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Abstract— This paper describeshow to integrate tracking
functions on a mobile robot. Tracking is required during au-
tonomousrobot navigation in different situations: landmark
tracking to guarantee real-time robot localization, target
tracking for a sensor based motion or obstacle tracking
to control an obstacle avoidance procedure. These objects
-landmarks, targets, and obstacles-have different charac-
teristics: this paper shows that a single tracking method
could not overcomeall the tracking tasks. Several methods
must be integrated on the robot. A tracker controller is in
chargeto activate a specificmethod with respectto the object
type and to a transition model usedto recoverthe tracking
failur es. This method is validated using four trackers, based
on: template differences, set of points, lines and snakes.
Experimental resultsprovided on numerousimage sequences
are presented.

|. INTRODUCTION

Under real-world environmental conditions, a single
tracking methodcannotovercomeall differenttasksand
situationspresentedn it. Moreover, trackingmethodsare
not robust enoughto work undervarying ernvironmental
conditions. Tracking often fails when illumination un-
demgoessignificantchanges Someother situationswhere
tracking methodsfail are due to cluttered background,
changesin model pose, occlusionsof the target image
or motion discontinuitiesin object dynamics.In order
to overcometheselimitations, we proposeto integratea
collaboratvetrackingcontroller This controlleris chaged
to select,the tracking methodto be use,in function of
the taget and ervironmentsconditions.In addition,when
a specific method has failed, it has to select another
methodandthento try to recover the target, or if it is not
possible to selectanothertarget,dependingn the taskto
achieve. A trackingtransitionmodelthatusesperformance
evaluation of the currently selectedmethodand context
identificationto guaranteerobust tracking on a mobile
robotdeterminesnethodswitching.Eachtrackingmethod
is associatedwith a different type of model so model
coherencas a fundamentaissuein tracking integration.

The rest of this paperis organizedas follows: We
review related work in tracking integration and active
controlin sectionll. In sectionlll, we presentour visual
functionality model. Tracking methodsincluded in this
functionality are describedn sectionlV. We discussthe
tracking transition model in section VI. In sectionV,
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resultsof our experimentationdllustratestratgiesapplied
to keepmodelcoherencaftertrackingmethodswitching.
Finally, sectionVIl present®urconclusionandthefuture
work to be done.

Il. RELATED WORK ON COLLABORATIVE TRACKING

Integration of tracking methods intends to increase
robustnes®f theroboticvision systemdor visualtracking
tasks. Toyama and Hager [17] have proposedto use
a layered hierarchy of visual tracking methods. Some
othershave proposedusion of informationfrom different
tracking methodsto improve reliability of the visual
tracker: Kruppa et al. [13] takesadwantageof a mutual
information approachto fuse different tracking models
from several tracking methodsexecuted simultaneously
Rasmusserand Hager[16] usea probabilisticapproach
to control a hierarchyof tracking strateies. Jepsoret al.
[10] performthe integration of several tracking methods
limiting its scopeto appearancenodelsfor facetracking
in clutterednaturalervironment.

Someotherworks have beenfocusedon performance
evaluationto control one or several tracking methodsin
anactive way. Barretoand al. [2][4] have developedsome
performancevaluationmeasuref orderto controlactive
trackingusing a stereohead.Resolutioncontrol hasbeen
developedby Ferrier[6] in orderto achieve a stablevisual
trackingsystem.Ayalaand al. [1] have proposeca active
trackingfunctionalitythatcontrolsacquisitiongparameters
for a Hausdorf basedtracking method. Guibas et al.
[7] shows how to integratetracking methodsin a global
robotic task.

I1l. VISUAL FUNCTIONALITY

A visualfunctionality is a block wherea visual taskis
performedOurvisualfunctionalityis modeledasdepicted
in Fig. 1.

The elementsof this model are asfollows:

« A setof N visualfunctionsO = {01,0s, ... ,0x}
ableto performthe visualtask. Eachfunction Oy, is
associatedvith a setof parameters’: ;,i € [1, Np,]
that can be adaptedaccordingto the currentimage.
Each visual function has also an enablesignal E*
that determinesf the methodhasto be executedon
the currentinput data.A local adaptatiormechanism
is provided for local adaptationof the parameter
set. This adaptatioris donebasedon a performance
evaluation measurem; of the application of the
methodto the currentimage.
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Fig. 1. Visualfunctionality block diagram.

+ A modeselectorthatdeterminesvhich methodshave
to be executedon the currentinput data.

« A modality controllerthatdetermines setof param-
etersfor the selectedvisual function to performthe
visual task.

« A global adaptationmechanismthat controls both
the mode selectorand the modality controller using
performancesvaluationinformationfrom all the cur
rently active methods.

In this paper we apply this model for a visual target

trackingtask that can be concurrentlyperformedby sev-
eral trackingmethods.

IV. THE TRACKING METHODS

Trackingis usedon a mobile robot during a navigation
task,in orderto follow a target or to keepa landmarkin
the view field. Four trackersare consideredhere, based
on templatedifferencesset of interestpoints, lines and
snakes.

For everytracker only asmallimageregionis examined
to obtain new target position, as opposedto the entire
image.In this mannerthe computationtime is decreased
significantly The idea behind a local exploration of the
imageis thatif the executionof the codeis quick enough,
the new target positionwill then lie within a vicinity of
thepreviousone.In thisway, therobustnes®f the method
is increasedo handletarget deformationssinceit is less
likely thatthe shapeof themodelwill changesignificantly
in asmallt. We do not describehere,the predictionstep
basedon Kalmanfiltering, usedto estimatethe predicted
target positionat ¢ + 1 knowing its positionat ¢

A. Template difference tracker

Templatetracking is an interestingregion basedap-
proach basedon templatedifferences( [8], [11]). This
method consider that, processrate frequeng is high
(~20Hz),to makelinearapproximation®f a planarpatch
movementsLet R = {z1,z,, ..., zny } thesetof N image
locationswhich definetarget region, and let I(R, ¢) the
vectorof the intensitiesof region R at time ¢. Taking the
referenceimage at time ¢, = 0, we definethe reference
templateas I(R, ¢¢). Motion of referencetemplateover
time producesdeformationsyotationsand/ortranslations
in imagesat ¢ > 0. Consideringthat the motion could
be modelby a parametricfunction f(x; 1), calledmotion

273

model andparameterizetdy p = (u1, pa, ..., pn) With ini-
tial conditiony atty. Thento trackanobjectin theimage
sequencés to determinethe vector u(¢). Consideringhat
N >> n andthat f and x are both differentiable.The
motion parameter vector p canbe estimatedat time ¢ by
minimizing the following objective function:

O(p) = > (T(f(x; ), 1) = T(£(x; po), t0))”

reR

Consideringthat, at time ¢ > ¢; the motion parameter
vector can be approximateddy p(t + 7) = pu(t) + dp, T
beenavery smallincreasef timet, the objective function
O canbe expressedn termsof du, as:

Op) = |[T(p(t) + dp,t + 7) — I(po, to)]|

We canlinearizedthe problemexpanding/ (u(¢) +dp, t +
7) in a Taylor seriesaroundy andt, asis describedin
[8]- Solving the setof equationdor VO = 0, we get:

plt +7) = pu(t) — (MEM) ' MY

where M is the jacobian matrix of | with respectto g,
anddi is the intensity error vector definedas:

61 =T(pu(t),t + 7) — I(po, to)

Hagerand al [8], proposedifferent modelsto reduce
Jacobianmatrix computation Jurie and al [11], consider
aninteraction matrix A, definedby:

u(t +7) = ult) + At + )3

which, could belearntin an offline computationstage by
makinga setof N, smallperturbationsx: andcalculating
the intensity error vector i for eachone, in a local
referencesystemwhich makeseasierthe computationof
A. Making N, > N, is possibleto obtainthe interaction
matrix A from the N, couples(di,dy), suchthat next
term be minimal.
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We have implementedthis learning method: figure 2
shavs an exampleof sucha target, herea poster
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(a) theinitial template;(b) the templateafter a little motioné .
(c) the templatedifference

Fig. 2.



B. The set of points tracker

This tracking method, has beenpresentedn [9], [1].
The tracking is done using a comparisonbetweentwo
setsof points: on the one hand,points extractedfrom the
currentimage:discontinuitypoints,detectedy a classical
edgedetectoror interestpointsextractedby SusanHarris
detectorsandon the otherhand,pointsgivenasthe target
model. The Hausdorf distanceis usedto measurethe
similarity betweenthesesetsof points. Otherworks have
proposedo trackonly points,withoutapplyingconstraints
on their relative positions by usinga correlationfunction,
independentlyfor several small windows (typically 10 x , _ _
10 pixels), selectedaroundinterestpoints. Fig. 3. Trackingon a person:(a) image; (b) target

A partial Hausdorf distanceis usedas a resemblance

(b)

measuremenbetweenthe target model and its predicted C. Line tracker

positionin animage.Giventwo setsof points P and Q, The line tracker[5] is focusedon straightlines; in our

the partial Hausdorf distanceis definedas: implementationthetrackercansearchn everyimage/; ;|
of a sequencen lines (I';,i = 1,n) without verifying

H(P,Q) = max(h(P,Q), h(Q, P)) constraintsbetweentheselines (for example, parallelism

or corvergenceon a vanishingpoint).

where

hy = Kpepmin | p =gl Wb

|| »— ¢ || is a given distancebetweentwo pointsp andg. ‘ ‘ P ‘ ‘ ‘ ‘

K'tp f(p) denotesthe K~*" rankedvalue of f(p) over

theset P. Fig. 4. 1D correlationprinciple.

The function h(P, Q) (distancefrom set P to Q) is a The methodis basedon 1D correlationto look for a
measuredf the degreein which eachpointin P is nearto line I*; in a predictedposition (figure 4). (a) Points are
somepointin Q). The Hausdorf distanceis the maximum regularly sampledon ;. (b) Every point is matchedwith
amongh(P, Q) andh(Q, P); it givesthedistancebetween the closer discontinuity found on the normal to the line
the mostmismatchedointson the two sets rejectingthe on this point: the optimal discontinuity positionis found
K worsematchings consideredas outliers. usinga correlationalong this normal, with a genericstep

At stept + 1 of the sequencethe first taskis to search model.(c) A RANSAC fitting methodallows to generate
the position of the model M; in the next image /i1, the line position/’,,,, keepingonly the aligned points,
around the predicted position. The minimum value of rejectingthe outliers. The line is trackedif at least50%
the unidirectionalpartial distancefrom the modelto the of the sampledpoints are matchedwith alignedpoints.
image,hy1 (M, It41), identifiesthe best“position” of M, In contrastto a classicalsgmenttracker this method
in I;41, underthe action of somegroup of translations is very robust: it can be applied also to track curves
G. The tamget searchis stoppedat the first translationg, definedby someanalytical modelin orderto apply the
suchthat its associatedu, (M:, I141) is no larger than RANSAC fitting (a quadricor a cubiccurve for example).
a given thresholdr, Cons_lde”nga target SearChStratgy The initial lines (liO, 7 = 1’ 77,) are genera”yprwided by
thatsweepsspaceof possibletranslatiorfollowing a spiral the projectionof 3D segmentson theimage(for example,
trajectoryaroundthe predictedposition. the wall-groundor wall-ceiling edges) or by the edgesof

Having found the position of the model M; in the an objectrecognizedn aninitial image.
image ;41 of the sequencethe secondtask consistsin
updatingthe target model M,: the nev model M, is D. Snake tracker
built by determiningwhich pixels of the imageI; 4, are Snakesor active contours[12] have beenextensiely
part of the taget. The model is updatedby using the usedfor objecttracking. This methodis basedon enegy
unidirectionalpartial distancefrom theimageto the model minimization along a curve, which is subjectto internal
asacriterionfor selectinghe subsebf imagespoints/; ;1 and external forces. The total enegy for an active con-
that belongto M, ;. In orderto allow scalechangethe tour v describedwith a parametricrepresentationv =
scaleis increasedvheneer therearea significantnumber (z(s), y(s)) canbe written as:
of nonzeropixels nearthe boundaryand is decreasedn ’
the contrarycase. Eiot(v) = E Eint(v(s)) 4 Eept(v(s))ds

The model M, can be filtered applying someshape
constraintson the target by morphologicaloperatorg(for Marin and al [15] proposdo considetheactive contour
example, rather elliptical target to track a face). Fig. 3 as the surfaceof an electrical chaged conductor;these
presentsan example of this trackeron a person. electrical chages generatea new internal force. As a
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result of theserepulsive forces, the control points are
redistributedalongthe curve with higherdensityin zones
of high convex curvature. Then internal enegy can be
written as:

v 3% o?
Bint(v) = Y wn(s)(5;)” +

2
wz(s)(ésés) + k(;;_évs)z 5

wherew; (s) andws(s) areweightsgiven to elasticity
and smooth-nesg&negies, k a constantand o the chage
density

Theevolution of thecure is determinedy theequation
of movementderived from enegiesterms.

A parametricshape-modetouldbe defined(deformable
template)whentheobjectto betrackis well known, which
will be matchedto animage,in a very similar way like
shakeg3]. Anotherway to introduceshapenformationin
active contoursis applyingconstraintdn orderto deform
the snakein a suitableway. Relationship$etweerncontrol
points can be incorporatedas enegy termsand multiple
control points can be introducedto describeverticesor
discontinuities14].

Fig. 5 presentsan example of a persontracking using
a snakeinitialized by an operator

Fig. 5. Trackingon a faceby the snaketracker

V. TRACKER CHARACTERIZATION

The trackermethodsmustbe describedmainly for the
initialization conditionsthe confidenceneasuremertb be
usedfor failure detectionandinformationrequiredby the
trackerselectionmechanismThe selectionwill be based
onintrinsic propertieof thetracker(for example template
differencestracking must use a textured target), but also
on more contetual information (for example,the image
backgrounds textured or uniform).

A. Template differences tracker

Template differencestracking can be used only for
planar textured templates,or for quasi-planartextured
templateqfor example,a face),whenthe movementsdo
not changea lot planarperspectie; it is a fastmethod(at
least20 Hz).

A knowledgebasismustbe built on planartemplatedo
be trackedduring an offline computation;the interaction
matrix A mustbe learnt off line, becauseahe execution
timeis too importantfor on line computationln this case,
the imagefrom which A is learnt, needsto be acquired
from a viewpoint closeto thefirst cameraonline position.

Oneof themajorproblemswith templatetrackeris that,
once the target is lost, it is nearly impossibleto find it
again, by the methoditself. A confidencemeasurds the
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norm of the y vector So when, this norm overpasses
threshold(typically, the largestlearntvariation), it could
be consideredhs a trackerfailure.

B. Set of points tracker

This tracker has good performancesn non-structured
ervironmentsor with deformableobjects,the appearance
of which could changegradually This methodis basedon
a matchingprocesssoit is ratherslow (from 3 to 5Hz),
but a target lost can be detectedagain.

The tamget is only definedby a region of interestin
the image, without ary a priori learning process.The
confidencemeasureis given by the Hausdorf distance
betweenthe currentimageand target model.

Whenthe trackingis performedover very complex im-
ages(too muchtexture), someerrorscanhappenpecause
the target modelwill be pollutedby outliers.

C. Line tracker

The exact oppositethanthe previous tracker:good per
formanceswith structuredtargets, quick method (10Hz)
which could detectsa tamet lost by itself.

The initial conditions are a set of sggmentsto be
tracked;one problemis that, dueto the RANSAC fitting,
the length of thesesegmentsare alwaysdecreasinglong
a sequenceandsomehigh level informationmustbe used
to restorethe sggmentsizes.

This method works very fine with either a uniform
target on a textured background,or a textured target on
a uniform background Neverthelessjf the imageis too
comple, in spite of the RANSAC fitting, somesements
could be lost. The numberof points integratedin the
se@gmentsgivesthe confidencemeasure.

D. Snhake tracker

This trackeris normally usedfor deformableor free
form shapeswith high gradientedgesbetweenthe back-
ground and the tamget; it meansthat the ervironment
cannotbevery comple. Thespeedlepend®nthenumber
of control points on the snake,but typically, it runs at
12Hz.

The controlpointscanbe initialized closeto the silhou-
ette of the target. In orderto guaranteehe corvergence
of the method,internal weightsparameterss;, w, andk
canbe modified,to be adaptedo the currentsituation,but
suchan adaptationmneedto be very well characterizedn
a learningprocessingstage.

As the templatetracker once a snake has lost their
tamget, it is nearly impossibleto recover it, without a
recognitionstage.We considerthat snakehas lost their
target when first areamomentsof the enclosedregion,
hasa high variation.

V1. TRACKING TRANSITION MODEL

Onceevery trackerhasbeencharacterizedthe system
can associatea target with the best tracker which will
be able to maintain the target position along an image
sequenceWhenit is requiredin a sensombasedavigation
systemthe decisionalevel will generatea target-tracking
request.Dependingon the tamget type, a tracker control



will activate the best method. The transition between
differenttrackerscould occurin two situations:

« An erroris detectedeitherby thetrackeritself using
the confidencemeasuresdescribedin the previous
section,or by alow frequeng interpretatiorfunction
(doubleloop paradigm).

« The trackedtamet is occludedor moves out of the
image due to the tamget or the cameramotion. De-
pendingon the task, anothertarget mustbe selected
andtracked.

Two examplesare presentecn figures6 and 7: the red
linesaretheboundarie®f the predictedposition,thegreen
lines shaw the trackerresults.

A. Recovering an error tracking

Fig. 6 presents transitiondueto a trackerfailure. The
targetis the postermoved hereby an operatoy on a very
comple backgroundThe templatedifferencegdrackeris
selectedfor this planar tamget. Tracking is right on the
first 60 images((a) to (d)), but due to the background,
the computedd . on the image 62 is wrong on (e) and
the tracker divemges totally on the image 65 (f). The
set of points trackeris activated using as initial poster
model, the interest points extracted from the last good
window detectedby the templatetracker(g). Thanksto
the Hausdorf distance,the poster model is found and
the tracking can continueat a low frequeng on (h). As
templatedifferencegrackeris faster thetrackercontroller
will activateit againandit will be executedconcurrently
with the setof pointstrackerduringsomeframes to verify
it corvergesagain.As it is faster thetrackercontrollerwill
activate again the templatedifferencestracker executed
concurrentlywith the set of points tracker during some
frames,to verify it corvergesagain.

B. Transition between targets

Fig. 7 presentsa transition betweentrackersand be-
tween landmarks:the robot is navigating on a corridor.
When he entersthe visibility areaof the posteron the
left wall, it tracksthis posteron figures (a) to (c), and
concurrentlycomputegherelative positioncamera-poster
and then robot-ewironment, using a metric map built
off line. We use the templatedifferencestrackerin this
sequencethe line trackercould be usedalso,becauseahe
wall is uniform.

When the robot goes forward, the boundary of the
posterregion in the image becomescloserto the image
limit; when it is too closein (d), the tracker controller
selectsanothertarget to be tracked, here the lines cor
respondingto the edgeswall-ceiling. The line trackeris
initialized with the projectionsof thetwo 3D edgeson the
currentimage:the two trackersare executedconcurrently
on 10 frames(becausehe templatetrackeris very fast)
andthenthe postertrackingis stoppedto avoid a failure
dueto the posteroutputfrom the image.

VIlI. CONCLUSIONS AND FUTURE WORK

This paperhasdescribedhetrackingmoduleintegrated
onour mobilerobots.Trackingis requiredfor severaltasks
a robot must perform: object following (anotherrobot,
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a person),visual basednavigation (trajectory definedas
a sequenceof visual senoing commands)or obstacle
following during the execution of a motion (trajectory
definedasa curve on the ground).

A collaboratie tracking methodhasbeenproposedso
that, the robot can selectsthe besttracking methodde-
pendingon the target type or somecontetual knowledge
(natureof the background... ). A tamget controller has
beendescribedThis modulewill requestrackerswitches,
eitherif a tamgetis lost, by one quick but not so robust
method, and a more robust methodis activatedto find
againthe tamget using local image measurementsgyr if a
target switch is necessaryfor example becausedhe robot
mustturn aroundan edgeafter a corridor following exe-
cution. Every target is associatedvith the more adapted
trackerand with a recovery proceduren caseof failure.

Only sequentiakxecutionsare proposedanotherstrat-
egy could be to activate concurrently several tracking
methodswhen a target must be tracked,and to fuse at
the control level, the different target representationand
positions.This solution could be the bestone, but at this
time, is not compatiblewith the real time constraints.
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