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Goal

* From an image of a Sudoku puzzle, extract and
solve the puzzle, and display the solution over
the top of the puzzle.
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Problem Elements

Extract the puzzle from the image.
ldentify the numbers in each cell.

— Correlate the numbers to their respective cell
position.

Solve the puzzle.
Display the solution over the image.



Initial Testing e

 Began by using an ideal digitally s | 17
fabricated image to reduce complexity.
— Chose the Wikipedia image for Sudoku.

e Used a Hough Transform to extract the lines
in the puzzle, and segmented the image based
on the rho values.

— Parameters very sensitive

to capture only one Hough
line per puzzle line.

— Used averages if multiple
existed close together




Initial Testing cont.

 Cropped image between each set of rho values,
and performed Normalized-Cross-Correlation on
each sub-image.

e | saved the max score for a cross-correlation of
each sub-image with all 9 template digits, and
then used the max of those peak scores to
identify the digit.

— Used the total number of black pixels in a square as a
threshold for determining if it was empty.

— Cropped the template images out of the puzzle.

— Processed sub-images in order to preserve location
information.



Initial Testing cont.

e Solved the puzzle using a MATLAB script |
found which recursively solves for possible
values for every blank cell in the puzzle[1].

e Used Hough line rho values to re-project the
solution onto the image
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[1] G.M. Boynton, “MATLAB Sudoku Solver,” MATLAB Central File Exchange, 2005, 314151218|611/7]19

Accessed: 12/2/2012,
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Test Images

e \Want to expand code to handle real images of
puzzles taken from a variety of angles.

 Took a series of 25 test images of 25 different
puzzles to test with.

— All images taken from the same Sudoku book to
keep digits in a common font.

* Intentionally took some extreme images to
test the robustness of my algorithm.



Test Images cont.
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Approaches

e |nitially tried to again use Hough Transforms, but
had difficulty.

— Curvature in the lines caused finding a single line
difficult without human intervention on every image.

— Even extraction of the puzzle boundary was difficult
using Hough.

e Found connected components helpful to extract
puzzle region by looking for objects of the right
size.

— Still had difficulty finding lines.

— Could have caused problems if the images were at
different zoom levels.



Final Algorithm

 Use MATLAB cpselect tool to manually
identify the corners of the puzzle, and project

them onto a template image of a square.




Final Algorithm cont.

e Used a projective transform which preserves
qguadrilaterals through scaling, rotation, and translation.

— This made the puzzle the same size and shape in every
image.

— Also reduced the size of the images to speed up processing.
* Next used regronprops to find connected

components and extract the puzzle by looking at the
component’s width, and height.

— Absolute pixel changes every time because MATLAB does
not crop the image when transforming.

e Used the bounding box of the puzzle to crop the image.



Final Algorithm cont.

o After cropping the image to extract the puzzle,
| again looked at the connected components
to extract the numbers.

— | then cropped out the region around the centroid

of each number to BEEEEEEEEE
ensure it was larger than my 1 | 6|72 | |5
template image and used the .E.=g
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same normalized-cross-
correlation strategy as before.




Final Algorithm cont.

e Used the absolute pixel value of the digit
centroid to identify its row and column within
the puzzle.

— Possible because the projective transform made
the puzzle the same size in every image.

* From here | used the same solver to solve the
puzzle, and used absolute pixel locations to
display the solution on top of the puzzle.



Results/Statistics

e 18 of my 25 test images processed successful.
— 3 failed due to shadows on the puzzle.

— 2 failed due to discontinuous borders on the
puzzle preventing regironprops from finding it.

— 1 failed due to noise connected to the border of
the puzzle.

— 1 failed due to distortion leading to incorrect
numeric classification.

e This is a 72% success rate.



Results/Statistics cont.




Results/Statistics cont.
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Conclusions

e Pleasantly surprised by the performance of
the algorithm.

e Handled off angle images of the puzzles very
well.

e Most issues due noise/thresholding.



Problems/Limits

Current algorithm requires user interaction.
Difficulty handling shadows on the puzzle.

Can only process puzzles using the same font
set.
Cannot handle distortion in the puzzle.

— This will probably be difficult to fix, particularly
without changing away from cross-correlation.



Future Work/Improvements

Automate corner detection to find projection.

— Should be able to make process fully automated.
Look at better thresholding algorithm.

— Try to eliminate some of the shadow and noise issues.

Use mean centroid value of digits to align
solutions.

— Sometimes the solutions don’t line up well with the
grid because of distortion in the projected image.

Project the solution onto original image.

— Re-project the solutions back to the orientation of the
original image and show them on the original.

Implement camera calibration.
— Could help improve cross-correlation reliability.
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