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Abstract—This paper describeshow to integrate tracking
functions on a mobile robot. Tracking is required during au-
tonomousrobot navigation in different situations: landmark
tracking to guarantee real-time robot localization, target
tracking for a sensor based motion or obstacle tracking
to control an obstacle avoidance procedure. These objects
-landmarks, targets, and obstacles-have different charac-
teristics: this paper shows that a single tracking method
could not overcomeall the tracking tasks. Several methods
must be integrated on the robot. A tracker controller is in
chargeto activatea specificmethodwith respectto the object
type and to a transition model used to recover the tracking
failur es.This method is validated using four trackers, based
on: template differences, set of points, lines and snakes.
Experimental resultsprovidedon numerousimagesequences
are presented.

I . INTRODUCTION

Under real-world environmental conditions, a single
tracking methodcannotovercomeall different tasksand
situationspresentedin it. Moreover, trackingmethodsare
not robust enoughto work undervarying environmental
conditions. Tracking often fails when illumination un-
dergoessignificantchanges.Someother situationswhere
tracking methodsfail are due to cluttered background,
changesin model pose,occlusionsof the target image
or motion discontinuitiesin object dynamics. In order
to overcometheselimitations, we proposeto integratea
collaborativetrackingcontroller. Thiscontrolleris charged
to select,the tracking methodto be use, in function of
the target andenvironmentsconditions.In addition,when
a specific method has failed, it has to select another
methodandthento try to recover the target,or if it is not
possible,to selectanothertarget,dependingon the taskto
achieve.A trackingtransitionmodelthatusesperformance
evaluation of the currently selectedmethodand context
identification to guaranteerobust tracking on a mobile
robotdeterminesmethodswitching.Eachtrackingmethod
is associatedwith a different type of model so model
coherenceis a fundamentalissuein tracking integration.

The rest of this paper is organized as follows: We
review related work in tracking integration and active
control in sectionII. In sectionIII, we presentour visual
functionality model. Tracking methodsincluded in this
functionality aredescribedin sectionIV. We discussthe
tracking transition model in section VI. In section V,
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resultsof our experimentationsillustratestrategiesapplied
to keepmodelcoherenceafter trackingmethodswitching.
Finally, sectionVII presentsourconclusionsandthefuture
work to be done.

I I . RELATED WORK ON COLLABORATIVE TRACKING

Integration of tracking methods intends to increase
robustnessof theroboticvisionsystemsfor visualtracking
tasks. Toyama and Hager [17] have proposedto use
a layered hierarchy of visual tracking methods.Some
othershave proposedfusionof informationfrom different
tracking methods to improve reliability of the visual
tracker:Kruppa et al. [13] takesadvantageof a mutual
information approachto fuse different tracking models
from several tracking methodsexecutedsimultaneously.
Rasmussenand Hager [16] use a probabilisticapproach
to control a hierarchyof trackingstrategies.Jepsonet al.
[10] perform the integration of several tracking methods
limiting its scopeto appearancemodelsfor facetracking
in clutterednaturalenvironment.

Someother works have beenfocusedon performance
evaluation to control one or several tracking methodsin
anactive way. Barretoand al. [2][4] have developedsome
performanceevaluationmeasuresin orderto controlactive
trackingusinga stereohead.Resolutioncontrol hasbeen
developedby Ferrier[6] in orderto achieve a stablevisual
trackingsystem.Ayala and al. [1] have proposeda active
trackingfunctionalitythatcontrolsacquisitionsparameters
for a Hausdorff basedtracking method. Guibas et al.
[7] shows how to integratetracking methodsin a global
robotic task.

I I I . V ISUAL FUNCTIONALITY

A visual functionality is a block wherea visual task is
performed.Ourvisualfunctionalityis modeledasdepicted
in Fig. 1.

The elementsof this modelareas follows:� A setof � visual functions �����	��

�����	�����
���������
able to performthe visual task.Eachfunction ��� is
associatedwith a setof parameters������ � , ���! #"��$��%'&)(
that can be adaptedaccordingto the currentimage.
Each visual function has also an enablesignal *��
that determinesif the methodhasto be executedon
thecurrentinput data.A local adaptationmechanism
is provided for local adaptationof the parameter
set.This adaptationis donebasedon a performance
evaluation measure + � of the application of the
methodto the currentimage.
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Fig. 1. Visual functionality block diagram.� A modeselectorthatdetermineswhich methodshave
to be executedon the currentinput data.� A modalitycontrollerthatdeterminesa setof param-
etersfor the selectedvisual function to perform the
visual task.� A global adaptationmechanismthat controls both
the modeselectorand the modality controllerusing
performanceevaluationinformationfrom all thecur-
rently active methods.

In this paper, we apply this model for a visual target
tracking task that can be concurrentlyperformedby sev-
eral trackingmethods.

IV. THE TRACKING METHODS

Trackingis usedon a mobile robot duringa navigation
task, in order to follow a target or to keepa landmarkin
the view field. Four trackersare consideredhere,based
on templatedifferences,set of interestpoints, lines and
snakes.

For every tracker, only asmallimageregion is examined
to obtain new target position, as opposedto the entire
image.In this manner, the computationtime is decreased
significantly. The idea behind a local exploration of the
imageis that if theexecutionof thecodeis quick enough,
the new target position will then lie within a vicinity of
thepreviousone.In thisway, therobustnessof themethod
is increasedto handletarget deformations,sinceit is less
likely thattheshapeof themodelwill changesignificantly
in a small ,�- . We do not describehere,thepredictionstep
basedon Kalmanfiltering, usedto estimatethe predicted
target positionat -/.�" knowing its positionat -
A. Template difference tracker

Template tracking is an interestingregion basedap-
proachbasedon templatedifferences( [8], [11]). This
method consider that, processrate frequency is high
( 0 20Hz),to makelinearapproximationsof a planarpatch
movements.Let 12���	34
���3��	���5�#�#�$36��� the setof N image
locationswhich define target region, and let 7	891:�;-�< the
vectorof the intensitiesof region R at time - . Taking the
referenceimageat time -�= = 0, we define the reference
templateas 7	891:�;-�=>< . Motion of referencetemplateover
time producesdeformations,rotationsand/ortranslations
in imagesat -:?A@ . Consideringthat the motion could
be modelby a parametricfunction BC8EDGFIH/< , calledmotion

model andparameterizedby H:�J8KHL

�MH/�N�
�#�#�#�MH4OP< with ini-
tial condition H/= at -�= . Thento trackanobjectin theimage
sequenceis to determinethevector HG8#-�< . Consideringthat�Q?�?SR and that B and H are both differentiable.The
motion parameter vector H canbe estimatedat time - by
minimizing the following objective function:

�T8EH/<U�WVXZY�[ 8]\^8#_`8EDGFIH/<>�;-�<bac\^8#_`8KDGFMH/=><)�d-�=)<M<
�

Consideringthat, at time -e?f-�= the motion parameter
vector can be approximatedby HG8#-g.ih^<j��HG8#-�<L.k,	H , h
beena very small increaseof time - , theobjective function� canbe expressedin termsof ,	H , as :

�T8K,	H/<G�ml
\68KHG8#-�<4.k,	HG�;-b.kh6<Can\68EH/=Z�;-�=><>l
We canlinearizedtheproblemexpanding\68KHG8#-�<�.o,	HG�;-'.h6< in a Taylor seriesaround H and - , as is describedin
[8]. Solving the setof equationsfor pT�i��@ , we get:

HG8#-g.nh^<G�qHG8#-�<ras89t�u
t�<$v 
 t�u$,	w
whereM is the jacobian matrix of I with respectto H ,
and ,	w is the intensityerror vectordefinedas:

,	w/�i7	8KHG8#-�<>�;-g.nh^<Cac\^8EH/=Z�d-�=)<
Hager and al [8], proposedifferent models to reduce

Jacobianmatrix computation,Jurie and al [11], consider
an interaction matrix A, definedby:

HG8#-/.sh^<g�xHG8#-�<C.ny�8#-g.nh^<d,	w
which, couldbelearntin anoffline computationstage,by
makinga setof �jz smallperturbations,	H andcalculating
the intensity error vector ,	w for each one, in a local
referencesystem,which makeseasierthe computationof
A. Making �jzo?i� , is possibleto obtain the interaction
matrix A from the � z couples 8K,	w��I,	H/< , such that next
term be minimal.

�|{��Lz
V�|{C
 8K,	H

� a}yT,	w � < �

We have implementedthis learning method: figure 2
shows an exampleof sucha target, herea poster.

(a) (b) (c)

Fig. 2. (a) the initial template;(b) the templateafter a little motion ~$�
(c) the templatedifference
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B. The set of points tracker

This tracking method,has beenpresentedin [9], [1].
The tracking is done using a comparisonbetweentwo
setsof points:on the onehand,pointsextractedfrom the
currentimage:discontinuitypoints,detectedby a classical
edgedetectoror interestpointsextractedby Susan,Harris
detectors;andon theotherhand,pointsgivenasthe target
model. The Hausdorff distanceis used to measurethe
similarity betweenthesesetsof points.Otherworks have
proposedto trackonly points,withoutapplyingconstraints
on their relative positions,by usinga correlationfunction,
independentlyfor several small windows (typically 10 �
10 pixels ), selectedaroundinterestpoints.

A partial Hausdorff distanceis usedas a resemblance
measurementbetweenthe target model and its predicted
position in an image.Given two setsof points � and � ,
the partial Hausdorff distanceis definedas:

� 8]�j�$��<L�i���	�689�/89�j����<>�$�/89�T����<M<
where

�6����� �]�z Y % �o�#��)YN� lL��ac��l
lL��ae��l is a givendistancebetweentwo points � and � .���]�z Y % B/8��`< denotesthe � v �]� rankedvalue of BC8���< over
the set � .

The function �/89�j����< (distancefrom set � to � ) is a
measureof thedegreein which eachpoint in � is nearto
somepoint in � . TheHausdorff distanceis themaximum
among�C8]�j�$��< and �C8]������< ; it givesthedistancebetween
the mostmismatchedpointson the two sets,rejectingthe� worsematchings,consideredasoutliers.

At step -^.q" of the sequence,the first taskis to search
the position of the model � � in the next image \ �9� 
 ,
around the predicted position. The minimum value of
the unidirectionalpartial distancefrom the model to the
image, � �Z
 8]� � �$\ �]� 
 < , identifiesthebest“position” of � �
in \ �9� 
 , under the action of somegroup of translations�

. The target searchis stoppedat the first translation� ,
such that its associated�^��

89� � ��\ �]� 
�< is no larger than
a given threshold h , consideringa target searchstrategy
thatsweepsspaceof possibletranslationfollowing a spiral
trajectoryaroundthe predictedposition.

Having found the position of the model � � in the
image \ �]� 
 of the sequence,the secondtask consistsin
updatingthe target model � � : the new model � �]� 
 is
built by determiningwhich pixels of the image \ �]� 
 are
part of the target. The model is updatedby using the
unidirectionalpartialdistancefrom theimageto themodel
asa criterionfor selectingthesubsetof imagespoints \ �9� 
that belongto � �9� 
 . In order to allow scalechange,the
scaleis increasedwhenever therearea significantnumber
of nonzeropixels near the boundaryand is decreasedin
the contrarycase.

The model � �]� 
 can be filtered applyingsomeshape
constraintson the target by morphologicaloperators(for
example, rather elliptical target to track a face). Fig. 3
presentsan exampleof this trackeron a person.

(a) (b)

Fig. 3. Trackingon a person:(a) image;(b) target

C. Line tracker

The line tracker[5] is focusedon straightlines; in our
implementation,thetrackercansearchin every image\ �]� 

of a sequence,R lines 8K� � � �$����"��$R4< without verifying
constraintsbetweentheselines (for example,parallelism
or convergenceon a vanishingpoint).

Fig. 4. 1D correlationprinciple.

The methodis basedon 1D correlationto look for a
line � � � in a predictedposition (figure 4). (a) Points are
regularly sampledon � � � . (b) Every point is matchedwith
the closer discontinuity found on the normal to the line
on this point: the optimal discontinuityposition is found
usinga correlationalongthis normal,with a genericstep
model.(c) A RANSAC fitting methodallows to generate
the line position � � �9� 
 , keepingonly the alignedpoints,
rejectingthe outliers.The line is trackedif at least50%
of the sampledpointsarematchedwith alignedpoints.

In contrastto a classicalsegment tracker, this method
is very robust: it can be applied also to track curves
definedby someanalytical model in order to apply the
RANSAC fitting (a quadricor a cubiccurve for example).
The initial lines 8E� � = �$�L�W"Z��R4< aregenerallyprovided by
theprojectionof 3D segmentson the image(for example,
the wall-groundor wall-ceiling edges),or by theedgesof
an object recognizedin an initial image.

D. Snake tracker

Snakesor active contours[12] have beenextensively
usedfor object tracking.This methodis basedon energy
minimization along a curve, which is subjectto internal
and external forces.The total energy for an active con-
tour v describedwith a parametricrepresentation���893/89�
<)���^8]��<M< canbe written as:

* �]�;� 8E�g<L� V *j�#O � 8K� 89�
<I<g.k*¢¡ X � 8E�£8]��<M<M¤P�
Marin and al [15] proposeto considertheactivecontour

as the surfaceof an electrical charged conductor;these
electrical charges generatea new internal force. As a
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result of these repulsive forces, the control points are
redistributedalongthe curve with higherdensityin zones
of high convex curvature. Then internal energy can be
written as:

*j�#O � 8]¥Z<G��V ¦£

8]��<>8 ,�¥,�� <
� .§¦r�Z8]��<>8 , � ¥,��>,�� <

� .q¨ © �84ª$«d¬ª$­dª$­ < �
¤'�

where ¦£

8]��< and ¦r�Z8]��< areweightsgiven to elasticity
andsmooth-nessenergies,k a constantand © the charge
density.

Theevolutionof thecurve is determinedby theequation
of movementderived from energies terms.

A parametricshape-modelcouldbedefined(deformable
template)whentheobjectto betrackis well known,which
will be matchedto an image,in a very similar way like
snakes[3]. Anotherway to introduceshapeinformationin
active contoursis applyingconstraintsin orderto deform
thesnakein a suitableway. Relationshipsbetweencontrol
points can be incorporatedas energy termsand multiple
control points can be introducedto describeverticesor
discontinuities[14].

Fig. 5 presentsan exampleof a persontracking using
a snakeinitialized by an operator.

Fig. 5. Trackingon a faceby the snaketracker

V. TRACKER CHARACTERIZATION

The trackermethodsmustbe described,mainly for the
initializationconditions,theconfidencemeasurementto be
usedfor failure detectionandinformationrequiredby the
trackerselectionmechanism.The selectionwill be based
onintrinsicpropertiesof thetracker(for example,template
differencestracking must usea textured target), but also
on more contextual information (for example,the image
backgroundis texturedor uniform).

A. Template differences tracker

Template differencestracking can be used only for
planar textured templates,or for quasi-planartextured
templates(for example,a face),when the movementsdo
not changea lot planarperspective; it is a fast method(at
least20 Hz).

A knowledgebasismustbebuilt on planartemplatesto
be trackedduring an offline computation;the interaction
matrix y must be learnt off line, becausethe execution
time is too importantfor on line computation.In this case,
the imagefrom which y is learnt,needsto be acquired
from a viewpoint closeto thefirst cameraonlineposition.

Oneof themajorproblemswith templatetrackeris that,
once the target is lost, it is nearly impossibleto find it
again,by the methoditself. A confidencemeasureis the

norm of the H vector. So when, this norm overpassesa
threshold(typically, the largest learnt variation), it could
be consideredasa trackerfailure.

B. Set of points tracker

This trackerhas good performancesin non-structured
environmentsor with deformableobjects,the appearance
of which couldchangegradually. This methodis basedon
a matchingprocess,so it is ratherslow (from 3 to 5Hz),
but a target lost can be detectedagain.

The target is only definedby a region of interest in
the image, without any a priori learning process.The
confidencemeasureis given by the Hausdorff distance
betweenthe currentimageand target model.

Whenthe trackingis performedover very complex im-
ages(too muchtexture),someerrorscanhappen,because
the target modelwill be pollutedby outliers.

C. Line tracker

The exact oppositethantheprevious tracker:goodper-
formanceswith structuredtargets,quick method(10Hz)
which could detectsa target lost by itself.

The initial conditions are a set of segments to be
tracked;oneproblemis that,dueto the RANSAC fitting,
the lengthof thesesegmentsarealwaysdecreasingalong
a sequence,andsomehigh level informationmustbeused
to restorethe segmentsizes.

This method works very fine with either a uniform
target on a textured background,or a textured target on
a uniform background.Nevertheless,if the imageis too
complex, in spiteof the RANSAC fitting, somesegments
could be lost. The number of points integrated in the
segmentsgives the confidencemeasure.

D. Snake tracker

This tracker is normally usedfor deformableor free
form shapes,with high gradientedgesbetweenthe back-
ground and the target; it meansthat the environment
cannotbeverycomplex. Thespeeddependsonthenumber
of control points on the snake,but typically, it runs at
12Hz.

Thecontrolpointscanbeinitialized closeto thesilhou-
ette of the target. In order to guaranteethe convergence
of the method,internalweightsparameters¦ 
 , ¦r� and ¨
canbemodified,to beadaptedto thecurrentsituation,but
suchan adaptationneedto be very well characterizedin
a learningprocessingstage.

As the templatetracker, once a snakehas lost their
target, it is nearly impossible to recover it, without a
recognitionstage.We considerthat snakehas lost their
target when first areamomentsof the enclosedregion,
hasa high variation.

VI . TRACKING TRANSITION MODEL

Onceevery trackerhasbeencharacterized,the system
can associatea target with the best tracker, which will
be able to maintain the target position along an image
sequence.Whenit is requiredin a sensorbasednavigation
system,thedecisionallevel will generatea target-tracking
request.Dependingon the target type, a trackercontrol
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will activate the best method. The transition between
differenttrackerscould occur in two situations:� An error is detected,eitherby the trackeritself using

the confidencemeasuresdescribedin the previous
section,or by a low frequency interpretationfunction
(doubleloop paradigm).� The trackedtarget is occludedor moves out of the
image due to the target or the cameramotion. De-
pendingon the task,anothertarget mustbe selected
and tracked.

Two examplesare presentedon figures6 and 7: the red
linesaretheboundariesof thepredictedposition,thegreen
lines show the trackerresults.

A. Recovering an error tracking

Fig. 6 presentsa transitiondueto a trackerfailure. The
target is the postermoved hereby an operator, on a very
complex background.The templatedifferencestrackeris
selectedfor this planar target. Tracking is right on the
first 60 images((a) to (d)), but due to the background,
the computed,	H on the image62 is wrong on (e) and
the tracker diverges totally on the image 65 (f). The
set of points tracker is activated using as initial poster
model, the interest points extracted from the last good
window detectedby the templatetracker (g). Thanksto
the Hausdorff distance,the poster model is found and
the tracking can continueat a low frequency on (h). As
templatedifferencestrackeris faster, thetrackercontroller
will activateit againandit will be executedconcurrently
with thesetof pointstrackerduringsomeframes,to verify
it convergesagain.As it is faster, thetrackercontrollerwill
activate again the templatedifferencestracker executed
concurrentlywith the set of points tracker during some
frames,to verify it convergesagain.

B. Transition between targets
Fig. 7 presentsa transition betweentrackersand be-

tween landmarks:the robot is navigating on a corridor.
When he entersthe visibility areaof the posteron the
left wall, it tracks this posteron figures (a) to (c), and
concurrently, computestherelativepositioncamera-poster,
and then robot-environment, using a metric map built
off line. We use the templatedifferencestracker in this
sequence:the line trackercouldbe usedalso,becausethe
wall is uniform.

When the robot goes forward, the boundary of the
posterregion in the imagebecomescloser to the image
limit; when it is too close in (d), the tracker controller
selectsanothertarget to be tracked,here the lines cor-
respondingto the edgeswall-ceiling. The line tracker is
initialized with theprojectionsof thetwo 3D edgeson the
currentimage:the two trackersareexecutedconcurrently
on 10 frames(becausethe templatetrackeris very fast)
and then the postertracking is stoppedto avoid a failure
dueto the posteroutputfrom the image.

VI I . CONCLUSIONS AND FUTURE WORK

Thispaperhasdescribedthetrackingmoduleintegrated
onourmobilerobots.Trackingis requiredfor severaltasks
a robot must perform: object following (anotherrobot,

a person),visual basednavigation (trajectorydefinedas
a sequenceof visual servoing commands)or obstacle
following during the execution of a motion (trajectory
definedasa curve on the ground).

A collaborative trackingmethodhasbeenproposedso
that, the robot can selectsthe best tracking methodde-
pendingon the target type or somecontextual knowledge
(natureof the background �
��� ). A target controller has
beendescribed.This modulewill requesttrackerswitches,
either if a target is lost, by one quick but not so robust
method,and a more robust method is activated to find
againthe target using local imagemeasurements,or if a
target switch is necessary, for examplebecausethe robot
must turn aroundan edgeafter a corridor following exe-
cution. Every target is associatedwith the more adapted
trackerandwith a recovery procedurein caseof failure.

Only sequentialexecutionsareproposed:anotherstrat-
egy could be to activate concurrently several tracking
methodswhen a target must be tracked,and to fuse at
the control level, the different target representationsand
positions.This solutioncould be the bestone,but at this
time, is not compatiblewith the real time constraints.

VI I I . REFERENCES
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