
84 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Modeling Sudoku Puzzles with Python
Sean Davis, Matthew Henderson, Andrew Smith

F

Abstract—The popular Sudoku puzzles which appear daily in newspapers the
world over have, lately, attracted the attention of mathematicians and computer
scientists. There are many, difficult, unsolved problems about Sudoku puzzles
and their generalizations which make them especially interesting to mathemati-
cians. Also, as is well-known, the generalization of the Sudoku puzzle to larger
dimension is an NP-complete problem and therefore of substantial interest to
computer scientists.

In this article we discuss the modeling of Sudoku puzzles in a variety
of different mathematical domains. We show how to use existing third-party
Python libraries to implement these models. Those implementations, which
include translations into the domains of constraint satisfaction, integer pro-
gramming, polynomial calculus and graph theory, are available in an open-
source Python library sudoku.py developed by the authors and available at
http://bitbucket.org/matthew/scipy2010

Index Terms—sudoku, mathematics, graph theory

Introduction

Sudoku puzzles

A Sudoku puzzle is shown near the top of the second column
on this page.

To complete this puzzle requires the puzzler to fill every
empty cell with an integer between 1 and 9 in such a way that
every number from 1 up to 9 appears once in every row, every
column and every one of the small 3 by 3 boxes highlighted
with thick borders.

Sudoku puzzles vary widely in difficulty. Determining the
hardness of Sudoku puzzles is a challenging research problem
for computational scientists. Harder puzzles typically have
fewer prescribed symbols. However, the number of prescribed
cells is not alone responsible for the difficulty of a puzzle
and it is not well-understood what makes a particular Sudoku
puzzle hard, either for a human or for an algorithm to solve.

The Sudoku puzzles which are published for entertainment
invariably have unique solutions. A Sudoku puzzle is said to be
well-formed if it has a unique solution. Another challenging
research problem is to determine how few cells need to be
filled for a Sudoku puzzle to be well-formed. Well-formed
Sudoku with 17 symbols exist. It is unknown whether or not
there exists a well-formed puzzle with only 16 clues. In this
paper we consider all Sudoku puzzles, as defined in the next
paragraph, not only the well-formed ones.

Sean Davis, Matthew Henderson, and Andrew Smith are with Berea College.
E-mail: Sean_Davis@berea.edu.
c○2010 Sean Davis et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

2 5 3 9 1

1 4

4 7 2 8

5 2

9 8 1

4 3

3 6 7 2

7 3

9 3 6 4

By Sudoku puzzle of boxsize n, in this paper, is meant a
partial assignment of values from f1; : : : ;n2g to the cells of an
n2�n2 grid in such a way that at most one of each symbols
occurs in any row, column or box. A solution of a Sudoku
puzzle is a complete assignment to the cells, satisfying the
same conditions on row, columns and boxes, which extends
the original partial assignment.

sudoku.py

With sudoku.py, the process of building models of Sudoku
puzzles, which can then be solved using algorithms for com-
puting solutions of the models, is a simple matter. In order
to understand how to build the models, first it is necessary to
explain the two different representations of Sudoku puzzles in
sudoku.py.

The dictionary representation of a puzzle is a mapping
between cell labels and cell values. Cell values are integers in
the range f1; : : : ;n2g and cell labels are integers in the range
f1; : : : ;n4g. The labeling of a Sudoku puzzle of boxsize n starts
with 1 in the top-left corner and moves along rows, continuing
to the next row when a row is finished. So, the cell in row i
and column j is labeled (i�1)n2+ j.

For example, the puzzle from the introduction can be
represented by the dictionary

http://bitbucket.org/matthew/scipy2010
mailto:Sean\protect _Davis@berea.edu

MODELING SUDOKU PUZZLES WITH PYTHON 85

>>> d = {1: 2, 2: 5, 5: 3, 7: 9, 9: 1,
... 11: 1, 15: 4, 19: 4, 21: 7, 25: 2,
... 27: 8, 30: 5, 31: 2, 41: 9, 42: 8,
... 43: 1, 47: 4, 51: 3, 58: 3, 59: 6,
... 62: 7, 63: 2, 65: 7, 72: 3, 73: 9,
... 75: 3, 79: 6, 81: 4}

A Sudoku puzzle object can be built from such a dictionary.
Note that the boxsize is a parameter of the Puzzle object
constructor.

>>> from sudoku import Puzzle
>>> p = Puzzle(d, 3)
>>> p
2 5 . . 3 . 9 . 1
. 1 . . . 4 . . .
4 . 7 . . . 2 . 8
. . 5 2
. . . . 9 8 1 . .
. 4 . . . 3 . . .
. . . 3 6 . . 7 2
. 7 3
9 . 3 . . . 6 . 4

In practice, however, the user mainly interacts with
sudoku.py either by creating specific puzzles instances
through input of puzzle strings, directly or from a text file,
or by using generator functions.

The string representation of a Sudoku puzzle of boxsize n
is a string of ascii characters of length n4. In such a string
a period character represents an empty cell and other ascii
characters are used to specify assigned values. Whitespace
characters and newlines are ignored when Puzzle objects
are built from strings.

A possible string representation of the puzzle from the
introduction is:

>>> s = """
... 2 5 . . 3 . 9 . 1
... . 1 . . . 4 . . .
... 4 . 7 . . . 2 . 8
... . . 5 2
... 9 8 1 . .
... . 4 . . . 3 . . .
... . . . 3 6 . . 7 2
... . 7 3
... 9 . 3 . . . 6 . 4

"""

A Puzzle object can be built from a puzzle string by
providing the keyword argument format = ’s’

>>> p = Puzzle(s, 3, format = ’s’)

Random puzzles can be created in sudoku.py by the
random_puzzle function.

>>> from sudoku import random_puzzle
>>> q = random_puzzle(15, 3)
>>> q
. . . . 5 . . . 1
. 5 7
. . 1 9 . 7 . . .
.
. . 5 . . . 7 . .
. . 6 9 .
. 5 . . .
5 4 . .
1

The first argument to random_puzzle is the number of
prescribed cells in the puzzle.

Solving of puzzles in sudoku.py is handled by the
solve function. This function can use a variety of dif-
ferent algorithms, specified by an optional model keyword
argument, to solve the puzzle. Possible values are CP for
constraint propagation, lp for linear programming, graph
to use a node coloring algorithm on a graph puzzle model
and groebner to solve a polynomial system model via
a Groebner basis algorithm. The default behavior is to use
constraint propagation.
>>> from sudoku import solve
>>> s = solve(q)
>>> s
7 3 2 8 5 6 9 4 1
8 5 9 4 2 1 6 3 7
6 4 1 9 3 7 8 5 2
9 7 8 5 4 3 1 2 6
3 2 5 6 1 9 7 8 4
4 1 6 7 8 2 5 9 3
2 9 4 1 6 5 3 7 8
5 6 3 2 7 8 4 1 9
1 8 7 3 9 4 2 6 5

Sudoku puzzles of boxsize other than 3 can also be modeled
with sudoku.py. Puzzles of boxsize 2 are often called
Shidoku.
>>> q2 = random_puzzle(7, 2)
>>> q2
4 . . .
2 1 . .
. 4 . 2
. . 3 4
>>> solve(q2)
4 3 2 1
2 1 4 3
3 4 1 2
1 2 3 4

Sudoku puzzles of boxsize greater than three are less com-
monly studied in the literature. In sudoku.py we use print-
able characters (from string.printable) for the symbols
of puzzles with boxsize greater than 3
>>> q4 = random_puzzle(200, 4)
>>> q4
. . e d . . a 9 8 . . 5 . 3 2 1
c b a 9 4 . 2 1 g . e d 8 7 6 .
8 . 6 5 g f e d 4 3 2 1 c b a 9
. . 2 1 8 7 6 5 c . a . g f e d
f d g . 9 8 7 c 3 6 . b . 2 . .
2 6 . . 1 d g b f 4 c . 9 . 8 7
. 4 1 8 3 6 . 2 9 e 7 . . . 5 c
9 c 7 b e a 5 . 2 1 . 8 f g 3 6
e g 9 f 7 . 8 a 6 d 3 4 5 1 b .
b a . 7 . 2 9 e 5 . 1 f . 8 c .
3 8 . 6 5 1 4 f . 9 b 2 7 a d g
. . 4 . d g b 3 7 a 8 c e 6 9 f
. e f c 2 9 3 8 a 5 g 7 6 4 . b
7 9 . 4 a . 1 6 d 8 . e 2 c g 3
6 2 8 g b . d . . c 9 3 . . f .
5 1 3 a f e c g b 2 4 6 . . 7 8

Solving puzzles of this size is still feasible by constraint
propogation
>>> solve(q4)
g f e d c b a 9 8 7 6 5 4 3 2 1
c b a 9 4 3 2 1 g f e d 8 7 6 5
8 7 6 5 g f e d 4 3 2 1 c b a 9
4 3 2 1 8 7 6 5 c b a 9 g f e d
f d g e 9 8 7 c 3 6 5 b 1 2 4 a
2 6 5 3 1 d g b f 4 c a 9 e 8 7
a 4 1 8 3 6 f 2 9 e 7 g b d 5 c

86 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

9 c 7 b e a 5 4 2 1 d 8 f g 3 6
e g 9 f 7 c 8 a 6 d 3 4 5 1 b 2
b a d 7 6 2 9 e 5 g 1 f 3 8 c 4
3 8 c 6 5 1 4 f e 9 b 2 7 a d g
1 5 4 2 d g b 3 7 a 8 c e 6 9 f
d e f c 2 9 3 8 a 5 g 7 6 4 1 b
7 9 b 4 a 5 1 6 d 8 f e 2 c g 3
6 2 8 g b 4 d 7 1 c 9 3 a 5 f e
5 1 3 a f e c g b 2 4 6 d 9 7 8

Models

In this section we introduce several models of Sudoku and
show how to use existing Python components to implement
these models. The models introduced here are all implemented
in sudoku.py. Implementation details are discussed in this
section and demonstrations of the components of sudoku.py
corresponding to each of the different models are given.

Constraint models

Constraint models for Sudoku puzzles are discussed in
[Sim05]. A simple model uses the AllDifferent constraint.

A constraint program is a collection of constraints. A
constraint restricts the values which can be assigned to certain
variables in a solution of the constraint problem. The AllDif-
ferent constraint restricts variables to having mutually different
values.

Modeling Sudoku puzzles is easy with the AllDifferent
constraint. To model the empty Sudoku puzzle (i.e. the puzzle
with no clues) a constraint program having an AllDifferent
constraint for every row, column and box is sufficient.

For example, if we let xi 2 f1; : : : ;n2g for 1 � i � n4,
where xi = j means that cell i gets value j then the constraint
model for a Sudoku puzzle of boxsize n = 3 would include
constraints:

AllDifferent(x1;x2;x3;x4;x5;x6;x7;x8;x9)

AllDifferent(x1;x10;x19;x28;x37;x46;x55;x64;x73)

AllDifferent(x1;x2;x3;x10;x11;x12;x19;x20;x21)

These constraints ensure that, respectively, the variables in
the first row, column and box get different values.

The Sudoku constraint model in sudoku.py is imple-
mented using python-constraint v1.1 by Gustavo
Niemeyer. This open-source library is available at http://labix.
org/python-constraint.

With python-constraint a Problem having vari-
ables for every cell f1; : : : ;n4g of the Sudoku puzzle is
required. The list of cell labels is given by the function
cells in sudoku.py. Every variable has the same domain
f1; : : : ;n2g of symbols. The list of symbols in sudoku.py
is given by the symbols function.

The Problem member function addVariables provides
a convenient method for adding variables to a constraint
problem object.

>>> from constraint import Problem
>>> from sudoku import cells, symbols
>>> cp = Problem()
>>> cp.addVariables(cells(n), symbols(n))

The AllDifferent constraint in python-constraint
is implemented as AllDifferentConstraint(). The
addConstraint(constraint, variables) member
function is used to add a constraint on variables to
a constraint Problem object. So, to build an empty Sudoku
puzzle constraint model we can do the following.
>>> from constraint import AllDifferentConstraint
>>> from sudoku import \
... cells_by_row, cells_by_col, cells_by_box
>>> for row in cells_by_row(n):
... cp.addConstraint(AllDifferentConstraint(), row)
>>> for col in cells_by_col(n):
... cp.addConstraint(AllDifferentConstraint(), col)
>>> for box in cells_by_box(n):
... cp.addConstraint(AllDifferentConstraint(), box)

Here the functions cells_by_row, cells_by_col and
cells_by_box give the cell labels of a Sudoku puzzle
ordered, respectively, by row, column and box. These three
loops, respectively, add to the constraint problem object the
necessary constraints on row, column and box variables.

To extend this model to a Sudoku puzzle with clues requires
additional constraints to ensure that the values assigned to clue
variables are fixed. One possibility is to use an ExactSum
constraint for each clue.

The ExactSum constraint restricts the sum of a set of
variables to a precise given value. We can slightly abuse the
ExactSum constraint to specify that certain individual variables
are given certain specific values. In particular, if the puzzle
clues are given by a dictionary d then we can complete our
model by adding the following constraints.
>>> from constraint import ExactSumConstraint as Exact
>>> for cell in d:
... cp.addConstraint(Exact(d[cell]), [cell])

To solve the Sudoku puzzle now can be done by solving
the constraint model cp. The constraint propogation algo-
rithm of python-constraint can be invoked by the
getSolution member function.
>>> s = Puzzle(cp.getSolution(), 3)
>>> s
2 5 8 7 3 6 9 4 1
6 1 9 8 2 4 3 5 7
4 3 7 9 1 5 2 6 8
3 9 5 2 7 1 4 8 6
7 6 2 4 9 8 1 3 5
8 4 1 6 5 3 7 2 9
1 8 4 3 6 9 5 7 2
5 7 6 1 4 2 8 9 3
9 2 3 5 8 7 6 1 4

The general solve function of sudoku.py knows how to
build the constraint model above, find a solution via the pro-
pogation algorithm of python-constraint and translate
the solution into a completed Sudoku puzzle.
>>> s = solve(p, model = ’CP’)

Here, p is a Puzzle instance. In fact, the model = ’CP’
keyword argument in this case is redundant, as ’CP’ is the
default value of model.

Graph models

A graph model for Sudoku is presented in [Var05]. In this
model, every cell of the Sudoku grid is represented by a

http://labix.org/python-constraint
http://labix.org/python-constraint

MODELING SUDOKU PUZZLES WITH PYTHON 87

node of the graph. The edges of the graph are given by the
dependency relationships between cells. In other words, if two
cells lie in the same row, column or box, then their nodes are
joined by an edge in the graph.

In the graph model, a Sudoku puzzle is given by a partial
assignment of colors to the nodes of the graph. The color
assigned to a node corresponds to a value assigned to the
corresponding cell. A solution of the puzzle is given by a
coloring of the nodes with colors f1; : : : ;n2g which extends the
original partial coloring. A node coloring of the Sudoku graph
which corresponds to a completed puzzle has the property that
adjacent vertices are colored differently. Such a node coloring
is called proper.

The Sudoku graph model in sudoku.py is implemented
using networkx v1.1. This open-source Python graph li-
brary is available at http://networkx.lanl.gov/

Modeling an empty Sudoku puzzle as a
networkx.Graph object requires nodes for every
cell and edges for every pair of dependent cells. To add
nodes (respectively, edges) to a graph, networkx provides
member functions add_nodes_from (respectively,
add_edges_from). Cell labels are obtained from
sudoku.py’s cells function.
>>> import networkx
>>> g = networkx.Graph()
>>> g.add_nodes_from(cells(n))

Dependent cells are computed using the dependent_cells
function. This function returns the list of all pairs (x;y) with
x < y such that x and y either lie in the same row, same column
or same box.
>>> from sudoku import dependent_cells
>>> g.add_edges_from(dependent_cells(n))

To model a Sudoku puzzle, we have to be able to assign colors
to nodes. Graphs in networkx allow arbitrary data to be
associated with graph nodes. To color nodes according to the
dictionary d of puzzle clues.
>>> for cell in d:
... g.node[cell][’color’] = d[cell]

There are many node coloring algorithms which can be used
to find a solution of a puzzle. In sudoku.py, a generic
node coloring algorithm is implemented. This generic col-
oring algorithm can be customized to provide a variety of
different specific coloring algorithms. However, none of these
algorithms is guaranteed to find a soolution which uses only
symbols from f1; : : : ;n2g. In general, these algorithms use too
many colors
>>> from sudoku import node_coloring, n_colors
>>> cg = node_coloring(g)
>>> n_colors(cg)
13
>>> from sudoku import graph_to_dict
>>> s = Puzzle(graph_to_dict(cg), 3)
>>> s
2 5 6 7 3 a 9 4 1
3 1 8 5 2 4 7 6 a
4 9 7 6 b c 2 3 8
6 3 5 2 4 7 8 9 b
7 2 a b 9 8 1 5 6
8 4 9 a 5 3 c 2 7
5 8 4 3 6 9 a 7 2

a 7 b 4 8 5 d c 3
9 c 3 d 7 b 6 8 4

To solve a Sudoku Puzzle instance p, call the solve
function, with model = graph as a keyword argument.

>>> s = solve(p, model = ’graph’)

Polynomial system models

The graph model above is introduced in [Var05] as a prelude to
modeling Sudoku puzzles as systems of polynomial equations.
The polynomial system model in [Var05] involves variables xi
for i 2 f1; : : : ;n4g where xi = j is interpreted as the cell with
label i being assigned the value j.

The Sudoku polynomial-system model in sudoku.py is
implemented using sympy v0.6.7. This open-source sym-
bolic algebra Python library is available at http://code.google.
com/p/sympy/

Variables in sympy are Symbol objects. A
sympy.Symbol object has a name. So, to construct
the variables for our model, first we map symbol names onto
each cell label.

>>> from sudoku import cell_symbol_name
>>> def cell_symbol_names(n):
... return map(cell_symbol_name, cells(n))

Now, with these names for the symbols which represent the
cells of our Sudoku puzzle, we can construct the cell variable
symbols themselves.

>>> from sympy import Symbol
>>> def cell_symbols(n):
... return map(Symbol, cell_symbol_names(n))

Finally, with these variables, we can build a Sudoku polyno-
mial system model. This model is based on the graph model
of the previous section. There are polynomials in the system
for every node in the graph model and polynomials for every
edge.

The role of node polynomial F(xi) is to ensure that every
cell i is assigned a number from f1; : : : ;n2g :

F(xi) =
n2

∏
j=1

(xi� j)

Node polynomials, for a sympy.Symbol object x are built
as follows.

>>> from operator import mul
>>> from sudoku import symbols
>>> def F(x,n):
... return reduce(mul,[(x-s) for s in symbols(n)])

The edge polynomial G(xi;x j) for dependent cells i and j,
ensures that cells i and j are assigned different values. These
polynomials have the form. :

G(xi;x j) =
F(xi)�F(x j)

xi� x j

In sympy, we build edge polynomials from the node
polynomial function F.

>>> from sympy import cancel, expand
>>> def G(x,y,n):
... return expand(cancel((F(x,n)-F(y,n))/(x-y)))

http://networkx.lanl.gov/
http://code.google.com/p/sympy/
http://code.google.com/p/sympy/

88 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

The polynomial model for the empty Sudoku puzzle consists
of the collection of all node polynomials for nodes in the
Sudoku graph and all edge polynomials for pairs (x,y) in
dependent_symbols(n). The dependent_symbols
function is simply a mapping of the sympy.Symbol con-
structor onto the list of dependent cells.

Specifying a Sudoku puzzle requires extending this model
by adding polynomials to represent clues. According to the
model from [Var05], if D is the set of fixed cells (i.e. cell
label, value pairs) then to the polynomial system we need to
add polynomials

D(xi; j) = xi� j

Or, with sympy:
>>> def D(i, j):
... return Symbol(cell_symbol_name(i)) - j

To build the complete polynomial system, use the
puzzle_as_polynomial_system function of
sudoku.py:
>>> from sudoku import puzzle_as_polynomial_system
>>> g = puzzle_as_polynomial_system(d, 3)

The sympy implementation of a Groebner basis algorithm
can be used to find solutions of this polynomial system.
The Groebner basis depends upon a variable ordering, here
specified as lexicographic. Other orderings, such as degree-
lexicographic, are possible.
>>> from sympy import groebner
>>> h = groebner(g, cell_symbols(n), order = ’lex’)

The solution of the polynomial system g is a system of linear
equations in the symbols xi which can be solved by the linear
solver from sympy.
>>> from sympy import solve as lsolve
>>> s = lsolve(h, cell_symbols(n))

To use the polynomial-system model to find a solution to
Puzzle instance p call the solve function with the keyword
argument model = groebner.
>>> s = solve(p, model = ’groebner’)

Integer programming models

In [Bar08] a model of Sudoku as an integer programming
problem is presented. In this model, the variables are all binary.

xi jk 2 f0;1g

Variable xi jk represents the assignment of symbol k to cell
(i; j) in the Sudoku puzzle.

xi jk =

�
1 if cell (i; j) contains symbol k
0 otherwise

The integer programming (IP) model has a set of equations
which force the assignment of a symbol to every cell.

n

∑
k=1

xi jk = 1; 1� i� n;1� j � n

Other equations in the IP model represent the unique
occurence of every symbol in every column:

n

∑
i=1

xi jk = 1; 1� j � n;1� k � n

every symbol in every row:
n

∑
j=1

xi jk = 1; 1� i� n;1� k � n

and every symbol in every box:
mq

∑
j=mq�m+q

mp

∑
i=mp�m+1

xi jk = 1

1� k � n;1� p� m;1� q� m

The Sudoku IP model is implemented in sudoku.py using
pyglpk v0.3 by Thomas Finley. This open-source mixed
integer/linear programming Python library is available at http:
//tfinley.net/software/pyglpk/

In pyglpk, an integer program is represented by the
matrix of coefficients of a system of linear equations. Two
functions of sudoku.py provide the correct dimensions of
the coefficient matrix.

>>> from glpk import LPX
>>> from sudoku import \
... lp_matrix_ncols, lp_matrix_nrows
>>> lp = LPX()
>>> lp.cols.add(lp_matrix_ncols(n))
>>> lp.rows.add(lp_matrix_nrows(n))

Columns of the matrix represent different variables. All our
variables are binary and so their bounds are set appropriately,
between 0 and 1.

>>> for c in lp.cols:
... c.bounds = 0.0, 1.0

Rows of the coefficient matrix represent different linear equa-
tions. We require all our equations to have a value of 1, so we
set both the lower and upper bound of every equation to be 1.

>>> for r in lp.rows:
... r.bounds = 1.0, 1.0

With appropriate dimensions and bounds fixed, the coefficient
matrix itself is provided by sudoku.py’s lp_matrix func-
tion.

>>> from sudoku import lp_matrix
>>> lp.matrix = lp_matrix(n)

To extend the IP model to a Sudoku puzzle with fixed clues
requires further equations. Fixed elements in the puzzle, given
by a set F of triples (i; j;k), are each represented by an
equation in the system:

xi jk = 1; 8(i; j;k) 2 F

To add these equations to the pyglpk.LPX object lp:

>>> from sudoku import lp_col_index
>>> for cell in d:
... lp.rows.add(1)
... r = lp_matrix_ncols(n)*[0]
... r[lp_col_index(cell, d[cell], n)] = 1
... lp.rows[-1].matrix = r
... lp.rows[-1].bounds = 1.0, 1.0

To solve the LPX instance lp requires first solving a linear re-
laxation via the simplex algorithm implementation of pyglpk

>>> lp.simplex()

http://tfinley.net/software/pyglpk/
http://tfinley.net/software/pyglpk/

MODELING SUDOKU PUZZLES WITH PYTHON 89

Once the linear relaxation is solved, the original integer
program can be solved.

>>> for col in lp.cols:
... col.kind = int
>>> lp.integer()

Finally, we need to extract the solution as a dictionary from
the model via the lp_to_dict function from sudoku.py.

>>> from sudoku import lp_to_dict
>>> d = lp_to_dict(lp, n)
>>> s = Puzzle(d, 3)
>>> s
2 5 8 7 3 6 9 4 1
6 1 9 8 2 4 3 5 7
4 3 7 9 1 5 2 6 8
3 9 5 2 7 1 4 8 6
7 6 2 4 9 8 1 3 5
8 4 1 6 5 3 7 2 9
1 8 4 3 6 9 5 7 2
5 7 6 1 4 2 8 9 3
9 2 3 5 8 7 6 1 4

To use the IP model to solve a Puzzle instance, specify the
keyword argument model = lp.

>>> s = solve(p, model = ’lp’)

Experimentation

In this section we demonstrate the use of sudoku.py for
creating Python scripts for experimentation with Sudoku puz-
zles. For the purposes of demonstration, we discuss, briefly,
enumeration of Shidoku puzzles, coloring the Sudoku graph
and the hardness of random puzzles.

Enumerating Shidoku

Enumeration of Sudoku puzzles is a very difficult computa-
tional problem, which has been solved by Felgenhauer and
Jarvis in [Fel06]. The enumeration of Shidoku, however, is
easy. To solve the enumeration problem for Shidoku, using
the constraint model implemented in sudoku.py, takes only
a few lines of code and a fraction of a second of computation.

>>> s = "from sudoku import Puzzle, count_solutions"
>>> e = "print count_solutions(Puzzle({}, 2))"
>>> from timeit import Timer
>>> t = Timer(e, s)
>>> print t.timeit(1)
288
0.146998882294

Coloring the Sudoku graph

As discussed above in the section on “Graph models”, a
completed Sudoku puzzle is equivalent to a minimal proper
node coloring of the Sudoku graph. We have experimented
with several different node coloring algorithms to see which
are more effective, with respect to minimizing the number of
colors, at coloring the Sudoku graph.

Initially, we used Joseph Culberson’s graph coloring
programs (http://webdocs.cs.ualberta.ca/~joe/Coloring/index.
html) by writing Sudoku puzzle graphs to a file in Dimacs
format (via the dimacs_string function of sudoku.py).

Of those programs we experimented with, the program
implementing the saturation degree algorithm (DSatur) of

Brelaz from [Bre79] seemed most effective at minimizing the
number of colors.

Motivated to investigate further, with sudoku.py we
implemented a general node coloring algorithm directly in
Python which can reproduce the DSatur algorithm as well as
several other node coloring algorithms.

Our node coloring function allows for customization of
a quite general scheme. The behavior of the algorithm is
specialized by two parameters. The nodes parameter is an
iterable object giving a node ordering. The choose_color
parameter is a visitor object which is called every time a node
is visited by the algorithm.

Several node orderings and color choice selection
schemes have been implemented. The simplest sequential
node coloring algorithm can be reproduced, for example,
by assigning nodes = InOrder and choose_color
= first_available_color. A random ordering on
nodes can be acheived instead by assigning nodes =
RandomOrder. Importantly for our investigations, the node
ordering is given by an iterable object and so, in general, can
reflect upon to current graph state. This mean that online algo-
rithms like the DSatur algorithm can be realized by our general
node coloring scheme. The DSatur algorithm is obtained by
assigning nodes = DSATOrder and choose_color =
first_available_color.

Hardness of random puzzles

We introduced the random_puzzle function in the in-
troduction. The method by which this function produces a
random puzzle is fairly simple. A completed Sudoku puzzle
is first generated by solving the empty puzzle via constraint
propagation and then from this completed puzzle the appro-
priate number of clues is removed.

An interesting problem is to investigate the behavior of
different models on random puzzles. A simple script, available
in the investigations folder of the source code, has been
written to time the solution of models of random puzzles and
plot the timings via matplotlib.

Two plots produced by this script highlight the different
behavior of the constraint model and the integer programming
model.

The first plot has time on the vertical axis and the number
of clues on the horizontal axis. From this plot it seems that the
constraint propogation algorithm finds puzzles with many or
few clues easy. The difficult problems for the constraint solver
appear to be clustered in the range of 20 to 35 clues.

A different picture emerges with the linear programming
model. With the same set of randomly generated puzzles
it appears that the more clues the faster the solver finds a
solution.

Conclusions and future work

In this article we introduced sudoku.py, an open-source
Python library for modeling Sudoku puzzles. We discussed
several models of Sudoku puzzles and demonstrated how to
implement these models using existing Python libraries. A few
simple experiments involving Sudoku puzzles were presented.

http://webdocs.cs.ualberta.ca/~joe/Coloring/index.html
http://webdocs.cs.ualberta.ca/~joe/Coloring/index.html

90 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Future plans for sudoku.py are to increase the variety
of models. Both by allowing for greater customization of
currently implemented models and by implementing new
models. For example, we can imagine several different Sudoku
models as constraint programs beyond the model presented
here. Another approach is to model Sudoku puzzles as exact
cover problems and investigate the effectiveness of Knuth’s
dancing links algorithm. Also important to us is to compare
all our models with models [Lyn06] from satisfiability theory.
In [Kul10] a general scheme is presented which is highly
effective for modeling Sudoku.

There are great many interesting, unsolved scientific prob-
lems involing Sudoku puzzles. Our hope is that sudoku.py
can become a useful tool for scientists who work on these
problems.

REFERENCES

[Bar08] A. Bartlett, T. Chartier, A. Langville, T. Rankin. An Integer Pro-
gramming Model for the Sudoku Problem, J. Online Math. & Its
Appl., 8(May 2008), May 2008

[Bre79] Brelaz, D., New methods to color the vertices of a graph, Commu-
nications of the Assoc. of Comput. Machinery 22 (1979), 251-256.

[Fel06] B. Felgenhauer, F. Jarvis. Enumerating possible Sudoku grids Online
resource 2006 http://www.afjarvis.staff.shef.ac.uk/sudoku/

[Kul10] O. Kullmann, Green-Tao numbers and SAT in LNCS (Springer),
“Theory and Applications of Satisfiability Testing - SAT 2010”,
editors O. Strichman and S. Szeider

[Lew05] R. Lewis. Metaheuristics can solve Sudoku puzzles, Journal of
Heuristics (2007) 13: 387-401

[Lyn06] Lynce, I. and Ouaknine. Sudoku as a SAT problem, Proceedings of
the 9th Symposium on Artificial Intelligence and Mathematics, 2006.

[Sim05] H. Simonis. Sudoku as a Constraint Problem, Proceedings of the 4th
International Workshop on Modelling and Reformuulating Constraint
Satisfaction Problems. pp.13-27 (2005)

[Var05] J. Gago-Vargas, I. Hartillo-Hermosa, J. Martin-Morales, J. M. Ucha-
Enriquez, Sudokus and Groebner Bases: not only a Divertimento, In:
Lecture Notes in Computer Science, vol. 4194. pp. 155-165. 2005

http://www.afjarvis.staff.shef.ac.uk/sudoku/

	Introduction
	Sudoku puzzles
	sudoku.py

	Models
	Constraint models
	Graph models
	Polynomial system models
	Integer programming models

	Experimentation
	Enumerating Shidoku
	Coloring the Sudoku graph
	Hardness of random puzzles

	Conclusions and future work
	References

