
6-1

CHAPTER 6
TASK MANAGEMENT

This chapter describes the IA-32 architecture’s task management facilities. These facilities are
only available when the processor is running in protected mode.

6.1. TASK MANAGEMENT OVERVIEW
A task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to
execute a program, a task or process, an operating-system service utility, an interrupt or excep-
tion handler, or a kernel or executive utility.
The IA-32 architecture provides a mechanism for saving the state of a task, for dispatching tasks
for execution, and for switching from one task to another. When operating in protected mode,
all processor execution takes place from within a task. Even simple systems must define at least
one task. More complex systems can use the processor’s task management facilities to support
multitasking applications.

6.1.1. Task Structure
A task is made up of two parts: a task execution space and a task-state segment (TSS). The task
execution space consists of a code segment, a stack segment, and one or more data segments
(see Figure 6-1). If an operating system or executive uses the processor’s privilege-level protec-
tion mechanism, the task execution space also provides a separate stack for each privilege level.
The TSS specifies the segments that make up the task execution space and provides a storage
place for task state information. In multitasking systems, the TSS also provides a mechanism for
linking tasks.

NOTE
This chapter describes primarily 32-bit tasks and the 32-bit TSS structure.
For information on 16-bit tasks and the 16-bit TSS structure, see Section 6.6.,
“16-Bit Task-State Segment (TSS)”.

A task is identified by the segment selector for its TSS. When a task is loaded into the processor
for execution, the segment selector, base address, limit, and segment descriptor attributes for the
TSS are loaded into the task register (see Section 2.4.4., “Task Register (TR)”).
If paging is implemented for the task, the base address of the page directory used by the task is
loaded into control register CR3.

6-2

TASK MANAGEMENT

6.1.2. Task State
The following items define the state of the currently executing task:

The task’s current execution space, defined by the segment selectors in the segment
registers (CS, DS, SS, ES, FS, and GS).
The state of the general-purpose registers.
The state of the EFLAGS register.
The state of the EIP register.
The state of control register CR3.
The state of the task register.
The state of the LDTR register.
The I/O map base address and I/O map (contained in the TSS).
Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of
the task register. Also, the complete contents of the LDTR register are not contained in the TSS,
only the segment selector for the LDT.

Figure 6-1. Structure of a Task

Code
Segment

Stack
Segment

(Current Priv.

Data
Segment

Stack Seg.
Priv. Level 0

Stack Seg.
Priv. Level 1

Stack
Segment

(Priv. Level 2)

Task-State
Segment

(TSS)

Task Register

CR3

Level)

6-3

TASK MANAGEMENT

6.1.3. Executing a Task
Software or the processor can dispatch a task for execution in one of the following ways:

A explicit call to a task with the CALL instruction.
A explicit jump to a task with the JMP instruction.
An implicit call (by the processor) to an interrupt-handler task.
An implicit call to an exception-handler task.
A return (initiated with an IRET instruction) when the NT flag in the EFLAGS register is
set.

All of these methods of dispatching a task identify the task to be dispatched with a segment
selector that points either to a task gate or the TSS for the task. When dispatching a task with a
CALL or JMP instruction, the selector in the instruction may select either the TSS directly or a
task gate that holds the selector for the TSS. When dispatching a task to handle an interrupt or
exception, the IDT entry for the interrupt or exception must contain a task gate that holds the
selector for the interrupt- or exception-handler TSS.
When a task is dispatched for execution, a task switch automatically occurs between the
currently running task and the dispatched task. During a task switch, the execution environment
of the currently executing task (called the task’s state or context) is saved in its TSS and execu-
tion of the task is suspended. The context for the dispatched task is then loaded into the processor
and execution of that task begins with the instruction pointed to by the newly loaded EIP
register. If the task has not been run since the system was last initialized, the EIP will point to
the first instruction of the task’s code; otherwise, it will point to the next instruction after the last
instruction that the task executed when it was last active.
If the currently executing task (the calling task) called the task being dispatched (the called task),
the TSS segment selector for the calling task is stored in the TSS of the called task to provide a
link back to the calling task.
For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.
Interrupts and exceptions can be handled with a task switch to a handler task. Here, the processor
not only can perform a task switch to handle the interrupt or exception, but it can automatically
switch back to the interrupted task upon returning from the interrupt- or exception-handler task.
This mechanism can handle interrupts that occur during interrupt tasks.
As part of a task switch, the processor can also switch to another LDT, allowing each task to have
a different logical-to-physical address mapping for LDT-based segments. The page-directory base
register (CR3) also is reloaded on a task switch, allowing each task to have its own set of page
tables. These protection facilities help isolate tasks and prevent them from interfering with one
another. If one or both of these protection mechanisms are not used, the processor provides no
protection between tasks. This is true even with operating systems that use multiple privilege
levels for protection. Here, a task running at privilege level 3 that uses the same LDT and page
tables as other privilege-level-3 tasks can access code and corrupt data and the stack of other
tasks.

6-4

TASK MANAGEMENT

Use of task management facilities for handling multitasking applications is optional. Multi-
tasking can be handled in software, with each software defined task executed in the context of
a single IA-32 architecture task.

6.2. TASK MANAGEMENT DATA STRUCTURES
The processor defines five data structures for handling task-related activities:

Task-state segment (TSS).
Task-gate descriptor.
TSS descriptor.
Task register.
NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at least one
task, and the segment selector for the TSS must be loaded into the task register (using the LTR
instruction).

6.2.1. Task-State Segment (TSS)
The processor state information needed to restore a task is saved in a system segment called the
task-state segment (TSS). Figure 6-2 shows the format of a TSS for tasks designed for 32-bit
CPUs. (Compatibility with 16-bit Intel 286 processor tasks is provided by a different kind of
TSS, see Figure 6-9.) The fields of a TSS are divided into two main categories: dynamic fields
and static fields.
The processor updates the dynamic fields when a task is suspended during a task switch. The
following are dynamic fields:
General-purpose register fields

State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI registers prior to
the task switch.

Segment selector fields
Segment selectors stored in the ES, CS, SS, DS, FS, and GS registers prior to
the task switch.

EFLAGS register field
State of the EFAGS register prior to the task switch.

EIP (instruction pointer) field
State of the EIP register prior to the task switch.

Previous task link field
Contains the segment selector for the TSS of the previous task (updated on a
task switch that was initiated by a call, interrupt, or exception). This field

6-5

TASK MANAGEMENT

(which is sometimes called the back link field) permits a task switch back to
the previous task to be initiated with an IRET instruction.

The processor reads the static fields, but does not normally change them. These fields are set up
when a task is created. The following are static fields:
LDT segment selector field

Contains the segment selector for the task's LDT.

Figure 6-2. 32-Bit Task-State Segment (TSS)

031

100
96
92
88
84
80

76

I/O Map Base Address
15

LDT Segment Selector

GS
FS
DS

SS

CS

72
68
64
60
56
52

48

44
40
36
32
28
24

20
SS2

16
12
8
4
0

SS1

SS0
ESP0

Previous Task Link

ESP1

ESP2

CR3 (PDBR)

T

ES
EDI

ESI
EBP

ESP

EBX

EDX

ECX
EAX

EFLAGS

EIP

Reserved bits. Set to 0.

6-6

TASK MANAGEMENT

CR3 control register field
Contains the base physical address of the page directory to be used by the task.
Control register CR3 is also known as the page-directory base register (PDBR).

Privilege level-0, -1, and -2 stack pointer fields
These stack pointers consist of a logical address made up of the segment
selector for the stack segment (SS0, SS1, and SS2) and an offset into the stack
(ESP0, ESP1, and ESP2). Note that the values in these fields are static for a
particular task; whereas, the SS and ESP values will change if stack switching
occurs within the task.

T (debug trap) flag (byte 100, bit 0)
When set, the T flag causes the processor to raise a debug exception when a
task switch to this task occurs (see Section 14.3.1.5., “Task-Switch Exception
Condition”).

I/O map base address field
Contains a 16-bit offset from the base of the TSS to the I/O permission bit map
and interrupt redirection bitmap. When present, these maps are stored in the
TSS at higher addresses. The I/O map base address points to the beginning of
the I/O permission bit map and the end of the interrupt redirection bit map.
See Chapter 12, Input/Output, in the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 1, for more information about the I/O permission bit
map. See Section 15.3., “Interrupt and Exception Handling in Virtual-8086
Mode”, for a detailed description of the interrupt redirection bit map.

If paging is used, care should be taken to avoid placing a page boundary within the part of the
TSS that the processor reads during a task switch (the first 104 bytes). If a page boundary is
placed within this part of the TSS, the pages on either side of the boundary must be present at
the same time and contiguous in physical memory. The reason for this restriction is that when
accessing a TSS during a task switch, the processor reads and writes into the first 104 bytes of
each TSS from contiguous physical addresses beginning with the physical address of the first
byte of the TSS. It may not perform address translations at a page boundary if one occurs within
this area. So, after the TSS access begins, if a part of the 104 bytes is not both present and phys-
ically contiguous, the processor will access incorrect TSS information, without generating a
page-fault exception. The reading of this incorrect information will generally lead to an unre-
coverable exception later in the task switch process.
Also, if paging is used, the pages corresponding to the previous task’s TSS, the current task’s
TSS, and the descriptor table entries for each should be marked as read/write. The task switch
will be carried out faster if the pages containing these structures are also present in memory
before the task switch is initiated.

6.2.2. TSS Descriptor
The TSS, like all other segments, is defined by a segment descriptor. Figure 6-3 shows the
format of a TSS descriptor. TSS descriptors may only be placed in the GDT; they cannot be
placed in an LDT or the IDT. An attempt to access a TSS using a segment selector with its TI
flag set (which indicates the current LDT) causes a general-protection exception (#GP) to be

6-7

TASK MANAGEMENT

generated. A general-protection exception is also generated if an attempt is made to load a
segment selector for a TSS into a segment register.
The busy flag (B) in the type field indicates whether the task is busy. A busy task is currently
running or is suspended. A type field with a value of 1001B indicates an inactive task; a value
of 1011B indicates a busy task. Tasks are not recursive. The processor uses the busy flag to
detect an attempt to call a task whose execution has been interrupted. To insure that there is only
one busy flag is associated with a task, each TSS should have only one TSS descriptor that points
to it.

The base, limit, and DPL fields and the granularity and present flags have functions similar to
their use in data-segment descriptors (see Section 3.4.3., “Segment Descriptors”). The limit field
must have a value equal to or greater than 67H (for a 32-bit TSS), one byte less than the
minimum size of a TSS. Attempting to switch to a task whose TSS descriptor has a limit less
than 67H generates an invalid-TSS exception (#TS). A larger limit is required if an I/O permis-
sion bit map is included in the TSS. An even larger limit would be required if the operating
system stores additional data in the TSS. The processor does not check for a limit greater than
67H on a task switch; however, it does when accessing the I/O permission bit map or interrupt
redirection bit map.
Any program or procedure with access to a TSS descriptor (that is, whose CPL is numerically
equal to or less than the DPL of the TSS descriptor) can dispatch the task with a call or a jump.
In most systems, the DPLs of TSS descriptors should be set to values less than 3, so that only
privileged software can perform task switching. However, in multitasking applications, DPLs
for some TSS descriptors can be set to 3 to allow task switching at the application (or user) priv-
ilege level.

Figure 6-3. TSS Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

0
0

31 16 15 0

Base Address 15:00 Segment Limit 15:00

Base 23:16
A
V
L

Limit
19:160

1B01

TSS Descriptor

AVL
B
BASE
DPL
G

Available for use by system software
Busy flag
Segment Base Address
Descriptor Privilege Level
Granularity

LIMIT
P
TYPE

Segment Limit
Segment Present
Segment Type

0

4

6-8

TASK MANAGEMENT

6.2.3. Task Register
The task register holds the 16-bit segment selector and the entire segment descriptor (32-bit base
address, 16-bit segment limit, and descriptor attributes) for the TSS of the current task (see
Figure 2-4). This information is copied from the TSS descriptor in the GDT for the current task.
Figure 6-4 shows the path the processor uses to accesses the TSS, using the information in the
task register.
The task register has both a visible part (that can be read and changed by software) and an invis-
ible part (that is maintained by the processor and is inaccessible by software). The segment
selector in the visible portion points to a TSS descriptor in the GDT. The processor uses the
invisible portion of the task register to cache the segment descriptor for the TSS. Caching these
values in a register makes execution of the task more efficient, because the processor does not
need to fetch these values from memory to reference the TSS of the current task.
The LTR (load task register) and STR (store task register) instructions load and read the visible
portion of the task register. The LTR instruction loads a segment selector (source operand) into
the task register that points to a TSS descriptor in the GDT, and then loads the invisible portion
of the task register with information from the TSS descriptor. This instruction is a privileged
instruction that may be executed only when the CPL is 0. The LTR instruction generally is used
during system initialization to put an initial value in the task register. Afterwards, the contents
of the task register are changed implicitly when a task switch occurs.
The STR (store task register) instruction stores the visible portion of the task register in a
general-purpose register or memory. This instruction can be executed by code running at any
privilege level, to identify the currently running task; however, it is normally used only by oper-
ating system software.
On power up or reset of the processor, the segment selector and base address are set to the default
value of 0 and the limit is set to FFFFH.

6.2.4. Task-Gate Descriptor
A task-gate descriptor provides an indirect, protected reference to a task. Figure 6-5 shows the
format of a task-gate descriptor. A task-gate descriptor can be placed in the GDT, an LDT, or the
IDT.
The TSS segment selector field in a task-gate descriptor points to a TSS descriptor in the GDT.
The RPL in this segment selector is not used.
The DPL of a task-gate descriptor controls access to the TSS descriptor during a task switch.
When a program or procedure makes a call or jump to a task through a task gate, the CPL and
the RPL field of the gate selector pointing to the task gate must be less than or equal to the DPL
of the task-gate descriptor. (Note that when a task gate is used, the DPL of the destination TSS
descriptor is not used.)

6-9

TASK MANAGEMENT

Figure 6-4. Task Register

Figure 6-5. Task-Gate Descriptor

Segment LimitSelector

+

GDT

TSS Descriptor

0

Base AddressTask
Invisible PartVisible Part

TSS

Register

31 16 15 1314 12 11 8 7 0

P
D
P
L

Type

0

31 16 15 0

TSS Segment Selector

1010

DPL
P
TYPE

Descriptor Privilege Level
Segment Present
Segment Type

Reserved

4

0

6-10

TASK MANAGEMENT

A task can be accessed either through a task-gate descriptor or a TSS descriptor. Both of these
structures are provided to satisfy the following needs:

The need for a task to have only one busy flag. Because the busy flag for a task is stored in
the TSS descriptor, each task should have only one TSS descriptor. There may, however,
be several task gates that reference the same TSS descriptor.
The need to provide selective access to tasks. Task gates fill this need, because they can
reside in an LDT and can have a DPL that is different from the TSS descriptor's DPL. A
program or procedure that does not have sufficient privilege to access the TSS descriptor
for a task in the GDT (which usually has a DPL of 0) may be allowed access to the task
through a task gate with a higher DPL. Task gates give the operating system greater
latitude for limiting access to specific tasks.
The need for an interrupt or exception to be handled by an independent task. Task gates
may also reside in the IDT, which allows interrupts and exceptions to be handled by
handler tasks. When an interrupt or exception vector points to a task gate, the processor
switches to the specified task.

Figure 6-6 illustrates how a task gate in an LDT, a task gate in the GDT, and a task gate in the
IDT can all point to the same task.

6.3. TASK SWITCHING
The processor transfers execution to another task in any of four cases:

The current program, task, or procedure executes a JMP or CALL instruction to a TSS
descriptor in the GDT.
The current program, task, or procedure executes a JMP or CALL instruction to a task-gate
descriptor in the GDT or the current LDT.
An interrupt or exception vector points to a task-gate descriptor in the IDT.
The current task executes an IRET when the NT flag in the EFLAGS register is set.

The JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all generalized
mechanisms for redirecting a program. The referencing of a TSS descriptor or a task gate (when
calling or jumping to a task) or the state of the NT flag (when executing an IRET instruction)
determines whether a task switch occurs.
The processor performs the following operations when switching to a new task:
1. Obtains the TSS segment selector for the new task as the operand of the JMP or CALL

instruction, from a task gate, or from the previous task link field (for a task switch initiated
with an IRET instruction).

6-11

TASK MANAGEMENT

2. Checks that the current (old) task is allowed to switch to the new task. Data-access
privilege rules apply to JMP and CALL instructions. The CPL of the current (old) task and
the RPL of the segment selector for the new task must be less than or equal to the DPL of
the TSS descriptor or task gate being referenced. Exceptions, interrupts (except for
interrupts generated by the INT n instruction), and the IRET instruction are permitted to
switch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For
interrupts generated by the INT n instruction, the DPL is checked.

3. Checks that the TSS descriptor of the new task is marked present and has a valid limit
(greater than or equal to 67H).

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET
return).

Figure 6-6. Task Gates Referencing the Same Task

LDT

Task Gate

TSSGDT

TSS Descriptor

IDT

Task Gate

Task Gate

6-12

TASK MANAGEMENT

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task
switch are paged into system memory.

6. If the task switch was initiated with a JMP or IRET instruction, the processor clears the
busy (B) flag in the current (old) task’s TSS descriptor; if initiated with a CALL
instruction, an exception, or an interrupt, the busy (B) flag is left set. (See Table 6-2.)

7. If the task switch was initiated with an IRET instruction, the processor clears the NT flag
in a temporarily saved image of the EFLAGS register; if initiated with a CALL or JMP
instruction, an exception, or an interrupt, the NT flag is left unchanged in the saved
EFLAGS image.

8. Saves the state of the current (old) task in the current task’s TSS. The processor finds the
base address of the current TSS in the task register and then copies the states of the
following registers into the current TSS: all the general-purpose registers, segment
selectors from the segment registers, the temporarily saved image of the EFLAGS register,
and the instruction pointer register (EIP).

9. If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the
processor sets the NT flag in the EFLAGS image stored in the new task’s TSS; if initiated
with an IRET instruction, the processor restores the NT flag from the EFLAGS image
stored on the stack. If initiated with a JMP instruction, the NT flag is left unchanged. (See
Table 6-2.)

10. If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or
an interrupt, the processor sets the busy (B) flag in the new task’s TSS descriptor; if
initiated with an IRET instruction, the busy (B) flag is left set.

11. Sets the TS flag in the control register CR0 image stored in the new task’s TSS.
12. Loads the task register with the segment selector and descriptor for the new task's TSS.

NOTE
At this point, if all checks and saves have been carried out successfully, the
processor commits to the task switch. If an unrecoverable error occurs in
steps 1 through 12, the processor does not complete the task switch and
insures that the processor is returned to its state prior to the execution of the
instruction that initiated the task switch. If an unrecoverable error occurs after
the commit point (in steps 13 and 14), the processor completes the task
switch (without performing additional access and segment availability
checks) and generates the appropriate exception prior to beginning execution
of the new task. If exceptions occur after the commit point, the exception
handler must finish the task switch itself before allowing the processor to
begin executing the new task. See Chapter 5, “Interrupt 10—Invalid TSS
Exception (#TS)”, for more information about the affect of exceptions on a
task when they occur after the commit point of a task switch.

6-13

TASK MANAGEMENT

13. Loads the new task's state from its TSS into processor. Any errors associated with the
loading and qualification of segment descriptors in this step occur in the context of the new
task. The task state information that is loaded here includes the LDTR register, the PDBR
(control register CR3), the EFLAGS register, the EIP register, the general-purpose
registers, and the segment descriptor parts of the segment registers.

14. Begins executing the new task. (To an exception handler, the first instruction of the new
task appears not to have been executed.)

The state of the currently executing task is always saved when a successful task switch occurs.
If the task is resumed, execution starts with the instruction pointed to by the saved EIP value,
and the registers are restored to the values they held when the task was suspended.
When switching tasks, the privilege level of the new task does not inherit its privilege level from
the suspended task. The new task begins executing at the privilege level specified in the CPL
field of the CS register, which is loaded from the TSS. Because tasks are isolated by their sepa-
rate address spaces and TSSs and because privilege rules control access to a TSS, software does
not need to perform explicit privilege checks on a task switch.
Table 6-1 shows the exception conditions that the processor checks for when switching tasks. It
also shows the exception that is generated for each check if an error is detected and the segment
that the error code references. (The order of the checks in the table is the order used in the P6
family processors. The exact order is model specific and may be different for other IA-32
processors.) Exception handlers designed to handle these exceptions may be subject to recursive
calls if they attempt to reload the segment selector that generated the exception. The cause of
the exception (or the first of multiple causes) should be fixed before reloading the selector.

Table 6-1. Exception Conditions Checked During a Task Switch

Condition Checked Exception1
Error Code
Reference2

Segment selector for a TSS descriptor references
the GDT and is within the limits of the table.

#GP New Task’s TSS

TSS descriptor is present in memory. #NP New Task’s TSS

TSS descriptor is not busy (for task switch initiated by a
call, interrupt, or exception).

#GP (for JMP, CALL,
INT)

Task’s back-link TSS

TSS descriptor is not busy (for task switch initiated by
an IRET instruction).

#TS (for IRET) New Task’s TSS

TSS segment limit greater than or equal to 108 (for 32-
bit TSS) or 44 (for 16-bit TSS).

#TS New Task’s TSS

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 3. #TS New Task’s LDT

Code segment DPL matches segment selector RPL. #TS New Code Segment

SS segment selector is valid 2. #TS New Stack Segment

Stack segment is present in memory. #SF New Stack Segment

6-14

TASK MANAGEMENT

NOTES:
1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS excep-

tion, and #SF is stack-fault exception.
2. The error code contains an index to the segment descriptor referenced in this column.
3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within

the table's segment limit, and refers to a compatible type of descriptor (for example, a segment selector in
the CS register only is valid when it points to a code-segment descriptor).

The TS (task switched) flag in the control register CR0 is set every time a task switch occurs.
System software uses the TS flag to coordinate the actions of floating-point unit when gener-
ating floating-point exceptions with the rest of the processor. The TS flag indicates that the
context of the floating-point unit may be different from that of the current task. See Section 2.5.,
“Control Registers”, for a detailed description of the function and use of the TS flag.

6.4. TASK LINKING
The previous task link field of the TSS (sometimes called the “backlink”) and the NT flag in the
EFLAGS register are used to return execution to the previous task. The NT flag indicates
whether the currently executing task is nested within the execution of another task, and the
previous task link field of the current task's TSS holds the TSS selector for the higher-level task
in the nesting hierarchy, if there is one (see Figure 6-7).
When a CALL instruction, an interrupt, or an exception causes a task switch, the processor
copies the segment selector for the current TSS into the previous task link field of the TSS for
the new task, and then sets the NT flag in the EFLAGS register. The NT flag indicates that the
previous task link field of the TSS has been loaded with a saved TSS segment selector. If soft-
ware uses an IRET instruction to suspend the new task, the processor uses the value in the
previous task link field and the NT flag to return to the previous task; that is, if the NT flag is
set, the processor performs a task switch to the task specified in the previous task link field.

Stack segment DPL matches CPL. #TS New stack segment

LDT of new task is present in memory. #TS New Task’s LDT

CS segment selector is valid 3. #TS New Code Segment

Code segment is present in memory. #NP New Code Segment

Stack segment DPL matches selector RPL. #TS New Stack Segment

DS, ES, FS, and GS segment selectors are valid 3. #TS New Data Segment

DS, ES, FS, and GS segments are readable. #TS New Data Segment

DS, ES, FS, and GS segments are present in memory. #NP New Data Segment

DS, ES, FS, and GS segment DPL greater than or
equal to CPL (unless these are conforming segments).

#TS New Data Segment

Table 6-1. Exception Conditions Checked During a Task Switch (Contd.)

6-15

TASK MANAGEMENT

NOTE
When a JMP instruction causes a task switch, the new task is not nested; that
is, the NT flag is set to 0 and the previous task link field is not used. A JMP
instruction is used to dispatch a new task when nesting is not desired.

Table 6-2 summarizes the uses of the busy flag (in the TSS segment descriptor), the NT flag, the
previous task link field, and TS flag (in control register CR0) during a task switch. Note that the
NT flag may be modified by software executing at any privilege level. It is possible for a
program to set its NT flag and execute an IRET instruction, which would have the effect of
invoking the task specified in the previous link field of the current task's TSS. To keep spurious
task switches from succeeding, the operating system should initialize the previous task link field
for every TSS it creates to 0.

Figure 6-7. Nested Tasks

Table 6-2. Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field,
and TS Flag

Flag or Field
Effect of JMP

instruction

Effect of CALL
Instruction or

Interrupt
Effect of IRET

Instruction

Busy (B) flag of new
task.

Flag is set. Must have
been clear before.

Flag is set. Must have
been clear before.

No change. Must have
been set.

Busy flag of old task. Flag is cleared. No change. Flag is
currently set.

Flag is cleared.

NT flag of new task. No change. Flag is set. Restored to value from
TSS of new task.

NT flag of old task. No change. No change. Flag is cleared.

Previous task link field of
new task.

No change. Loaded with selector
for old task’s TSS.

No change.

Previous task link field of
old task.

No change. No change. No change.

TS flag in control
register CR0.

Flag is set. Flag is set. Flag is set.

Top Level
Task

NT=0

Previous

TSS

Nested
Task

NT=1

TSS

More Deeply
Nested Task

NT=1

TSS

Currently Executing
Task

NT=1
EFLAGS

Task RegisterTask Link
Previous
Task Link

Previous
Task Link

6-16

TASK MANAGEMENT

6.4.1. Use of Busy Flag To Prevent Recursive Task Switching
A TSS allows only one context to be saved for a task; therefore, once a task is called
(dispatched), a recursive (or re-entrant) call to the task would cause the current state of the task
to be lost. The busy flag in the TSS segment descriptor is provided to prevent re-entrant task
switching and subsequent loss of task state information. The processor manages the busy flag as
follows:
1. When dispatching a task, the processor sets the busy flag of the new task.
2. If during a task switch, the current task is placed in a nested chain (the task switch is being

generated by a CALL instruction, an interrupt, or an exception), the busy flag for the
current task remains set.

3. When switching to the new task (initiated by a CALL instruction, interrupt, or exception),
the processor generates a general-protection exception (#GP) if the busy flag of the new
task is already set. (If the task switch is initiated with an IRET instruction, the exception is
not raised because the processor expects the busy flag to be set.)

4. When a task is terminated by a jump to a new task (initiated with a JMP instruction in the
task code) or by an IRET instruction in the task code, the processor clears the busy flag,
returning the task to the “not busy” state.

In this manner the processor prevents recursive task switching by preventing a task from
switching to itself or to any task in a nested chain of tasks. The chain of nested suspended tasks
may grow to any length, due to multiple calls, interrupts, or exceptions. The busy flag prevents
a task from being invoked if it is in this chain.
The busy flag may be used in multiprocessor configurations, because the processor follows a
LOCK protocol (on the bus or in the cache) when it sets or clears the busy flag. This lock keeps
two processors from invoking the same task at the same time. (See Section 7.1.2.1., “Automatic
Locking”, for more information about setting the busy flag in a multiprocessor applications.)

6.4.2. Modifying Task Linkages
In a uniprocessor system, in situations where it is necessary to remove a task from a chain of
linked tasks, use the following procedure to remove the task:
1. Disable interrupts.
2. Change the previous task link field in the TSS of the pre-empting task (the task that

suspended the task to be removed). It is assumed that the pre-empting task is the next task
(newer task) in the chain from the task to be removed. Change the previous task link field
to point to the TSS of the next oldest task in the chain or to an even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed from the
chain. If more than one task is being removed from the chain, the busy flag for each task
being remove must be cleared.

4. Enable interrupts.

6-17

TASK MANAGEMENT

In a multiprocessing system, additional synchronization and serialization operations must be
added to this procedure to insure that the TSS and its segment descriptor are both locked when
the previous task link field is changed and the busy flag is cleared.

6.5. TASK ADDRESS SPACE
The address space for a task consists of the segments that the task can access. These segments
include the code, data, stack, and system segments referenced in the TSS and any other segments
accessed by the task code. These segments are mapped into the processor’s linear address space,
which is in turn mapped into the processor’s physical address space (either directly or through
paging).
The LDT segment field in the TSS can be used to give each task its own LDT. Giving a task its
own LDT allows the task address space to be isolated from other tasks by placing the segment
descriptors for all the segments associated with the task in the task’s LDT.
It also is possible for several tasks to use the same LDT. This is a simple and memory-efficient
way to allow some tasks to communicate with or control each other, without dropping the
protection barriers for the entire system.
Because all tasks have access to the GDT, it also is possible to create shared segments accessed
through segment descriptors in this table.
If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task can also have
its own set of page tables for mapping linear addresses to physical addresses. Or, several tasks
can share the same set of page tables.

6.5.1. Mapping Tasks to the Linear and Physical Address
Spaces

Tasks can be mapped to the linear address space and physical address space in either of two
ways:

One linear-to-physical address space mapping is shared among all tasks. When paging is
not enabled, this is the only choice. Without paging, all linear addresses map to the same
physical addresses. When paging is enabled, this form of linear-to-physical address space
mapping is obtained by using one page directory for all tasks. The linear address space
may exceed the available physical space if demand-paged virtual memory is supported.
Each task has its own linear address space that is mapped to the physical address space.
This form of mapping is accomplished by using a different page directory for each task.
Because the PDBR (control register CR3) is loaded on each task switch, each task may
have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical addresses.
If the entries of different page directories point to different page tables and the page tables point
to different pages of physical memory, then the tasks do not share any physical addresses.

6-18

TASK MANAGEMENT

With either method of mapping task linear address spaces, the TSSs for all tasks must lie in a
shared area of the physical space, which is accessible to all tasks. This mapping is required so
that the mapping of TSS addresses does not change while the processor is reading and updating
the TSSs during a task switch. The linear address space mapped by the GDT also should be
mapped to a shared area of the physical space; otherwise, the purpose of the GDT is defeated.
Figure 6-8 shows how the linear address spaces of two tasks can overlap in the physical space
by sharing page tables.

6.5.2. Task Logical Address Space
To allow the sharing of data among tasks, use any of the following techniques to create shared
logical-to-physical address-space mappings for data segments:

Through the segment descriptors in the GDT. All tasks must have access to the segment
descriptors in the GDT. If some segment descriptors in the GDT point to segments in the
linear-address space that are mapped into an area of the physical-address space common to
all tasks, then all tasks can share the data and code in those segments.
Through a shared LDT. Two or more tasks can use the same LDT if the LDT fields in their
TSSs point to the same LDT. If some segment descriptors in a shared LDT point to
segments that are mapped to a common area of the physical address space, the data and
code in those segments can be shared among the tasks that share the LDT. This method of
sharing is more selective than sharing through the GDT, because the sharing can be limited

Figure 6-8. Overlapping Linear-to-Physical Mappings

Task A
Page

TSS

PDE

Page Directories

PDE

PTE
PTE
PTE

PTE
PTE

Page Tables Page Frames

Task A
Page

Task A
Page

Shared
Page

Shared
Page

Task B
Page

Task B
Page

Shared PT

PTE
PTE

PDE
PDE

PDBR

PDBR

Task A TSS

Task B TSS

6-19

TASK MANAGEMENT

to specific tasks. Other tasks in the system may have different LDTs that do not give them
access to the shared segments.
Through segment descriptors in distinct LDTs that are mapped to common addresses in the
linear address space. If this common area of the linear address space is mapped to the same
area of the physical address space for each task, these segment descriptors permit the tasks
to share segments. Such segment descriptors are commonly called aliases. This method of
sharing is even more selective than those listed above, because, other segment descriptors
in the LDTs may point to independent linear addresses which are not shared.

6.6. 16-BIT TASK-STATE SEGMENT (TSS)
The 32-bit IA-32 processors also recognize a 16-bit TSS format like the one used in Intel 286
processors (see Figure 6-9). It is supported for compatibility with software written to run on
these earlier IA-32 processors.
The following additional information is important to know about the 16-bit TSS.

Do not use a 16-bit TSS to implement a virtual-8086 task.
The valid segment limit for a 16-bit TSS is 2CH.
The 16-bit TSS does not contain a field for the base address of the page directory, which is
loaded into control register CR3. Therefore, a separate set of page tables for each task is
not supported for 16-bit tasks. If a 16-bit task is dispatched, the page-table structure for the
previous task is used.
The I/O base address is not included in the 16-bit TSS, so none of the functions of the I/O
map are supported.
When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register and the
EIP register are lost.
When the general-purpose registers are loaded or saved from a 16-bit TSS, the upper 16
bits of the registers are modified and not maintained.

6-20

TASK MANAGEMENT

Figure 6-9. 16-Bit TSS Format

Task LDT Selector

DS Selector
SS Selector
CS Selector

ES Selector
DI
SI
BP
SP
BX
DX

CX
AX

FLAG Word
IP (Entry Point)

SS2
SP2

SS1
SP1
SS0
SP0

Previous Task Link

15 0
42
40

36
34
32

30

38

28
26
24
22

20
18
16
14
12

10
8
6
4
2
0

7
Multiple-Processor
Management

