
Int. J. Advanced Networking and Applications

Volume: 06 Issue: 06 Pages: 2563-2572 (2015) ISSN: 0975-0290

2563

Software Project Documentation - An Essence of

Software Development
Vikas S. Chomal

1
Assistant Professor
2
Research Scholar

1
The Mandvi Education Society Institute of Computer Studies,

Mandvi, Gujarat, India
2
Singhania University, Pacheri Bari, District – Jhunjhunu, Rajasthan

Email: vikschomal80@gmail.com

Dr. Jatinderkumar R. Saini
1
Director I/C & Associate Professor

2
Research Supervisor

1
Narmada College of Computer Application,

Bharuch, Gujarat, India
2
Singhania University, Pacheri Bari, District – Jhunjhunu, Rajasthan

Email: saini_expert@yahoo.com

---ABSTRACT--

Software documentation is a critical attribute of both software projects and software engineering in general.

Documentation is considered as a media of communication among the parties involved during software development as

well the one who will be using the software. It consists of written particulars concerning software specifications as well

as what it does, in which manner it accomplishes the specified details and even how to exercise it. In this paper, we

tried to focus on the role of documentation in software projects.

Keywords: Documentation, Software Engineering, Software Project Documentation, Software Projects

--
Date of Submission: March 07, 2015 Date of Acceptance: May 07, 2015

--

I. INTRODUCTION

Software documentation is an essential feature of both

software projects and software engineering in common. In

piece of evidence, documentation engineering has become

an accepted sub-domain in the software engineering

society. The task of documentation in a software

engineering milieu is to commune information to its

spectators and instils knowledge of the system it describes

[2][19]. Documentation is requisite in software

development. Even though every software development

project is exclusive and produces diverse categories of

documents, different amount of documentation, and may

employ different documentation methods and notations,

we need to be able to control the documentation produced

in software development projects in a uniform manner

[3][30]. Documentations is the process of collecting,

organizing, storing and maintaining historical record of

programs and other documents used or prepared during the

different phases of the life cycle of the software

[13][14].Software development is partly a learning and

communication process. Software developers need to

communicate with each other and also with various

interest groups of the system to be developed, such as

customers, marketing people, end users, service personnel,

and authorities. Documentation is the basis for

communication in software development organizations as

well as between development organizations and the

interest groups of the system to be developed [28][41].

II. LITERATURE REVIEW

Ambler et al [1] describes the issues concerning the

changing needs of documentation. In particular, Ambler

says that “during development you’re exploring both the
problem and solution spaces, trying to understand what

you need to build and how things work together. Post

development you want to understand what was built, why

it was built that way, and how to operate it”. Cockburn
[18], as well as Ambler et al [1] presents an alternate view

concerning the role of documentation. They argue that the

purpose of documentation is to convey knowledge –

something that can be different from merely providing

information. Cockburn argues that source code presents

the facts of a system and the supporting documents

facilitate higher-level interpretation of those facts. A

document that instils knowledge in its audience can then

be deemed effective, somewhat regardless of its age and

the extent to which it is up-to-date [18].

Laitinen [28] puts forward that software development is

supposed to be documentation-oriented, which means that

documents are considered to be the most essential and

valuable products of the development process.

Documentation-orientedness involves considering such

computer-process able products as source program

modules and batch-files as documents. On the other hand,

a product such as executable machine code is regarded as

mailto:vikschomal80@gmail.com
mailto:saini_expert@yahoo.com

Int. J. Advanced Networking and Applications

Volume: 06 Issue: 06 Pages: 2563-2572 (2015) ISSN: 0975-0290

2564

a by-product in the development process, because in a

development environment we can always derive correct

executable machine code when we have the correct

documents. The executable machine code is essential to

the user of a computer system, but it is considered less

important to the software developers.

Software development is partly a learning and

communication process. Software developers need to

communicate with each other and also with various

interest groups of the system to be developed, such as

customers, marketing people, end users, service personnel,

and authorities. Documentation is the basis for

communication in software development organizations as

well as between development organizations and the

interest groups of the system to be developed. To ensure

efficient communication, all communicating parties need

to be able to identify various software documents, and, to

ensure that the right information is found, all

communicating parties should be able to anticipate what

information is in each document [26][27].

Hager & Kellner et al [25][29] states that documentation is

probably most crucial to the maintenance phase, which

accounts for 60%75% of the total cost of the software.

Osborne [37] reports that documentation accounts for

more than 60% of maintenance costs, and is involved in

about one-third of the maintenance tasks. A quick

understanding of the existing software is a key activity of

the maintenance process. Chapin [11] asserts that

maintenance people spend 40% of their time dealing with

documentation. Fjel et al [23] showed that when making a

program modification 47% of a maintenance

programmer’s time is spent studying the program source
code and associated documentation. They also found that

when correcting errors, the time increases to 62%.

Documentation has appropriately been called the castor oil

of software process-it is good for you but tastes awful. Far

too often documentation may not exist, or if it does exist,

it may be incomplete, inaccurate, or out of date.

Basili et al [4] studied an industrial maintenance

environment and found that 20% of the maintenance

problems are due to bad documentation, with the most

frequent problems being documentation faults and

documentation clarifications. They claim that better

documentation can solve a big percentage of maintenance

problems. According to Chapin [10], maintenance

programmers report that for most maintenance tasks the

source code is the only available documentation. Buckley

[8] claims that in most cases maintainers discover that the

available documentation is not current; Poston [38] asserts

that flawed or outdated documentation is more costly than

no documentation.

Poor quality documentation is a major problem. In a

survey of 487 data processing organizations, Lien et al

[33] found documentation quality ranked 3rd in the list of

26 maintenance problem items. They identify

documentation quality and adequacy of design specs as

accounting for 70% of product quality. Guimaraes et al

[24] claims that the documentation rating has an inverse

relationship with the average yearly maintenance

expenditures and that maintenance programmers felt that

the most important document was an “English narrative
describing what the programs and modules are supposed

to do”. Documentation impacts the analysis and
development phases as well. Boehm [7] estimated that

documentation costs run about 10% of total Software

Development costs. Scheff et al [40] found that 85% of all

software development errors are introduced during

requirements, analysis and design. Basili et al [5]

conducted a study to analyze the factors that cause errors

and found that misunderstanding of a module’s
specifications or requirements constituted the majority of

detected errors. Card et al [9] studied a production

environment to evaluate the effectiveness of different

technologies and their impact on productivity and

reliability. They found that high-use of documentation

improves productivity by 11% and reliability by 27%

compared to low-use of it. To improve quality, they

suggest effective documentation of each phase of

development. Fagan [22] claims that documentation

quality inspections are as important as program

inspections when the goal is to increase productivity and

final software quality.

The effectiveness of documentation within a development

process is determined by the way in which the intentions

of the authors correspond to the expectations of the

potential readers. In a typical software development

process, many different kinds of documents are produced

and consumed at various points in time. The contents of

those documents necessarily exhibit a certain amount of

overlap. People may lose track of the meaning of

individual documents; which information it contains and

what its role is in the development process. When the

expectations of the consumers of the documentation drift

too far from the intentions of its producers, the ultimate

consequence might be a need to rediscover already

documented knowledge. In such a situation, customers for

example may need to explain their situation and

requirements over and over again to different parties in the

development process [2][15][16].

Laitinen [28] identified the following task when document

is applied in practice:

1) Certain quality control policies (e.g.

walkthroughs, reviews, and inspections) must

be assigned to certain types of documents. For

example, some Development Plans need to be

reviewed with customers, and Utilization

Documents usually need a different kind of

quality control than Software Descriptions.

2) For every document or document-type that is

considered necessary in software development

documentation guidelines, document

templates, and checklists for validating a

document should be created.

Int. J. Advanced Networking and Applications

Volume: 06 Issue: 06 Pages: 2563-2572 (2015) ISSN: 0975-0290

2565

3) When a specific development method is used

the correspondence between the documents

and/or models produced by a method and the

documents needs to be specified.

4) An appropriate version control policy must be

established for every document class. A

general rule is that all document classes

excluding Quality Control and Administrative

Documents need version control.

5) Various roles are needed in software

development [14]. It may be beneficial to

decide that certain documents or document

types are created, maintained, stored and/or

collected by a certain role according to the

software quality system.

Bill et al [22] believe that documentation should focus on

how requirements and design decisions were made,

represented, communicated and changed over the lifespan

of a software system. As well, documentation should

describe the impact of the current system on future

development processes. Their study involved interviewing

personnel from seventeen large software projects. Their

analysis focused on the problems of designing large

software systems; but many results report directly about

the use (and misuse) of documentation in a software

project. Thomas [42] raises several fundamental questions

in their discussion about software documentation.

1) What types of documentation does a

software engineer (or support staff

member) need?

2) Who should produce, maintain and

verify documentation to assure an

appropriate level of quality?

3) Why should documentation be produced

at all?

Forward et al [3] specify procedures for managing

user documentation throughout the software life cycle. It

applies to people or organizations producing suites

of documentation, to those undertaking a

single documentation project, and

to documentation produced internally, as well as to

documentation contracted to outside service organizations.

It provides an overview of the software documentation and

information management processes, and also presents

aspects of portfolio planning and content management that

user documentation managers apply. It covers

management activities in starting a project, including

setting up procedures and specifications, establishing

infrastructure, and building a team. It includes examples of

roles needed on a user documentation team. It addresses

measurements and estimates needed for management

control, and the use of supporting processes such as

change management, schedule and cost control, resource

management, and quality management and process

improvement. It includes requirements for key documents

produced for user documentation management,

including documentation plansand documentation manage

ment plans. ISO/IEC/IEEE 26511:2012 is independent of

the software tools that may be used to produce or manage

documentation, and applies to both

printed documentation and on-screen documentation.

Much of its guidance is applicable to

user documentation for systems including hardware as

well as software. While there is no universally recognized

standard for software documentation, there is a standard

for documenting engineering and scientific software.

Developed by the American National Standards Institute

(ANSI) and the American Nuclear Society (ANS) in 1995,

it is called the ANSI/ANS 10.3-1995 Standard

for Documentation of Computer Software. The standard

provides a flexible, robust framework

for documentation needs. One of its goals is to encourage

better communication between developer and user and to

facilitate effective selection, usage, transfer, conversion

and modification of computer software. The standard is

not a rigid set of specifications but a guide that can apply

to most software projects intended for internal or external

use. While the standard cannot cover all documentation

problems, it is a good starting point, even for the most

complex software. Similarly, while the standard provides

recommendations for documenting scientific and

engineering software, it doesn't offer guidance for online

monitoring, control or safety systems, and doesn't

specifically address the unique requirements of consumer-

oriented software. As a general guideline for clear, well-

organized documentation, however, the ANSI/ANS 10.3-

1995 standard can serve as a place for developers to begin

a documentation methodology. The standard is fairly

comprehensive, and it allows for individual developer

differences and unique software documentation problems

[39].

Quian [32] states that, the software documentation is

unpopular among many developers at present while the

documents are important for the staffs who work for

secondary development and software maintenance. For

this phenomenon, Quain proposed a teaching method of

writing software documentation, in which

the software maintenance is the driving force to make

students fully understand and grasp the method

of software documentation writing through an upgrade and

maintenance software project. And students learn to write

effective software documentation to establish the level and

structure of the document.

Lethbridge [17] put forward that, software engineering is a

human task, and as such we must study

what software engineers do and think. Understanding the

normative practice of software engineering is the first step

toward developing realistic solutions to better facilitate the

engineering process. We conducted three studies using

several data-gathering approaches to elucidate the patterns

by which software engineers (SEs) use and update

documentation. Their objective is to more accurately

comprehend and model documentation use, usefulness,

and maintenance, thus enabling better decision making

and tool design by developers and project managers. Our

results confirm the widely held belief that SEs typically

does not update documentation as timely or completely

Int. J. Advanced Networking and Applications

Volume: 06 Issue: 06 Pages: 2563-2572 (2015) ISSN: 0975-0290

2566

as software process personnel and managers advocate.

However, the results also reveal that out-of-

date software documentation remains useful in many

circumstances. Choudhary [17] disclose the challenges

faced by the documentation team in a globally distributed

setting have not received much attention. In their work

they highlighted on the challenges faced by

the software documentation team in a globally distributed

product development team. Further the paper elaborates on

the solutions implemented, successes and failures of the

team. This also includes the learning of the team as it

aligned with the Lean model of Software Development.

Magyar [34] state the work carried out at Spatial

Technology Inc. which has 45-60 developers whose main

task is of writing code. The Technical Publications

Department has three writers to keep up with them, plus

two programmers who develop and

maintain software tools that support the documentation.

This team puts out paper and online documentation, on

time, reasonably complete, for one major and several

minor releases a year. It's the tools that make it possible.

Magyar first describes the tools and processes that were in

place, explain the issues that led us to change them, and

discuss the changes that were put forward in place both for

tools and process. Magyar also discusses some of the

problems that were faced and how they dealt with them.

Chomal and Saini [12][13] in their work considered

documentation of software projects prepared by students

as a source for data collection. Specifically,

documentations of large software projects of only final

year students of Masters level course have been

considered for the research purpose. The duration of these

software projects is six months. The said documentations

of software projects were procured from college libraries.

These documentations include complete project profile

along with the following elements:

1) Requirement analysis

2) Technology used

3) Database design

4) Structural and Object Oriented Modelling Techniques

5) Screen layouts

6) Testing techniques along with test case and data

They analyzed and reviewed 505 large software project

documentations developed during a period of academic

years from 2001-2002 to 2011-2012. During our

exploration we considered all of the above described

elements. For simplicity and better exhaustive analysis of

the documentations, the phased process was followed. As

each project is uniquely different definition from other

projects, it is noteworthy here that this was repeated for

each of the 505 project reports under study. These phases

are presented below:

1) Exploration of Project Profile

2) Exploration of Existing System and Proposed System

3) Exploration of Requirement Gathering Techniques

4) Exploration of Requirement Analysis done by Students

5) Exploration of Technology on which Software Project

carried out

6) Exploration of Process Model adapted for Software

Project Development

7) Exploration of Data Dictionary (including Database

Design)

8) Exploration of various Structural and Object Oriented

Modelling Techniques

9) Exploration of Screen Layouts

10) Exploration of Generated Reports

11) Exploration of Testing Techniques and Test data

In their present work, they identified 103 software

attributes from software project documentations.

Forward [3] discusses how certain attributes contribute to

a document’s effectiveness. They conducted a survey and
asked the participants how important particular document

attributes contribute to its overall effectiveness.

Participants gave rating between 1 (least important) and 5

(most important). Dragicevic et al [21] in their work

considered problems of elicitation, documentation and

validation of user requirements, and implicates the need

for method that enables the stakeholders to resolve

problems of incomplete, incorrect and contradictory

requirements in the earliest possible phase of project. In

their review of research literature they showed that the

existing methods are primarily intended for requirement

engineering and software engineering professionals and

that there is a lack of method that will ensure the active

role of business users. They define new method of

elicitation, documentation and validation of users

requirements based on complementary application of

Event Process Chain method and UML language. Its

experimental part verifies and evaluates the suggested

method on specific project of customized

software development. This method is suitable for

early software size estimation. New metric for estimation

of software size and complexity is developed. Lepasaar et

al [31] articulate that, in a small software organization, a

close and intense relationship with its customers is often a

substitute for documentation along the software processes.

Nevertheless, according to the quality standards, the

inadequacy of the required documentation will retain the

assessed capability of software processes on the lowest

level.

Their article describes the interconnections between

software process documentation and the maturity of the

organization. The data is collected from the SPICE

assessment results of small and medium

sized software organizations in Finland. The aim of their

article is to visualise the necessity

of documentation throughout the software engineering

processes in order to achieve a higher capability level. In

addition they pointed out that processes with

insufficient documentation decrease the chance to improve

the quality of the processes, as it is impossible to track and

analyse them.

Int. J. Advanced Networking and Applications

Volume: 06 Issue: 06 Pages: 2563-2572 (2015) ISSN: 0975-0290

2567

Bayer [6] speaks about documentation by stating that,

documentation is an integral part of a software system. It

contains the information that is necessary to effectively

and successfully develop, use, and maintain a system. In

practice, however, the creation of

appropriate documentation is largely neglected. In their

paper they investigated the reasons for this neglect,

presents view-based software documentation; their

approach was to improve the current situation, and reports

on empirical evidence in support of the presented

approach. Because the quality of documentation depends

on its usage, view-based software documentation exploits

existing software modeling techniques to provide all users

of documentation with the documentation they require f or

performing their tasks. View-

based software documentation has been empirically

validated in a series of experiments and case studies that

showed that the approach improves the completeness,

correctness, and usefulness of produced and

maintained documentation.

Liu et al [20] verbalize that;

studying software development processes can help us to

understand the software development models which in

turn can help programmers to build high-

quality software products. Software is not all

homogeneous, and

industrial software and software developed in academia

seem to be different. In order to understand the

characteristics of academic software development, they

surveyed ten student programmers in five research fields

and conducted content analysis. They found that although

academic software is highly diverse, the development

processes are fairly similar to some extent. They also

found some common weaknesses, such as lacking of code

management and documentation, and proposed some

suggestions to improve the process.

Nasution et al [36] implies that,

agile software development methods seem inherently

suitable for today's quick-paced business environment as

they shorten the time to develop new systems and

typically incur lower development costs compared to the

conventional systems development life cycle

approach. Software development project failures using

conventional SDLC are often attributed to project delays,

resulting in budget overruns. On the other hand, a well

planned and documented systems development project is

more likely to result in a system that meets the

expectations of both the intended users and the

software engineers. In their work they takes another look

at conventional SDLC methodology by focusing on an

aspect that is often overlooked in systems development

practice, namely the significance of good documentation.

Wallace et al [43] illustrates that most undergraduate

information Systems courses use some sort of Computer-

Aided Systems and Software Engineering (CASE) tool to

help the System Designers (cadets) graphically depict the

proposed System under construction. Currently, at the

United States Military Academy, they were in the process

of identifying, evaluating and selecting an appropriate

CASE tool for use by their Computer Science Engineering

Sequence cadets. The cadets who will use the

CASE tool are seniors completing a capstone

design project with a local client. They have become

system designers who must build an Information System

to meet the needs of their client. The cadets only have 2

semesters to learn how to use a CASE tool and apply it to

their system design using the six phases of the Systems

Development Life Cycle (SDLC). The current

CASE tool available to them is very robust and non user-

friendly. As a result, little value is currently gained from

the use of this CASE tool. That is why it is vital that a new

user friendly CASE tool is acquired. They developed a ten

step method that will evaluate and select the most users

friendly and cost efficient CASE tool for the cadets, which

will ultimately improve present and future information

System Designs. This method can take up to ten months

from developing an initial scoring criterion to the final

selection and procurement of a meaningful CASE tool

Mitchell et al [35] conveyed an approach for designing

multi-factor scoring systems for evaluating and selecting

early stage innovation projects. A project is a piece of

work of finite duration with finite resources, aimed at a

defined outcome. Innovation projects have the extra

complication that all of these aspects will be somewhat

uncertain and knowledge of them is liable to change as

the project proceeds. Clearly different assessment factors

are required for different organizations, and for different

types and stages of project. There is little guidance in the

literature on how to choose the factors and how best to

structure the scoring process. They presented approach in

the form of managerial guidelines, targeted at those who

have to implement innovation project selection systems.

Design aspects are discussed, including structure of the

tool, choosing the factors, scaling statements, weightings,

risk, uncertainty and confidence. Management aspects are

considered, including preparation, scoring, decisions and

outputs. The method is positioned in terms of theory and

practice, with reference to both literature and industrial

case studies.

III. CONCLUSION
From the surveyed work premeditated by us on

documentation of software project, we wrap up the

highlights about considering documentation as the essence

of software project.

Int. J. Advanced Networking and Applications

Volume: 06 Issue: 06 Pages: 2563-2572 (2015) ISSN: 0975-0290

2568

Table I. Conclusion

Sr

No.

References Highlights

1 [1][18] Describes the issues concerning the changing needs of documentation. Also

presents an alternate view concerning the role of documentation.

2 [2][19] The task of documentation in a software engineering milieu is to commune

information to its spectators and instils knowledge of the system it describes.

3 [3] Specify procedures for managing user documentation throughout the

software life cycle. It applies to people or organizations producing suites

of documentation, to those undertaking a single documentation project, and

to documentation produced internally, as well as to documentation contracted to

outside service organizations.

4 [4] They claim that better documentation can solve a big percentage of maintenance

problems.

5 [5] Conducted a study to analyze the factors that cause errors and found that

misunderstanding of a module’s specifications or requirements constituted the

majority of detected errors.

6 [6] Speaks about documentation by stating that, documentation is an integral part of

a software system. It contains the information that is necessary to effectively and

successfully develop, use, and maintain a system. In practice, however, the

creation of appropriate documentation is largely neglected.

7 [7] Estimated that documentation costs run about 10% of total Software

Development costs.

8 [8] Claims that in most cases maintainers discover that the available documentation

is not current.

9 [9] Studied a production environment to evaluate the effectiveness of different

technologies and their impact on productivity and reliability. They found that

high-use of documentation improves productivity by 11% and reliability by 27%

compared to low-use of it.

10 [10] Maintenance programmers report that for most maintenance tasks the source

code is the only available documentation.

11 [11] Asserts that maintenance people spend 40% of their time dealing with

documentation.

12 [12] In their work considered documentation of software projects prepared by

students as a source for data collection. Specifically, documentations of large

software projects of only final year students of Masters level course have been

considered for the research purpose.

13 [13][14] Documentations is the process of collecting, organizing, storing and maintaining

historical record of programs and other documents used or prepared during the

different phases of the life cycle of the software.

14 [15][16] The effectiveness of documentation within a development process is determined

by the way in which the intentions of the authors correspond to the expectations

of the potential readers. In a typical software development process, many

different kinds of documents are produced and consumed at various points in

time. The contents of those documents necessarily exhibit a certain amount of

overlap.

16 [18] Argues that source code presents the facts of a system and the supporting

documents facilitate higher-level interpretation of those facts. A document that

instils knowledge in its audience can then be deemed effective, somewhat

regardless of its age and the extent to which it is up-to-date.

17 [20] Verbalize that; studying software development processes can help us to

understand the software development models which in turn can help

programmers to build high-quality software products.

18 [21] In their work they considered problems of elicitation, documentation and

validation of user requirements, and implicates the need for method that enables

the stakeholders to resolve problems of incomplete, incorrect and contradictory

requirements in the earliest possible phase of project.

Int. J. Advanced Networking and Applications

Volume: 06 Issue: 06 Pages: 2563-2572 (2015) ISSN: 0975-0290

2569

19 [22] Claims that documentation quality inspections are as important as program

inspections when the goal is to increase productivity and final software quality.

20 [23] Showed that when making a program modification 47% of a maintenance

programmer’s time is spent studying the program source code and associated

documentation. They also found that when correcting errors, the time increases

to 62%.

21 [24] Documentation impacts the analysis and development phases as well.

22 [25][29] States that documentation is probably most crucial to the maintenance phase,

which accounts for 60%75% of the total cost of the software.

23 [26][27] To ensure efficient communication, all communicating parties need to be able to

identify various software documents, and, to ensure that the right information is

found, all communicating parties should be able to anticipate what information

is in each document.

24 [28][41] Documentation is the basis for communication in software development

organizations as well as between development organizations and the interest

groups of the system to be developed.

25 [30] Documentation is requisite in software development. Even though every

software development project is exclusive and produces diverse categories of

documents, different amount of documentation, and may employ different

documentation methods and notations, we need to be able to control the

documentation produced in software development projects in a uniform manner.

26 [31] Articulate that, in a small software organization, a close and intense relationship

with its customers is often a substitute for documentation along

the software processes.

27 [32] States that, the software documentation is unpopular among many developers at

present while the documents are important for the staffs who work for secondary

development and software maintenance.

28 [33] Found that documentation quality ranked 3rd in the list of 26 maintenance

problem items. They identify documentation quality and adequacy of design

specs as accounting for 70% of product quality.

29 [34] This team puts out paper and online documentation, on time, reasonably

complete, for one major and several minor releases a year. It's the tools that

make it possible. Magyar first describes the tools and processes that were in

place, explain the issues that led us to change them, and discuss the changes that

were put forward in place both for tools and process.

30 [35] Conveyed an approach for designing multi-factor scoring systems

for evaluating and selecting early stage innovation projects.

31 [36] A well planned and documented systems development project is more likely to

result in a system that meets the expectations of both the intended users and the

software engineers. In their work they takes another look at conventional SDLC

methodology by focusing on an aspect that is often overlooked in systems

development practice, namely the significance of good documentation.

32 [37] Reports that documentation accounts for more than 60% of maintenance costs,

and is involved in about one-third of the maintenance tasks. A quick

understanding of the existing software is a key activity of the maintenance

process.

33 [38] Asserts that flawed or outdated documentation is more costly than no

documentation.

34 [39] A general guideline for clear, well-organized documentation, however, the

ANSI/ANS 10.3-1995 standard can serve as a place for developers to begin

a documentation methodology. The standard is fairly comprehensive& it allows

for individual developer differences & unique software documentation

problems.

35 [40] Found that 85% of all software development errors are introduced during

requirements, analysis and design.

36 [42] Raises several fundamental questions in their discussion about software

documentation. These questions including matters regarding types of

documentations, contents, maintenance and so on.

Int. J. Advanced Networking and Applications

Volume: 06 Issue: 06 Pages: 2563-2572 (2015) ISSN: 0975-0290

2570

37 [43] Illustrates that most undergraduate information Systems courses use some sort

of Computer-Aided Systems and Software Engineering (CASE) tool to help the

System Designers (cadets) graphically depict the proposed System under

construction. Currently, at the United States Military Academy, they were in the

process of identifying, evaluating and selecting an appropriate CASE tool for

use by their Computer Science Engineering Sequence cadets.

REFERENCES

[1] Ambler, Scott and Ron Jeffries. Agile Modelling:

Effective Practices for Extreme Programming and

the Unified Process, Chapter 14, John Wiley &

Sons, 2002.

[2] Andrew J. Forward, “Software Documentation –

Building and Maintaining Artefacts of

Communication”, presented to the Faculty of
Graduate and Postdoctoral Studies in partial

fulfilment of the requirements for the degree

Master in Computer Science, Ottawa – Carleton

Institute of Computer Science, University of

Ottawa, Canada, 2002.

[3] Andrew J. Forward, Timothy, “Qualities of
Relevant Software Documentation: An Industrial

Study”, available from psu.edu.
[4] Basili, Victor R. and Musa, John D. The future

engineering of software: a management

perspective. IEEE Computer, September, 1991.

[5] Basili, Victor R. and Perricone, Barry T. Software

errors and complexity: An empirical investigation.

Communications of the ACM, Vol.27, No. 1,

1984.

[6] Bayer, J., A view-based approach for improving

software documentation practices Published in:

Engineering of Computer Based Systems, 2006.

ECBS 2006. 13th Annual IEEE International

Symposium and Workshop on Date of Conference:

27-30 March 2006 Page(s): 10 pp. – 278 Print

ISBN: 0-7695-2546-6 INSPEC Accession

Number: 9017024 Publisher: IEEE

[7] Boehm, Barry W. The high cost of software. From

Horowitz, Practical Strategies for

Developing Large Software Systems, Addison-

Wesley, Reading, Mass, 1975.

[8] Buckley, J. Some standards for software

maintenance.Standards, IEEE Computer,

November 1989.

[9] Card, David N., MC Garry, Frank E. and Page,

Gerald T. Evaluating software engineering

technologies. IEEE Transactions on software

engineering, Vol. SE13, No. 7, 1987.

[10] Chapin, Ned. Software maintenance life cycle.

Proceedings Conference on Software Maintenance,

IEEE, 1988.

[11] Chapin, Ned. The job of software maintenance.

Proceedings Conference on Software

[12] Chomal V.S. , Saini J.R., “Finding Trend of Both
Frequency and Type of Errors from Software

Project Documentation‖, International Journal of
Emerging Trends and Technology in Computer

Science (IJETTCS)ISSN 2278-6856, Volume 2,

Issue 5, September – October 2013

[13] Chomal V.S. , Saini J.R., ”Software Quality
Improvement by Documentation – Knowledge

Management Model‖, National Journal of System
And Information Technology ISSN : 0974 – 3308,

Volume 6, Number 1, June 2013, Page Number:

49 – 68

[14] Chomal V.S. , Saini J.R., ”Software Template to
Improve Quality of Database Design on basis of

Error Identification from Software Project

Documentation‖, International Journal of

Engineering and Management Research ISSN No.:

2250-0758,Volume-4, Issue-1, February-2014,

Page Number: 168-179

[15] Chomal V.S. , Saini J.R., “Significance of
Software Documentation in Software

Development Process” International Journal of
Engineering Innovation and Research, ISSN: 2277

– 5668, Volume 3, Issue 4

[16] Chomal V.S. , Saini J.R., “Identification,
Categorization and Weighting of Software

Engineering Attributes for Quality Evaluation of

Software Project Documentation”,
International Journal of Advanced Networking

Applications (IJANA), ISSN No: 0975 – 0290,

page – 53, 2014.

[17] Choudhury, J. Software Documentation in a

Globally Distributed Environment aligned with the

Lean model of Software Development. Published

in: Global Software Engineering (ICGSE), 2014

IEEE 9th International Conference on Date of

Conference: 18-21 Aug. 2014 Page(s): 90 – 94

INSPEC Accession Number: 14649864 Publisher:

IEEE

[18] Cockburn, A. Agile Software Development,

Addison-Wesley Pub Co, 2001.

[19] Curtis, Bill, Herb Krasner, and Neil Iscoe. A Field

Study of the Software Design Process for Large

Systems. Communications of the ACM

31(11):1268-1287, November, 1988.

[20] Dapeng Liu ; Shaochun Xu ; Brockmeyer, M.

Investigation on Academic Research Software

Development Published in: Computer Science and

Software Engineering, 2008 International

Conference on (Volume:2) Date of Conference:

12-14 Dec. 2008 Page(s): 626 – 630 Print ISBN:

978-0-7695-3336-0 INSPEC Accession Number:

10427109 Publisher: IEEE

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bayer,%20J..QT.&searchWithin=p_Author_Ids:37449262600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10692
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10692
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10692
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Choudhury,%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6909099
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6909099
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dapeng%20Liu.QT.&searchWithin=p_Author_Ids:37654029100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shaochun%20Xu.QT.&searchWithin=p_Author_Ids:37269396500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Brockmeyer,%20M..QT.&searchWithin=p_Author_Ids:37283393200&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4721667
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4721667
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4721667

Int. J. Advanced Networking and Applications

Volume: 06 Issue: 06 Pages: 2563-2572 (2015) ISSN: 0975-0290

2571

[21] Dragicevic, S. ; Split Airport, Kastela, Croatia

; Celar, S. Method for elicitation, documentation

and validation of software user requirements

(MEDoV) Published in: Computers and

Communications (ISCC), 2013 IEEE Symposium

on Date of Conference: 7-10 July 2013 Page(s):

000956 – 000961 INSPEC Accession Number:

14146909 Conference Location Publisher: IEEE

[22] Fagan, M.E. Design and code inspections to

reduce errors in program development. IBM

Systems Journal, Vol. 15, No. 3, 1976.

[23] Fjelstad, R.K and Hamlen, W.T. Application

program maintenance study report to our

respondents. Proceedings GUIDE 48, Philadelphia,

PA, 1979.

[24] Gamalel-Din, Shehab A. and Osterweil, Leon J.

New perspectives on software maintenance

processes. Proceedings Conference on Software

Maintenance, IEEE, 1988.

[25] Hager, James A. Software cost reduction methods

in practice: a post mortem analysis. Journal of

systems and software, Vol. 14, No.2, 1991.

[26] Janicki, Ryszard, David L. Parnas, and Jeffery

Zucker, “Tabular representations in relational
documents”, In C. Brink, editor, Relational
Methods in Computer Science. Springer-Verlag,

1996.

[27] June S. Hopkins and Jean M. Jeroow,

“Documenting The Software Development
Process”, 1990 ACM 0 - 89791- 414 -7/90/1000 –

0125.

[28] Kari Laitinen, “Document Classification for
Software Quality Systems”, Technical Research

Centre of Finland (VTT) Computer Technology

Laboratory, ACM SIGSOFT Software Engineering

Notes vol 17 no 4 Oct 1992 Page 32

[29] Kellner, Marc I. Non-traditional perspectives on

software maintenance. Panel, Proceedings

Conference on Software Maintenance, IEEE,

1989.

[30] Klare, George R, “Readable computer
documentation”, p148 – 167, ACM JCD, Volume

24,Communications of the ACM 31(11):1268-

1287, November, 1988.

[31] Lepasaar, M. ; Varkoi, T. ; Jaakkola, H.,

Documentation as a software process capability

indicator, Published in: Management of

Engineering and Technology, 2001. PICMET '01.

Portland International Conference on (Volume:1)

Date of Conference: 2001, Print ISBN: 1-890843-

06-7 INSPEC Accession Number: 7174877

Publisher: IEEE

[32] Lethbridge, T.C., How software engineers use

documentation: the state of the practice Published

in: Software, IEEE (Volume:20 , Issue: 6)

Page(s): 35 – 39 ISSN : 0740-7459 INSPEC

Accession Number: 7957107 Date of Publication :

Nov.-Dec. 2003 Date of Current Version : 03

November 2003 Issue Date : Nov.-Dec. 2003

Sponsored by : IEEE Computer Society Publisher:

IEEE

[33] Lientz, Bennet P. and Swanson, E. Burton.

Problems in application software maintenance.

Communications of the ACM, Vol. 24, No. 11,

1981.

[34] Magyar , Automating software documentation: a

case study Published in: Professional

Communication Conference, 2000. Proceedings of

2000 Joint IEEE International and 18th Annual

Conference on Computer Documentation

(IPCC/SIGDOC 2000) Date of Conference: 2000

Page(s): 549 – 558 Print ISBN: 0-7803-6431-7

INSPEC Accession Number: 6762904 Publisher:

IEEE

[35] Mitchell, R. ; Phaal, R. ; Athanassopoulou, N. ,

Scoring methods for prioritizing and selecting

innovation projects

Publication Year: 2014 , Page(s): 907 – 920 IEEE

CONFERENCE PUBLICATIONS

[36] Nasution, M.F.F. ; Weistroffer, H.R.,

Documentation in Systems Development: A

Significant Criterion for Project Success Published

in: System Sciences, 2009. HICSS '09. 42nd

Hawaii International Conference on Date of

Conference: 5-8 Jan. 2009 Page(s): 1 – 9 ISSN :

1530-1605 Print ISBN: 978-0-7695-3450-3

INSPEC Accession Number: 10467088 Publisher:

IEEE

[37] Osborne, Wilma M. Building and Sustaining

Software Maintainability. Proceedings Conference

on Software Maintenance, IEEE, 1987.

[38] Poston, Robert M. When does more

documentation mean less work?. Software

Standards, IEEE Software, October 1984.

Published in: Computer (Volume:30 , Issue: 10)

Page(s): 97 – 98 ISSN : 0018-9162 INSPEC

Accession Number: 5725215 Date of Publication :

Oct 1997 Date of Current Version : 06 August

2002 Issue Date : Oct 1997 Sponsored by : IEEE

Computer Society Publisher: IEEE

[39] Qian Hu Software documentation writing on the

project of software upgrade and maintenance

Published in: Computer Science and Information

Processing (CSIP), 2012 International Conference

on Date of Conference: 24-26 Aug. 2012 Page(s):

1400 – 1403 Print ISBN: 978-1-4673-1410-7

INSPEC Accession Number: 13055318 Publisher:

IEEE

[40] Scheff, Benson H. and Georgon, Thomas. Using

documentation blueprints to produce mandated

DOD data items. Journal of Systems and Software,

Vol. 14, No. 2, 1991.

[41] Scheff, Benson H. and Tom Georgon., “Letting
software engineers do software engineering or

freeing software engineers from the shackles of

documentation”, p81 – 91, SIGDOC '88, Ann

Arbor, Michigan, USA, ACM Press, 1988.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dragicevic,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Celar,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6746555
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6746555
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6746555
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lepasaar,%20M..QT.&searchWithin=p_Author_Ids:37324665300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Varkoi,%20T..QT.&searchWithin=p_Author_Ids:37324868300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jaakkola,%20H..QT.&searchWithin=p_Author_Ids:38264580800&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7553
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7553
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7553
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lethbridge,%20T.C..QT.&searchWithin=p_Author_Ids:37284128400&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=52
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=27831
http://www.computer.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7114
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7114
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7114
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7114
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7114
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean%3Dtrue%26queryText%3DMethods%2C+tools+for+evaluating+and+scoring+software+project+documentation&pageNumber=2
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean%3Dtrue%26queryText%3DMethods%2C+tools+for+evaluating+and+scoring+software+project+documentation&pageNumber=2
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean%3Dtrue%26queryText%3DMethods%2C+tools+for+evaluating+and+scoring+software+project+documentation&pageNumber=2
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6921000&matchBoolean%3Dtrue%26pageNumber%3D2%26queryText%3DMethods%2C+tools+for+evaluating+and+scoring+software+project+documentation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6921000&matchBoolean%3Dtrue%26pageNumber%3D2%26queryText%3DMethods%2C+tools+for+evaluating+and+scoring+software+project+documentation
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nasution,%20M.F.F..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Weistroffer,%20H.R..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4755313
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4755313
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=13587
http://www.computer.org/
http://www.computer.org/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Qian%20Hu.QT.&searchWithin=p_Author_Ids:38485280600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6297597
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6297597
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6297597

Int. J. Advanced Networking and Applications

Volume: 06 Issue: 06 Pages: 2563-2572 (2015) ISSN: 0975-0290

2572

[42] Thomas, Bill, Dennis Smith and Scott Tilley,

“Documentation for software engineers: what is
needed to aid system understanding?”, p 235 –

236, SIGDOC '01, Sante Fe, New Mexico

[43] Wallace, M.K.; Crow, J.A. Improving student

information system design through evaluation and

Selection of an appropriate CASE tool

Published In: Frontiers in Education

Conference, 1995. Proceedings, 1995

(Volume: 1) Date of Conference 1-4 Nov 1995

Page(s):2c3.16-2c3.19 vol.1 ISSN: 0190-5848

Print ISBN: 0-7803-3022-6 INSPEC

Accession Number: 5225740 Publisher: IEEE

AUTHORS

Vikas Sitaram Chomal – M.Phil, MCA and Research Scholar at Faculty of

Computer Science, Singhania University, Pacheri Bari, District – Jhunjhunu,

Rajasthan – 333515. He has more than 7 years of rich teaching experience.

Presently he is working as Assistant Professor at The Mandvi Education

Society Institute of Computer Studies – MCA, Mandvi, District – Surat,

Gujarat, India. Formely he was Assistant Professor (Ad hoc) at Narmada

College of Computer Application – MCA, Bharuch, Gujarat, India. He

worked as Principal (I/C) & Assistant Professor at Shri Manilal Kadakia

College of Management & Computer Studies, Ankleshwar, Gujarat, India.

Jatinderkumar R. Saini was awarded Ph.D. in Computer Science by Veer

Narmad South Gujarat University, Surat, Gujarat, India in the year 2009. He

has more than 8 years of rich professional experience including working at

Ministry of Info. Tech., New Delhi licensed CA under PKI at Ahmedabad,

Gujarat, India. Presently he is working as Director (I/C) & Associate

Professor at Narmada College of Computer Application, Bharuch, Gujarat,

India. He is also the Director (I.T), GTU’s Ankleshwar – Bharuch

Innovation Sankul. Formely, he was Associate Professor & GTU

Coordinator & HOD at S.P. College of Engineering, Visnagar, Gujarat,

India.

