Automated Sudoku Solver

Marty Otzenberger
EGGN-510
December 4, 2012

Outline

Goal

Problem Elements
Initial Testing

Test Images
Approaches

Final Algorithm
Results/Statistics
Conclusions
Problems/Limits
Future Work/Improvements
References
Questions

Goal

* From an image of a Sudoku puzzle, extract and
solve the puzzle, and display the solution over
the top of the puzzle.

; 412(7|3(5/9|8(6/1
8/1/3[4/6]7|9]2]5
6/9/5[1/8/2]3(4|7
5/8(4|9/1|6]2|7|3

— 0|7 (6|5/2|3|1|8|4
113]2]74[8]6/5]9
714]8]2]3[1]5/9]6
2|5/1]6]9]4|7 3|8
316(9(8[7]5(4]1]2

Problem Elements

Extract the puzzle from the image.
ldentify the numbers in each cell.

— Correlate the numbers to their respective cell
position.

Solve the puzzle.
Display the solution over the image.

Initial Testing e

 Began by using an ideal digitally s | 17
fabricated image to reduce complexity.
— Chose the Wikipedia image for Sudoku.

e Used a Hough Transform to extract the lines
in the puzzle, and segmented the image based
on the rho values.

— Parameters very sensitive

to capture only one Hough
line per puzzle line.

— Used averages if multiple
existed close together

Initial Testing cont.

 Cropped image between each set of rho values,
and performed Normalized-Cross-Correlation on
each sub-image.

e | saved the max score for a cross-correlation of
each sub-image with all 9 template digits, and
then used the max of those peak scores to
identify the digit.

— Used the total number of black pixels in a square as a
threshold for determining if it was empty.

— Cropped the template images out of the puzzle.

— Processed sub-images in order to preserve location
information.

Initial Testing cont.

e Solved the puzzle using a MATLAB script |
found which recursively solves for possible
values for every blank cell in the puzzle[1].

e Used Hough line rho values to re-project the
solution onto the image

. 5(3[4]|6[7[8]9|1]2

using MATLAB text. 6l712111als1314]8
119(8]3]4]2]5]|6]7

8195(9]|7]|6(1]14|2]3

41216]18|5[(3]7[9]1

71113]19]2[4]18]|5(6

9[611]15]3[7]2[8]4

2(8|7|4]1]|9]6]|3]5

[1] G.M. Boynton, “MATLAB Sudoku Solver,” MATLAB Central File Exchange, 2005, 314151218|611/7]19

Accessed: 12/2/2012,
ktp://www.mathworks.com/matlabcentraI/fiIeexchange/8083—mat|ab—sudoku—solver

Test Images

e \Want to expand code to handle real images of
puzzles taken from a variety of angles.

 Took a series of 25 test images of 25 different
puzzles to test with.

— All images taken from the same Sudoku book to
keep digits in a common font.

* Intentionally took some extreme images to
test the robustness of my algorithm.

Test Images cont.

l..

Approaches

e |nitially tried to again use Hough Transforms, but
had difficulty.

— Curvature in the lines caused finding a single line
difficult without human intervention on every image.

— Even extraction of the puzzle boundary was difficult
using Hough.

e Found connected components helpful to extract
puzzle region by looking for objects of the right
size.

— Still had difficulty finding lines.

— Could have caused problems if the images were at
different zoom levels.

Final Algorithm

 Use MATLAB cpselect tool to manually
identify the corners of the puzzle, and project

them onto a template image of a square.

Final Algorithm cont.

e Used a projective transform which preserves
qguadrilaterals through scaling, rotation, and translation.

— This made the puzzle the same size and shape in every
image.

— Also reduced the size of the images to speed up processing.
* Next used regronprops to find connected

components and extract the puzzle by looking at the
component’s width, and height.

— Absolute pixel changes every time because MATLAB does
not crop the image when transforming.

e Used the bounding box of the puzzle to crop the image.

Final Algorithm cont.

o After cropping the image to extract the puzzle,
| again looked at the connected components
to extract the numbers.

— | then cropped out the region around the centroid

of each number to BEEEEEEEEE
ensure it was larger than my 1 | 6|72 | |5
template image and used the .E.=g

Ellllll

same normalized-cross-
correlation strategy as before.

Final Algorithm cont.

e Used the absolute pixel value of the digit
centroid to identify its row and column within
the puzzle.

— Possible because the projective transform made
the puzzle the same size in every image.

* From here | used the same solver to solve the
puzzle, and used absolute pixel locations to
display the solution on top of the puzzle.

Results/Statistics

e 18 of my 25 test images processed successful.
— 3 failed due to shadows on the puzzle.

— 2 failed due to discontinuous borders on the
puzzle preventing regironprops from finding it.

— 1 failed due to noise connected to the border of
the puzzle.

— 1 failed due to distortion leading to incorrect
numeric classification.

e This is a 72% success rate.

Results/Statistics cont.

Results/Statistics cont.

| _jo|~] | | e |
| [|0 mjinw) |
HEEENEEEER

Conclusions

e Pleasantly surprised by the performance of
the algorithm.

e Handled off angle images of the puzzles very
well.

e Most issues due noise/thresholding.

Problems/Limits

Current algorithm requires user interaction.
Difficulty handling shadows on the puzzle.

Can only process puzzles using the same font
set.
Cannot handle distortion in the puzzle.

— This will probably be difficult to fix, particularly
without changing away from cross-correlation.

Future Work/Improvements

Automate corner detection to find projection.

— Should be able to make process fully automated.
Look at better thresholding algorithm.

— Try to eliminate some of the shadow and noise issues.

Use mean centroid value of digits to align
solutions.

— Sometimes the solutions don’t line up well with the
grid because of distortion in the projected image.

Project the solution onto original image.

— Re-project the solutions back to the orientation of the
original image and show them on the original.

Implement camera calibration.
— Could help improve cross-correlation reliability.

=

O M O|— N 0|N© <
N~ Ot ol o~ (O N[~ | O MO <
— 0 < |0 o/~ m | ©| | T 00} LO] | N ™
< 0 ©|™ — N[O~ o M SN = O~ oo
Mmoo N0 o T OO~ MmN
00 © O |Ln| <t — M| O MO T N I~ =
~ O —| o ™o < n N T O|N| O] OO
(||| —| | co| |0
©|<t | NI~ 0| -
— S N~ OO0 T|IO MN~M
NI OO0 M AN | W<
- | - D |IN[©]00 ||| N
0|~ V|~ N
@) < (@ W[~ [N~ |
< | oo || M|~ |~
* m— 00|t | —|M |Vl N[O~
—| N[O < oo m| N =)
S MO N|<T |~ {00 WO
O N|©|—|~{W|| v
Q) O~ oO|N|—|W0|<t|™M| 00
O O ||| |—|N|< |
- — |00 | |0 [N | ©LO
N[O~ ||| |0/~
Q N (O | 00| || IN| N —
NIM(<T|(ONOO NOY — | ©
NN m]—|0|v|o| o] <
WO M AN~ © O NM|T 0 NW — N
N O =M Ww[O|N|t (o] (0O oM | N
W N[O O —|~NW M| |~ N[~ Vo o m
00N WO|— M o< INWD O N M|+ © olmin|<
O |~ ||| <+ W] o 0O MO N~ N
<MW N|O|N[V© | — — O[O NN Ol
M| O | ©|N[0O| N NS00 AN[© M|~
e . AN
— OO N~ M| N <t 3“8961..@52“4%7
NN <0 00| © M|®| [N © —|m |0 N0

