel over HTTPS. A Team Foundation Server administrator created a team project within the hosted instance of Team Foundation Server and granted administrative rights over the project to an MCS architect. This team member configured the accounts and access rights to the project, set up and configured the SharePoint site relating to the team project, and established the solution within version control for developers to use.
MCS program management and engagement management resources were responsible for uploading project plans into the team project so that the developers and implementation personnel had assigned work items they could act on. The project connector component of the Visual Studio Team Foundation client provided program management with this upload and synchronization capability. Additionally, the program management personnel were responsible for storing pertinent and related documents within the team project's SharePoint document library. In this manner, all project personnel (technical resources through Visual Studio Team Foundation client, and nontechnical through the browser) had access to the same documentation, project plans, and reports on work items.
The following illustration outlines how Team Foundation Server was able to assist in the development of Contoso's contract management SharePoint application.
[image: cid:image008.png@01C99BF7.496D5860]

As evidenced in the previous illustration, various roles in the project had access to the instance of Team Foundation Server for different purposes. Technical personnel required access to the version control repository so that they could work on and contribute to the project's code. Additionally, technical personnel had to be able to view, change, and create work items that assigned them specific tasks. As these work items were marked complete by the technical personnel, they would be reflected in the various progress reports on the team project's SharePoint site. Program management personnel often accessed and updated program and project plans, in addition to supporting documentation, which included architectural diagrams, process and use case diagrams, and artifacts. Technical personnel, including architects, also used these documents to further refine development tasks in the form of work items and update this documentation to reflect the actual physical design of the project as it progressed.
Note: Because the instance of Team Foundation Server was hosted at Microsoft and extended via HTTPS into the extranet, the individuals accessing the services could be in any location that had Internet connectivity.
[bookmark: _Toc220385106][bookmark: _Toc221326604]Create the Development Environment
The MCS team followed established documentation for creating a development environment that can be used by multiple developers who are creating the application simultaneously. As described in the patterns and practices SharePoint Guidance documentation and in the article, Team-based development in Microsoft Office SharePoint Server (http://go.microsoft.com/fwlink/?LinkId=141536), the team used a virtualization strategy for development. This allowed for a self-contained server-based environment that afforded developers a fully functional SharePoint environment in conjunction with Visual Studio. The Team Foundation client in each virtual server was connected to the hosted instance of Team Foundation Server via HTTPS.
In addition, each virtual server was its own domain controller with its own set of accounts and services. This allowed for a more comprehensive unit and limited systems testing because code could be run in the development environment as a regular domain account and not as an administrator. By adding this variation to unit testing, code quality was greatly increased and security context coding errors were caught even before they left the development environment. The following table outlines the details of the development environment for the Contoso contract management custom SharePoint application.
Development Environment Configuration
	Virtual Server Configuration
	Description

	Windows Server 2008
	A full server installation of Windows Server 2008 Enterprise Edition. The server was configured as a domain controller with Internet Information Services (IIS) 7.0 and DNS for host header access to multiple Web applications on port 80.

	SQL Server 2008
	Provided the database platform for the development environment's SharePoint installation.

	Office SharePoint Server 2007 with SP1 with Infrastructure Update
	The development environment's installation of Office SharePoint Server. This environment was configured with a standardized Web application, site collection, and site structure across all virtual servers so that development would take place within a common information architecture and taxonomy.

	Office 2007 with SP1
	A full installation of Office 2007, including Office SharePoint Designer 2007 for creating and modifying content artifacts, including workflows. This allowed developers to interact with the document library during testing and visualize custom document information panels (DIP), and to conduct check-in and check-out operations for unit testing and limited system testing within their development environment.

	Visual Studio 2008 with SP1
	Allowed developers to conduct solution application development, unit testing, and limited system testing by using the Web test functionality in Visual Studio Team System Team Suite.

	Microsoft Team Foundation Client
	Provided developers with access to the hosted instance of Team Foundation Server via HTTPS. This allowed developers and implementation staff to view, edit, and create work items; to access necessary Office SharePoint Server project documentation; to configure builds; and to access team project version control and the core solutions for the project.

	Windows SharePoint Services 3.0 Tools: Visual Studio 2008 Extensions, Version 1.2
	Provided developers with the F5 experience for developing, deploying, and debugging SharePoint components.

After the structure and composition of the ALM components of the project were in place, the vision, scope, and functional requirements were distilled into a comprehensive physical design. Following this work, development was able to begin. During this process, there were several meetings between the architects at MCS, MCS developers, client architects, and the SharePoint administration group at Contoso. MCS communicated the importance of all these groups having a complete understanding of the solution's architecture and required technologies and techniques used to create the solution so that the organization would be able to adequately support the application when it was promoted to the production environment.
[bookmark: _Toc220385107][bookmark: _Toc221326605]Functional Development
Functional development involved developers who were assigned to satisfy the requirements of the solution as documented in the physical design. These developers focused on creating the capabilities specified by the requirements and concentrated less on deployment of the application. The focus on capability development allowed for the use of Visual Studio extensions for Windows SharePoint Services. This provided an F5 model of application development in that it automatically wrapped the Visual Studio solution into a visually designed, feature-based Web solution package (.wsp file) and deployed it to the SharePoint site so that developers could quickly debug and test the application code in Office SharePoint Server.
In this manner, the functional developers were able to focus on assembly-based development. However, a large component of the solution also focused on content or artifact development (as documented in previous sections with lists and content types). For that type of development, MCS developers manually constructed the information architecture for the site according to the design, including the site collection and site structure, site content types and lists, and lookup data within the lists. Because there was a need for an initial and continued distribution of these content-based artifacts among the development team, the team began to distribute copies of the site's content database. The content database only had artifacts that could not be moved into a Web solution package. These artifacts included the following:
Site content types (at the site level and not at the site collection level with dependencies on lists)
Lists bound to site content types
Office SharePoint Designer workflows
The functional development track produced the following outputs that were included in a Web solution package for deployment and debugging in the local development environment. The design of the Web solution package was created by using the visual editor in Visual Studio, which is provided by the Visual Studio extensions for Windows SharePoint Services. The feature organization and structure was completed by using guidance found in the Organizing Features section of the SharePoint guidance patterns and practices (http://go.microsoft.com/fwlink/?LinkID=141526&clcid=0x409) article.
Because the Web solution package's structure and design were under version control as part of the Visual Studio solution, developers from the deployment track had the opportunity to streamline and incorporate their deliverables into a refined Web solution structure. As a result, when each developer retrieved a recent copy from version control, each developer received the structure of the Windows SharePoint Services Solution Package (WSP) in Visual Studio.
Visual Studio Solution Structure and Components
The solution contained multiple projects that were based on templates provided by the Visual Studio extensions for Windows SharePoint Services. The following table outlines the structure of the Visual Studio solution for the application.
Visual Studio Solution Components
	Solution Component
	Description

	Custom Edit Form
	A custom .aspx page that contained controls for editing Contoso contract metadata and validating input against business rules driven from SharePoint lookup lists. This edit form replaced the standard list edit form for the Contracts list, so that whenever the user chose to edit a contract, this form would be displayed.

	Custom View Form
	A custom .aspx page that provided a holistic view of the contract, including its metadata, associated documents, related list items, and workflow status. This list replaced the standard view form for the Contracts list, so that whenever the user clicked on a list item, this form would be displayed.

	Custom New Form
	A custom .aspx page that contained controls for collecting information for a new contract, including the associated documents, metadata, and validation routines based against list-driven business rules. This form replaced the standard list new form for the Contracts list, so that whenever the user chose to create a new list item, this form would be displayed.

	Event Handler
	A custom event handler ensured that permission levels were set and kept synchronized between the contract and its corresponding documents in the contract document library. This was done for adding and updating and was sensitive to whether there was a workflow executing on the contract list item.

	Branding
	A module feature contained branding images that were used by the site and deployed as part of a WSP.

	PKG and WSP structure
	The solution's WSP view design of the Web solution package was also a part of the Visual Studio solution and was version controlled. When changes were made to the structure of the WSP, the source for this configuration (the PKG directory provided by Visual Studio extensions for Windows SharePoint Services) needed to be checked out.

Accommodating SharePoint Designer Workflows
Because SharePoint Designer workflows were required to provide the core underpinnings of the application's ability to eliminate manual processing, functional workflow designers created the workflows within the site, extracted them from the content database, and published them as files. Because these workflows were of a critical nature to the success of the initiative, they were source controlled in Team Foundation Server as solution items. In this manner, not only were they version controlled in Team Foundation Server, but they were also strictly versioned within the content database because designers checked out the workflows before modifying them.
Workflow designers used Office SharePoint Designer 2007 to build and associate the workflows with the appropriate lists. The workflows ranged from conducting simple metadata updates and lookups based on existing lists, to more complex, approval workflows that assigned tasks, required individual approval, and solicited input from reviewers. In many instances, addressing some more complex business workflow requirements with Office SharePoint Designer 2007 workflows became challenging. Because many of the provided activities were insufficient, an architectural strategy was developed to maintain use of SharePoint Designer workflows according to the vision of the project, but to extend the workflow's capability to match the requirements. The general decision tree for extending workflows follows:
Use standard SharePoint Designer workflow activities to meeting workflow business requirements.
When standard SharePoint Designer workflow activities are not sufficient, do one of the following:
Create a custom workflow activity to accommodate the functionality required.
or
Use CodePlex solutions such as the Useful SharePoint Designer Custom Workflow Activities (http://go.microsoft.com/fwlink/?LinkId=141541) to supplement functionality.
When creating a custom activity, or when using one or more from CodePlex is not sufficient, converting to a Visual Studio SharePoint Designer workflow project is warranted.
For the application, MCS had to use custom workflow activities in the Office SharePoint Designer workflow. This level of effort was sufficient to meet the requirements and custom Visual Studio workflows were not required. This ensured that a core element of the vision, which was to have power users modify workflows when business rules changed, remained intact.
Although it is possible to extract and modify Office SharePoint Designer workflows as described in the following blog, this approach was not taken because the requirement was for power users to be able to freely modify the workflows as content once the application was in a production state.
Note: How to export Office SharePoint Designer workflows for feature inclusion in Visual Studio 2008 can be found at http://go.microsoft.com/fwlink/?LinkId=141538.
While the workflows were maintained separately due to their importance to the solution, they were also migrated between the individual development environments and through the testing and production environments as part of the content database.
The following table lists the workflows that are used by the custom application.
SharePoint Designer Workflows
	Office SharePoint Designer Workflow
	Description

	Contract Saved
	Whenever a Contract list item is created or saved, the workflow executes and conducts permission setting, document library SACL synchronization, and other notification tasks.

	Contract Approval
	Manually started by a user, the contract approval workflow routes the contract through an approval process by soliciting input from reviewers by assigning tasks. The workflow evaluates the input and conducts branching based on the input for approval.

	Contract Publication
	The contract publication workflow adjusts the permissions on the contract to make it read-only and optionally persists the contract to a designated records or document center.

[bookmark: _Toc220385108][bookmark: _Toc221326606]Deployment Development
MCS architects began the deployment planning at the same time as the planning for the physical design of the application. There were significant considerations involving how the application would be packaged and delivered to different environments. Following several design sessions on deployment, the decision became one of choosing whether to use a custom site definition or to simply install the application as a series of features to an existing site collection. In addition, exploring some of the complexities of the solution's information architecture, content types, and cardinality led to a decision about deploying the content database, and whether to leave all content artifacts in the database, or to extract the ones that were feasible and place them into .wsp files as features.
Deployment Model Design and Decisions
One of the primary deployment decisions was to determine if there was a compelling need to deploy the solution as a custom site definition. A custom site definition would have allowed a development working model in which the Visual Studio extensions for Windows SharePoint Services would have reverse engineered the site collection's content database in a development environment and created a Visual Studio solution that contained the extracted lists, content types, and other elements for inclusion in a feature. In addition, a custom site definition would have allowed for a CAML-based approach to creating the lists in the new site and even loading those lists with data.
After some proof-of-concept work, it quickly became apparent to MCS developers that a custom site definition on the scale required by the application would not be a viable solution. Because of the complexity of maintaining the XML required for the numerous lists, content types, and other artifacts of such a highly customized solution, maintaining the site definition would have been a laborious and error-prone task. In addition, the interdependencies of the content types would have required the maintenance of manually derived list definitions or an API-driven approach to creating and provisioning the lists. Although the API approach was feasible, the CAML definition approach that used Visual Studio extensions for Windows SharePoint Services was insufficient, and it quickly became apparent that the level of effort to create and populate the number of content types and lists that were required for the solution quickly outstripped the level of effort to build the application itself. Because Office SharePoint Designer workflows were an integral part of the solution, the decision was made to use the content database itself as a component of application promotion and deployment.
As a result, the deployment model became the restoration of a site that contained the content artifacts (such as site columns, site content types, and lists) to the target farm environment. Additionally, all assembly-based development (custom .aspx pages, event handlers, feature receivers, and associated class libraries) were deployed via features in a WSP. This provided a way to avoid the arduous coding and engineering task to implement the more complex elements of the content artifacts, while keeping the assembly development and feature definition and activation logic modular and contained.
This allowed deployment developers to focus their tasks on creating a feature receiver that associated the event handler with a specified list in the content database and conducting some other tasks, such as validating that key list items were present in lists for lookup. In addition, based on the components of the application, the patterns and practice guidance for Web solution package organization was followed. As a result, a highly organized and coherent set of related features was packaged as a single, deployable WSP.
Note: Although the content database migration approach can be classified as an antipattern for SharePoint development and differs from the ALM approach in patterns and practices guidance, it was a practical lower-cost approach for Contoso. Managing highly structured and interdependent authored artifacts such as content types and list instances, combined with dependent Office SharePoint Designer workflows through file definitions is complex, and there is no supported way to move Office SharePoint Designer–based workflows between content databases. Alternative approaches that are in line with patterns and practices guidance will be needed to address major application updates to the deployed functionality.
[bookmark: _Toc220385109][bookmark: _Toc221326607]Daily Build Process
The daily build process provided a critical level of quality control to the project. Although MCS experimented with a continuous integration approach, the daily build procedure proved to be less arduous on the geographically dispersed development team and more appropriate in that it resulted in less frequent code revisions for the feature developers. The build procedure followed the patterns and practices guidance for enabling daily builds by using a Visual Studio solution that took advantage of Visual Studio extensions for Windows SharePoint Services. Because the team followed the recommendation to have the PKG directory version controlled, the guidance in the following article was easily implemented in the context of Team Foundation Build. If a build was broken by recently checked-in code, the source of the error was identified, remedied, and checked back in to version control.
Note: See How to: Create an Automated Build and Deployment Solution with Team Foundation Server Team Build (http://go.microsoft.com/fwlink/?LinkId=141540).
[bookmark: _Toc220385110][bookmark: _Toc221326608]Deployment Procedures
The deployment process between development environments and between testing and production environments consisted of a combination of backing up the content database from the development environment and restoring it into the target farm. Because the team was segregated in development effort between content-based development (such as workflows, master pages, cascading style sheets, content types, and lists) and assembly development, these team members were responsible for readying the content database.
Following the content database preparation, the most recent WSP was retrieved from the build location, packaged, and sent to Contoso along with the content database backup. Before transmission, MCS restored the content database and installed the WSP into a Microsoft Hyper- V™ Server environment by using snapshots. The Hyper-V environment was a stand-alone SharePoint instance that mirrored the configuration of the target test farm that was on site at Contoso. MCS then ran through a Visual Studio 2008 Web test that was meant to function as a build verification test to ensure site functionality, and manual testing to ensure that new features were accommodated and working.
Once the custom SharePoint application’s deployment components were received by Contoso, a Contoso SharePoint administrator then restored the content database, and then installed the WSP. Following the restoration and after implementation, a Visual Studio 2008 Web test was run within Contoso’s environment to ensure that base functionality was working as expected before full regression and system testing occurred.
[bookmark: _Toc220385111][bookmark: _Toc221326609]Guidance and Lessons Learned
The following list outlines some key findings and lessons learned during the execution of the project. While the project was successfully implemented, there were areas during the development of the project that MCS focused on as means to refine custom application development on the Microsoft Office SharePoint Server 2007 platform.
[bookmark: _Toc220385112][bookmark: _Toc221326610]Modifications to Web.config
While there were minimal AJAX controls implemented, a significant number of Web.config changes were required to accommodate the Microsoft AJAX stack. While initially those changes were done manually, a better approach would be to spend time using the API to conduct Web.config modifications for the Web application.
[bookmark: _Toc220385113][bookmark: _Toc221326611]Complex Content Types and Lists
The ability to package interdependent content types (content types that have site columns based on lists that inherit from other content types) by using the API is preferred to CAML.
The ability for this project to conduct the development required to implement the content types and lists would have been a significant software framework. Such a framework should be able to accept dynamic set of content types and list specifications for inclusion in the custom application’s deployment. This would be a reusable and flexible way of achieving this goal.
[bookmark: _Toc220385114][bookmark: _Toc221326612]Segregating Entity Metadata
When required to secure document library metadata, consider altering the design to split the items out into a separate list and procedurally manage the association and security settings between the two by using workflow or event receiver.
19

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image1.jpeg

