[image: image1.jpg]

[image: image1.jpg]

DataGrid
Software Release Policy

	
	Document identifier:
	DataGrid-12-D12.3-331457-2-1

	
	Date:
	31/01/2002

	
	Work package:
	WP12: Project Management

	
	Partner(s):
	CERN, CS SI

	
	Lead Partner:
	CERN

	
	Document status:
	APPROVED

	
	
	

	
	Deliverable identifier:
	D12.3

	Abstract: This document describes a proposed project-wide policy for organising the production of successive software releases within the DataGrid project.

	Delivery Slip

	
	Name
	Partner
	Date
	Signature

	From
	Bob Jones
	CERN
	06/11/2001
	

	Verified by
	G. Zaquine
	CS SI (Moderator)
	27/01/2002
	

	Approved by
	PTB
	
	30/01/2002
	

	Document Log

	Issue
	Date
	Comment
	Author

	0-0
	06/10/2001
	First draft
	B.Jones

	0-1
	08/10/2001
	Incorporating feedback from F.Etienne, C.Loomis, F.Donno

Converted to DataGrid template by Gabriel Zaquine (thanks!)
	B.Jones

	0-2
	12/11/2001
	Incorporating feedback from Peter Kunszt, Federico Carminati, Steve Fisher, Olof Barring
	B.Jones

	0-3
	06/12/2001
	Incorporating feedback from Yannick Patois, Mirco Mazzucato, Francesco Prelz, Massimo Sgaravatto
	B.Jones

	0-4
	07/01/2002
	Incorporating feedback from Federico Carminati, Steve |Fisher, Gabriel Zaquine
	B.Jones

	1-0
	08/01/2002
	Ready for PTB review
	B.Jones

	1-1
	22/01/2002
	Incorporate comments from Olof Barring, Francesco Prelz
	B.Jones

	2-0
	31/01/2002
	PTB approved. Minor typo changes.
	G. Zaquine

	2-1
	31/01/2002
	Minor typo changes.
	G. Zaquine

	Document Change Record

	Issue
	Item
	Reason for Change

	
	
	

	Files

	Software Products
	User files

	Word
	DataGrid-12-D12.3-331457-2-1-SwReleasePolicy.doc

Content

41. Introduction

41.1. Objectives of this document

41.2. Application area

41.3. Applicable documents and reference documents

61.4. Document amendment procedure

61.5. Terminology

61.6. Architecture group

61.7. Role of the Technical Coordinator

72. Executive Summary

83. Software release planning

83.1. Frequency of Releases

83.2. Release schedule

94. Supporting Infrastructure

94.1. Centralised Code Repository

104.2. Development testbed

104.3. Toolset

115. Testing

115.1. Testplans

115.2. Unit Tests

125.3. Integration Tests

125.4. Acceptance Tests

125.5. Further testing

136. Software Release PROCEDURE

156.1. Themed technical meetings

167. Next Steps

167.1. Establish release contents

167.2. Develop Testplans

167.3. Deploy infrastructure

177.4. Gather Resources for the Development testbed

188. ChecKLISTS

188.1. Middleware work packages

188.2. WP6 & ITeam

Introduction

1.1. Objectives of this document

This document describes a proposed policy for organising the production and deployment of successive software releases within the DataGrid project.

The overall DataGrid project schedule includes 4 testbeds over 3 years. For each testbed, a software release is envisaged. Such software releases integrate the latest developments from each of the middle-ware work packages and external supporting software products such as Globus.

The coordination of the software developments in each work package and their integration is an important task that requires considerable effort.

At the 3rd DataGrid workshop held in Frascati on 3-5 October 2001, a general consensus among the work packages emerged to adopt a model in which integration happens more frequently than defined in the original project plan with incremental steps to minimise the effort and time involved and permit user feedback to be incorporated more quickly.

This document presents a proposed policy for iterative software releases including milestones, time-scales and supporting techniques and tools to be employed.

The policy outlined in this document is presented as a detailed implementation plan for each software release in [R8].

1.2. Application area

This document concerns the technical co-ordination of the software releases of the DataGrid project. It has a consequence on the manner in which the software of the middleware WPs is produced, integrated by WP6 and tested by the application groups.

1.3. Applicable documents and reference documents

Reference documents

	[R1]
	DataGrid Central Repository Conventions http://datagrid.in2p3.fr/index.php?id=documentation

	[R2]
	Architecture Task Force document http://grid-atf.web.cern.ch/grid-atf/doc/architecture-2001-07-02.pdf

	[R3]
	Agenda and material presented at the validation team meeting 30th October 2001

http://datagrid-wp8.web.cern.ch/DataGrid-WP8/Meetings/CERN011030/G-WP8-301001.htm

	[R4]
	Agenda and material presented at the ITeam meeting 29th October 2001 http://documents.cern.ch/age?a01757

	[R5]
	Software Testplan Template draft in preparation

	[R6]
	D8.2: Report on results of run #0 for HEP applications

	[R7]
	Agenda and material presented at the ITeam meeting 11th December 2001 http://documents.cern.ch/age?a01836

	[R8]
	Software Release Plan

http://edmsoraweb.cern.ch:8001/cedar/doc.info?document_id=333297

	[R9]
	javadoc http://java.sun.com/j2se/javadoc/

	[R10]
	doxygen http://www.stack.nl/~dimitri/doxygen/

	[R11]
	POD http://www.perldoc.com/

	[R12]
	Bugzilla http://www.mozilla.org/projects/bugzilla/

	[R13]
	CVSweb http://stud.fh-heilbronn.de/~zeller/cgi/cvsweb.cgi/

	[R14]
	junit http://junit.sourceforge.net/

	[R15]
	cppunit http://cppunit.sourceforge.net/

	[R16]
	autoconf http://www.gnu.org/software/autoconf/

	[R17]
	automake http://sources.redhat.com/automake/

1.4. Document amendment procedure

Readers are invited to send comments by email to the author who will collate all feedback and produce updated versions of the document when significant changes are made.

1.5. Terminology

Definitions

	ITeam
	WP6 software integration team responsible for assembling software

	EIP
	Experiment Independent Persons. Small group of early users from the application groups (WP8, 9 &10)

Glossary

See http://cern.ch/eu-datagrid/Glossary.htm
1.6. Architecture group

The Architecture Task Force has produced two successive versions of an overall architecture document [R2].

The preliminary experience with testbed 1 has shown that some forum for resolving architectural issues is required. It is proposed to reincarnate an architecture group with a mandate to address architecture issues addressing overall coherence and component interfaces but without necessarily making choices at the implementation level. The work of this new architecture group will be linked into the release procedure of the project to ensure the architecture and deployed testbeds stay in step. The exact mandate and composition of the architecture group are in preparation.

1.7. Role of the Technical Coordinator

It is the role of the technical coordinator to organise and oversee the software release planning of the project in consultation with the project management, middleware WPs, ITeam and application groups. These tasks include:

· Proposing a software release policy and procedure to drive the development of each software release;

· Defining a software release calendar including release dates and content outlines;

· Organising a forum so that technical issues involving multiple WPs can be addressed;

· Working with the WPs managers to ensure WP specific work-plans are harmonized with overall project plans, including input from Applications;

· Establishing with WP6 a basic software infrastructure and toolset to facilitate software development, integration and testing;

· Tracking the progress of the work to ensure the software release schedule progresses as smoothly as possible.

This document provides an overview of the proposed approach for many of these tasks.

2. Executive Summary

This document presents the policy for software releases proposed for the EU DataGrid project. The initial project plan foresaw software releases corresponding to the milestone testbeds of project months 9, 21, 27 & 33. At the 3rd DataGrid workshop held in Frascati on 3-5 October 2001, a general consensus among the work packages emerged to adopt a model in which integration happens more frequently than defined in the original project plan with incremental steps to minimise the effort and time involved and permit user feedback to be incorporated more quickly.

The proposed software release schedule includes incremental releases in January (1.1), March (1.2), May (1.3) and July 2002 (1.4) leading up to testbed 2 (2.0). A similar release schedule will be planned for the subsequent periods at a later date when more experience has been gained with iterative releases.

The proposed procedure for the planning and deployment of successive software releases is intended to ensure development remains focussed on the highest priority issues and to improve the manner in which subsequent releases are produced.

The software release procedure is composed of the following steps:

· Coordination meeting - project participants provide feedback on the previous release and develop a basic work-plan for the next software release.

· WP follow-up meetings - WPs elaborate their specific work-plans for the next release.

· Software Release work-plan coordination - the technical co-ordinator consults with the WP managers and takes the output of the coordination and WP follow-up meetings to establish an overall plan for the next release.

· Middle-ware WPs provide unit-tested software and associated documentation to WP6 as it is produced.

· The ITeam integrates the middle-ware and external software packages and performs integration tests.

· An integrated EDG software release is made available to the application groups’ validation team for acceptance testing.

· The release roll-out is accompanied by documentation for the end users, site administrators and software developers. A meeting is hosted by the ITeam to present the contents of the new software release and indicate the changes made since the previous release.

· The software release is made available to all members of the application groups for general deployment on testbed 1 sites.

In order to support more frequent software releases, a number of tools and techniques need to be put in place by WP6. Such a toolset will provide a convenient, standardised, project-wide mechanism for building, distributing and documenting the software. It is important that all the WPs adopt the toolset as early as possible. The details of this toolset are described in document [R1].

As a means of providing feedback on integration issues to software developers in each WP as early as possible, mechanisms to automatically build, test and document all the software on a daily basis will be put in place. A development testbed consisting of small-scale clusters (a few PCs) in several (approximately 5) partner sites is required to support iterative development, integration and testing without interfering with the validation activities performed by the application groups.

The policy outlined in this document is presented as a detailed implementation plan for each software release in [R8].

Software release planning

2.1. Frequency of Releases

The overall project plan foresees 12 months between testbed 1 (project month 9) and testbed 2 (project month 21). A period of one year between testbeds limits the speed of reaction to evolving requirements from the application groups and deployed middleware in the overall software planning.

Adding more releases to the project plan increases the total work-load for the WPs and application groups alike but allows more frequent feedback to ensure development concentrates on the most relevant points and reduces the time required for the integration phase of each release. One of the goals of the proposed approach is to maximise the advantage that can be gained from iterative software releases while reducing to a minimum the extra work required.

While every effort will be made to minimise the impact on the application groups of upgrading from one software release to the next, it would be counter-productive to force the WPs to guarantee backward compatibility between releases in a research oriented project. The use of techniques, such as abstract interfaces and encapsulation to insulate users from changes in the software, should be employed by the WPs.

The effects of pending extensions/improvements must be made known to the ITeam well in advance so that their impact can be estimated. Hence the decision about when and how to introduce such major modifications can be made in consultation with the application groups.

2.2. Release schedule

Given the size of the project in terms of software packages and groups of people involved, the following iterations of software releases between testbed 1 and testbed 2 are proposed:

· Testbed 1

Originally scheduled for October 2001 and delivered in December 2001

First integrated release produced by the project

· Release 1.1

January 2002

Contains bug-fixes, modifications as a result of feedback from use of testbed 1 and first use of release infrastructure by the middle-ware (see Supporting Infrastructure)

· Release 1.2

March 2002

· Release 1.3

May 2002

· Release 1.4

July 2002

Contain bug fixes, modifications as a result of feedback from use of the previous releases by applications, further use of the software infrastructure by middle-ware packages and extensions/improvements foreseen by WPs

· Testbed 2

September 2002

A similar release schedule will be planned for the period between testbeds 2, 3 (March 2003) & 4 (September 2003) at a later date when more experience has been gained with iterative releases.

3. Supporting Infrastructure

In order to support more frequent software releases, a number of supporting tools and techniques need to be put in place. A sub-set of such tools and techniques are already deployed by WP6 to support the testbed 1 of the project. WP6 is responsible for establishing and managing the toolset.

The ITeam plays a vital role in the production of software releases. In order to support more frequent software releases the ITeam must continue to be active between the scheduled testbed integration phases. Its activity in such interim periods will not be so intense (i.e. it will not be necessary for ITeam members to be present at CERN) but rapid response to integration issues will be important.

WP6 has already put in place a number of tools and techniques to ease software integration and the production of the software release for testbed 1. These include a code repository (CVS), related tools for software browsing and an incident tracking tool (Bugzilla). Further steps can be taken to reduce integration effort by catching potential conflicts earlier in the development cycle. Such measures, as with the software itself, will be extended with each release and subject to more detailed planning.

As a means of providing feedback on integration issues to software developers in each WP as early as possible, the aim is to put in place mechanisms to automatically build, test and document all the software on a daily basis. Such “nightly builds” are for the benefit of the WP developers and hence will not be systematically distributed to the application groups since they will not be the subject of the release testing procedure (see below) However, the contents and status of the nightly builds will be available to everyone in the project via tools such as CVSweb.

3.1. Centralised Code Repository

Many of the tools and techniques foreseen within the software infrastructure are linked to the use of a code repository. In the build-up to testbed 1, WPs have committed RPMs containing their software to either the WP6 central repository or their own repositories that are then mirrored into the master repository.

This central repository will act as the core facility on which the automated building, testing and documentation tools will be based. It is essential that all WPs adopt the code repository as an integral part of their daily working practises. Sustained software development without committing modifications to the central repository for extended periods (weeks) will undermine the functioning and value of the nightly build procedure.

To enable the use of several of the proposed tools and to simplify browsing, the source code should be stored in the repository as individual files. The RPMs can then be produced as one of the final parts of the build procedure.

It is expected that detailed documentation including API descriptions, class hierarchies and dependencies can be extracted from comments in the source code and by auto-documentation tools. More high-level documentation will still need to be written by hand. All documentation, both extracted and hand-written, will evolve with each software release. To ensure users get the correct version of the hand-written documentation for a software release it will be necessary to archive the documentation, preferably in the same repository as the code itself. This implies using documentation formats (e.g. separate latex, Linux Doc, SGML, POD or JavaDoc etc. style documentation files) that lends themselves to archiving tools such as CVS. Consultation with the WP developers and investigation of the possibilities supported by the toolset is necessary to reach agreement on appropriate formats.

3.2. Development testbed

A development testbed is required in order to support iterative development, integration and testing without interfering with the validation activities performed by the application groups. In the current planning, it is foreseen that the small cluster of PCs at CERN used for integration work will be at the disposal of WP6 once testbed 1 is deployed to several sites. If equivalent small-scale clusters are made available in several partner sites, then together these can form the distributed development testbed. The daily development versions of the software can then be tested on this facility. The development testbed will be managed by WP6 in conjunction with the administrators from the partner sites.

The small-scale clusters of machines at each site must remain available to the developers for the duration of the project.

3.3. Toolset

Recommendations including guidelines/templates and examples for the use of tools and techniques to support automated building, testing and documentation are currently in preparation. Such a toolset will provide a convenient, standardised, project-wide mechanism for building the software, RPMS and documentation. It is important that all the WPs adopt the toolset as early as possible. The full details of this toolset are defined in document [R1] but below is a non-exhaustive list of these tools and techniques:

· mark-up techniques (e.g. Javadoc [R9] style comments) for document generation from source code

· a tool capable of extracting formatted source comments and producing documentation in various formats (e.g doxygen [R10] & POD [R11])

· a web interface for browsing the repository (e.g. CVSweb [R13])

· bugzilla [R12] for problem reporting and tracking

· test harnesses (e.g. junit [R14], cppunit [R15] etc.)

· build tools (e.g. autoconf [R16], automake [R17] etc.) capable of constructing the software on all supported platforms and producing RPMs for distribution

· a “CVS notify” email list providing a daily digest of commits to the repository from all WPs

· a web page providing access to the results of the most recent automated build, test and documentation cycle

· coding style recommendations and tools for checking them (e.g. Code Checker
)

The tools at the top of the list are the highest priority and work has already started in WP6 to make them available to the middle-ware WPs.

Such tools and techniques will be set-up by WP6 using the centralised code repository as a basis and will be deployed in a step-wise manner. It is not intended to develop new tools to support the nightly builds but rather configure existing widely used tools. In this manner, middle-ware WP developers can concentrate on exploiting such tools and techniques in their daily work without worrying about the installation and support issues for the tools they use.

4. Testing

This section outlines the software testing procedures foreseen within the project. The basic approach is to address software testing in a bottom-up manner via three distinct phases:

· Unit tests

Performed on individual software modules of a WP to test their basic functionality

· Integration tests

Performed on integrated software components from all WPs to verify their correct inter-operation

· Acceptance tests

Performed using application groups’ applications and test scenarios. The acceptance tests correspond to the validation tests currently being organized by WP8 and the EIP.

4.1. Testplans

To drive the testing procedure a set of testplans are required. The testplans outline the goals and priorities of the testing and list the set of test scenarios foreseen to meet the goals. A description of the tests to be performed for each phase should be documented in the test-plans.

For unit tests, it is the responsibility of the WPs to produce a test plan document based on the recommended template [R5]. Each WP should produce one testplan. The WP test plan should include details of testing individual software modules and their integration within the WP.

A separate test plan for the project-wide integration tests is to be produced by WP6.

Documentation for acceptance tests is already foreseen as part of the project deliverables (e.g. [R6]).

The three phases of the test procedure are to be performed for each release of the software delivered to the application groups. The details of each testing phase are described below.

4.2. Unit Tests

Unit tests address the basic functionality of a single WP (or WP sub-tasks). They are to be provided and executed by the WPs on their own machines or the development testbed before delivering their software to WP6 for integration. The individual tests should make use of the test harness software to be provided as part of the toolset and may need to simulate services provided by other WPs according to the build dependencies. A subset of the unit tests should be run as part of the nightly build procedure.

Details of the unit tests should be documented as part of the individual WP test-plans. Sufficient documentation should be provided to allow other people (i.e. not the WP developers) to execute the tests and interpret the results.

Unit tests should also be established for external software packages (e.g. Globus and Condor) and it is necessary to identify individuals or groups responsible for such tests.

4.3. Integration Tests

The integration tests verify successful integration of the middleware developed within the project and underlying external toolkits. Integration tests are executed on the development testbed whenever new software for a release is received from WPs and built by WP6. Their development (though they may be gathered from elsewhere), management and execution is the responsibility of WP6.

The basic approach is to test all the components via typical user scenarios based on job submission. The integration tests represent a succession of increasingly complex job submissions. The tests cover all aspects of job processing/monitoring that are important to the application groups. The intention is to add one more component or level of complexity with each job so that by executing the jobs in sequence it should be relatively easy to quickly identify a defective component.

It is expected that the set of test scenarios should be expanded as the project gains more experience with the software and requirements from the users.

Initially the test scenarios will be run by hand but it is hoped that a subset can be automated (e.g. via scripts etc.) once their usefulness has been proven and integrated as part of the nightly build procedure.

Details of the integration tests should be documented as part of the WP6 test-plan.

4.4. Acceptance Tests

Acceptance tests are to be performed in conjunction with the application groups using scenarios provided by the users (typically based on their own application software – for example LHC experiment’s offline software suites). Such tests are to be executed on the testbed machines in a distributed manner (i.e. typically involving multiple hosts on multiple sites). The definition of the test scenarios and their execution is the responsibility of the application groups and will be supported by the ITeam. The acceptance tests correspond to the validation tests currently being organized by WP8 and the EIP.

4.5. Further testing

Scalability, reliability and resilience tests involving the full DataGrid software should also be defined. Such tests will require more infrastructure (e.g. more participating sites and hosts than are available via the development testbed) and planning (e.g. continuous 24 hours tests etc.) and hence will need to be scheduled in advance.

5. Software Release PROCEDURE

A well defined procedure related to the planning and deployment of successive software releases will be established.

As part of the software release production procedure, there must be the opportunity for all the parties involved to provide feedback on the software and the release procedure to ensure development remains focussed on the highest priority issues and to improve the manner in which subsequent releases are produced.

The planned contents and schedule for subsequent releases should be reviewed by the WP managers to ensure the plan remains as accurate as possible.

An overview of the proposed software release procedure is described below as a sequence of steps:

1. Coordination meeting

The purpose of the coordination meeting is to allow the project participants to provide feedback gathering their experiences from working with the previous release and outline a work-plan for the next software release. It should be scheduled after the previous software release has been deployed and used by the applications groups but long enough before the next release to enable its findings to be taken into account. The product of the coordination meeting should be an appraisal of the previous release’s quality and suitability including how it has been used and a prioritised list of requested modifications/extensions from the next release.

The coordination meetings will be organised by the technical co-ordination and are open to everyone involved in the project but the participants should include:

· WP managers for the middle-ware (WP1..5),

· WP managers for the Testbed integration (WP6) and Network Services (WP7),

· WP managers for the Application groups (WP8..10),

· representatives of the architecture group, ITeam and validation team.

The agenda for the coordination meeting should include presentations by each of the application groups, validation team and the ITeam with sufficient time for discussion to establish a list of agreed priorities for the next release. The plan for the next release should include:

· software components to be included along with their modifications/extensions relative to the previous release;

· operating system and compiler versions to be part of the reference platform;

· versions of external toolkits (e.g. Globus) and supporting packages (e.g. MySQL) to be used by all WPs.

All WPs should remember that their input must be collated with the other WPs and hence relative priorities may change in order to establish the most suitable plan for the project as a whole.
Such coordination meetings can be based on a similar format to that used for the application groups’ meeting held on 30th October 2001 [R3].

In preparation for the coordination meeting, it is assumed that each of the WPs will hold internal meetings to gather input from their members and clarify their position.

WP6 should also hold a preparation meeting where the ITeam may raise release production issues and make suggestions about how to simplify or improve integration for the next release.

2. WP follow-up meetings

Each WP should hold a meeting to establish its work-plan for the next release. Such meetings should take into account the output of the coordination meeting and produce a work-plan for the next release describing a prioritised list of expected modifications/extensions and including details of responsibilities for performing the work that takes into account an estimation of the effort and resources involved. The WP follow-up meetings can be held in parallel but dependencies on other WPs should also be respected when scheduling these meetings.

The architecture group should also hold a meeting to understand what consequence the output of the coordination meeting has on the EU DataGrid architecture. If this implies significant changes then an updated version for the architecture document should be produced.

3. Software Release work-plan coordination

The technical co-ordination will, in consultation with the WP managers, take the output of the coordination and WP follow-up meetings to establish an overall plan for the next release. The overall work-pan will be published and made available to all participants of the project.

The rest of the software release procedure should be similar to that used for testbed 1:

4. Middle-ware WPs provide software and associated documentation to WP6 as it is produced. Unit tests should be performed by the individual WPs before it is submitted to WP6. The proposed development testbed can be used for this purpose. The submission of the software should be made via the code repository and clearly tagged for subsequent retrieval.

5. The ITeam integrates the middle-ware and external software packages. Basic integration tests are performed. The integration step is deemed to have been successfully completed when a stable version of the software passes the integration tests as defined in the test-plan. During this time the associated documentation for the release (including release notes) is prepared by WP6.

6. An integrated EDG software release is made available to the application groups’ validation team for acceptance testing. During this time the ITeam is available for consultation and support of the new release. The acceptance testing phase is deemed to have been successfully completed when the set of test scenarios defined by the application groups execute correctly.

7. The release roll-out is accompanied by documentation for the end users, site administrators and software developers. A meeting should be hosted by the ITeam to present the contents of the new software release and indicate the changes made since the previous release. Issues concerning compatibility with the previous release should be presented together with recipes for how to migrate applications and data. The format of this roll-out meeting should be similar to the testbed 1 meetings for system administrators [R4] and for end users.

8. The software release is made available to all members of the application groups for general deployment on testbed 1 sites.

5.1. Themed technical meetings

A number of technical issues confront the project which affect multiple WPs. The intention is to address such issues via special themed meetings involving representatives from affected WPs and the architecture group. Such meetings have been held before in the project (around Easter 2001.) Candidate subjects for such themed meetings include Security, Monitoring and Information Services. It is expected the priority for topics for the themed meetings will come from the list of priorities established at the release coordination meetings. Urgent technical clashes that arise on a day-to-day basis at the implementation level are perhaps best solved with direct communication between the WPs involved which may take the form of bi-lateral meetings. Only if they affect the overall strategy, external interfaces or if a satisfactory solution cannot be found should it be necessary to present them at the themed technical meetings.
The proposed organisation of the themed meetings is to distribute a description of the issues involved and a suggested approach/solution before the meeting. The proposal is intended to focus the discussion and ensure the meetings result in a clear conclusion.

6. Next Steps

In order for the plan described in this document to be put into action, a number of steps are required:

6.1. Establish release contents

An initial set of extensions/changes were presented by each WP for testbed 2 at the 3rd DataGrid conference. These lists are a starting point for planning the contents of the scheduled releases. WP managers are asked to complete the information about each item on their proposed list by providing the following details:

· Priority

Prioritise the list of items in consultation with the application groups

· Effort

Estimate the effort required to develop/modify the software and identify the individuals/groups involved

· Dependencies

Identify the dependencies on other software packages (internal to the WP, from other WPs, external software products)

Note: An item that needs to be added to every WPs list is use of the infrastructure tools required to support the release procedure (release 1.1).

Once such information is available from all the WPs contributing to the software releases, it will be possible to map them on to the foreseen release schedule. This mapping will have to take into account dependencies between WPs. Such a plan will be useful to the application groups to help organise their testing and validation. The input of the application groups and validation team is important for the release planning procedure. It is expected that, in a similar manner to the ITeam, the work of the validation team will be affected by making interventions more often but with reduced intensity.

It is hoped that the overall release schedule including each WPs extensions/changes can be compiled during December 2001. This release schedule will be updated after each release using the output of the software release work-plan coordination (see page 14).

Note: Planning is never perfect – WPs may under estimate the effort required for a particular item or a new release of an external software package may not be delivered on time. In such cases priority will be given to respecting the release schedule. In other words, the scheduled date for the DataGrid software release will not change but it may contain less changes/extensions that originally planned.

6.2. Develop Testplans

An important point to clarify the status of the software and simplify integration, is the development of testplans for all major components of the software. The middleware WPs should develop testplans for their software based on the standard project template. WP6 should develop an overall testplan corresponding to the integration tests for the middleware and external packages.

6.3. Deploy infrastructure

In parallel to establishing the contents of each software release, WP6 can start deploying the infrastructure necessary to support the release procedure. This will require the cooperation of the WPs developing software that shall be expected to start making use of the various tools and facilities as they become available. In particular, the middle-ware packages should identify the unit tests they can perform before delivering their software to WP6 for integration.

6.4. Gather Resources for the Development testbed

In parallel to the above steps, WP6 can contact the partner sites to establish the distributed development testbed. With the experience already gained from testbed 1, WP6 is in a position to give details of the minimum number of PCs required at each site to represent a useful development testbed.

7. ChecKLISTS

This section is intended to provide convenient check-lists for members of the project concerning software release planning activities.

7.1. Middleware work packages

· Produce basic work-plan identifying, for each proposed software release, prioritised list of extensions/modifications with names of responsible individuals & estimates of effort involved;

· Organise migration to proposed toolset for code repository, build tools, RPMs and document production;

· Prepare test-plan document outlining what aspects of the WP can be tested in isolation and those that depend on other WPs.

7.2. WP6 & ITeam

· Produce work-plan for software release integration activity identifying the order in which individual external toolkits, packages and middleware component software should be integrated and the roles and responsibilities for individuals (including release document preparation);

· Prepare a testplan document for the integration tests;

· Continue preparation/extension of toolset for project-wide software infrastructure;

· Develop/collect test case scenarios and associated code/data suitable for integration tests;

· Propose procedure for testbed sites to migrate to successive software releases.

� code checker

5
	IST-2000-25182
	INTERNAL
	6 / 6

[image: image2.emf]