Business Card “(L|R)ight Version” 

By =sakimura

Oct. 29, 2004 @XDI F2F Colorado

Items in a typical business card

A Business Card may have:

· Name

· Company Name

· Street Address

· Phone

· Fax

· Web Address

· Email Address

· i-Name

Dictionary

	Entry
	Human Readable Description

(Potentially in many language)
	Machine Readable Description

	+name
	Name of an object (e.g. Human, Car, Dog, etc.)
	Some representation (TBD) that allows the machines to parse the returned XDI object.

	+company.name
	Organizational name …
	ditto

	+streetAddress
	Street Address
	ditto

	+phone
	Phone number
	Ditto + transformation rule to XML

	+fax
	Fax number
	Ditto

	+company.web.address
	http URI of the company’s homepage
	Ditto

	+email.address
	SMTP email address
	ditto

	+i-Name
	i-Name
	…

	+businessCard
	Business card
	

	+resource
	XDI resource format / meta schema. XDI system bootstraps here.
	XML schema of <resource>

	+meta (or +header)
	Metadata/Header part of XDI resouce
	

	+data (or + body)
	Body part of XDI resouce
	

	+type
	Class that the resource belongs to:
	

	+xri
	
	

	+version
	
	

	+usage
	
	

	+dictionary
	
	

Leaf (physical) Representation of each component in XDI

<resource>

<meta>

<type>+name</type>

<xri>!!1001:2435:1435234</xri>

</meta>

<data>

<English>Nat Sakimura</English>

<Japanese>崎村夏彦</Japanese>

</data>

</resource>

<resource>

<meta>

<type>+company.name</type>

<xri>!!1001:245234:1</xri>

</meta>

<data>

<en>Nomura Research Institute, Ltd. </en>

<ja>野村総合研究所</ja>

</data>

</resource>

<resource>

<meta>

<type>+streetAddress</type>

<xri>!!40392:4323:4344</xri>

</meta>

<data>

<street>Nippon Bldg. 4F, Otemachi 2-6-2</street>

<city>Chiyoda</street>

<state>Tokyo</state>

<postalcode>100-0004</postalcode>

</data>

</resource>

<resource>

<meta>

<type>+phone</type>

<xri>!!2324:81:3:5201:0451</xri>

</meta>

<data>

+81(3)5201-0451

</data>

</resource>

Etc., etc.

Grouping/Hierarchy/Logical Organization

<resource>

<meta>

<type>+businessCard</type>

<xri>!!154323:2343:243:44:235:3</xri>

<xri>@NRI/employee/m2630/(+businessCard)</xri>

<xri>@NRI/ISD/IFSPD/ASG/(+GM)/(+businessCard)</xri>

<xri>@NRI/sakimura/(+businessCard)

<version>$v.d.2004-10-25</version>

<usage>@XDIORG/contracts/businesscardusage</usage>

</meta>

<data>

<ref type=”+name”>!!1001:2435:1435234</ref>

<ref type=”+company.name”>!!1001:245234:1</ref>

<ref type=”+streetAddress”>!!40392:4323:4344</ref>

<ref type=”+phone”>!!2324:81:3:5201:0451</ref>

<ref type=”+fax”>!!2324:81:3:5201:0461</ref>

<ref type=”+company.web.address>!!254:334:2223:5434</ref>

<ref type=”+email”>!!254:334:2224:342</email>

<ref type=”+i-name”>!!23423:23:4</i-name>

</data>

</resource>

<resource>

<meta>

<type>+businessCard</type>

<xri>=sakimura/(+businessCard)</xri>

</meta>

<data>

<ref type=”+businessCard”>@NRI/sakimura/(+businessCard)</ref>

</data>

</resource>

Comments:

(N1) This is very machine efficient. It can trivially be implemented even on a relational database: Every node is one level deep. Resolution in the local part is just passing the local part string in its entirety as the key to the database.

(N2) Maybe <meta> and <data> should be called <header> and <body> because people are more accustomed to it (HTTP, HTML, SMTP etc.) and <data> really is not a data but can be references.

(N3) Since <ref> has type, when one wants only a component of it, it does not have to retrieve the entire business card object. E.g., if he wants phone number only, it should just retrieve / traverse the <ref> of type +phone.

XRI Query Construction

Suppose Mr. A wants to get the business card of Mr. B, who he knows my Global i-name. Then, he can construct:

=sakimura/(+businessCard)

This may, or may not exist. (In the above case, it does.)

Instead Mr. A may know only Mr.B’s company i-name, which is @NRI/sakimura, then he could construct

@NRI/sakimura/(+businessCard)

This may, or may not exist. (In the above case, it does.)

There always are going to be some guess work no matter what, unless there is a known convention of addressing a particular object. As a spec, however, it cannot possibly be spelled out a priori. A community may define those “Community Standard Path (CSP)” though. E.g., XDIORG may publish a list of standard path as @XDI/(+CSP) and +CSP. It may be ok for TC to define the CSP format, but actual CSPs are out of scope. In this case, the authority is XDIORG and not the TC. (BTW, Ford may publish their version of CSP as well as @Ford/(+CSP)).

N.B. Besides CSP, the contract spec is very important. It may not be in the core, but TC should publish one version of it together with the Core.

Re-composability of the big XDI document

To get the fully contained (no external reference) business card, resolve each ref in the <data> and replace the <ref> with the resulting <resource>. Then, you will end up with something like:

<resource>

<meta>

<type>+businessCard</type>

<xri>!!154323:2343:243:44:235:3</xri>

<xri>@NRI/employee/m2630/(+businessCard)</xri>

<xri>@NRI/ISD/IFSPD/ASG/(+GM)/(+businessCard)</xri>

<xri>@NRI/sakimura/(+businessCard)

<version>$v.d.2004-10-25</version>

<usage>@XDIORG/contracts/businesscardusage</usage>

</meta>

<data>

<resource>

<meta>

<type>+name</type>

<xri>!!1001:2435:1435234</xri>

</meta>

<data>

<English>Nat Sakimura</English>

<Japanese>崎村夏彦</Japanese>

</data>

</resource>

<resource>

<meta>

<type>+company.name</type>

<xri>!!1001:245234:1</xri>

</meta>

<data>

<en>Nomura Research Institute, Ltd. </en>

<ja>野村総合研究所</ja>

</data>

</resource>

<resource>

<meta>

<type>+streetAddress</type>

<xri>!!40392:4323:4344</xri>

</meta>

<data>

<street>Nippon Bldg. 4F, Otemachi 2-6-2</street>

<city>Chiyoda</street>

<state>Tokyo</state>

<postalcode>100-0004</postalcode>

</data>

</resource>

<resource>

<meta>

<type>+phone</type>

<xri>!!2324:81:3:5201:0451</xri>

</meta>

<data>

+81(3)5201-0451

</data>

</resource>

<resource>

<meta>

<type>+fax</type>

<xri>!!2324:81:3:5201:0461</xri>

</meta>

<data>

+81(3)5201-0461

</data>

</resource>

[..snip..]

</data>

</resource>

Note: It should be relatively rare that an implementation would actually store things like this because there would be data duplication.

Conclusion

Thus, this schema

(1) is very machine efficient

(2) is very versatile and extensible

(3) allows automagic XRI query composition

(4) allows the composition of a gigantic XML if one wants

(5) has usage policy / contract in mind

(6) very simple

(7) and TURTLES ALL THE WAY!!! (fractal)

In short, we did not give up the values of the heavy schema, but gained simplicity.

Other Considerations

(1) This spec may have some impact / feedback to XRI v.1.2.
XRI resolution spec uses its own response format. It could be unified to XDI format instead.

(2) Contract based access control must be defined somewhere. This is very important for me because it is one of the key value propositions that XRI/XDI brings in.

Elevator Speech

XDI is instrumental in achieving “Trusted Environment” in which data can be exchanged under the condition that parties (machines) will use the data only in accordance with the contract.

There will be multiple communities with varying degree of “Trust” within them, but to that extent, data is protected against misuse.

[image: image1.wmf]Trusted Environment

Machine

Machine

Machine

Agent

Machine to Human Boundary

Trusted Environment

Machine

Machine

Machine

Agent

Machine to Human Boundary

Machines are reasonably trustable because it can be audited and digitally signed by the auditor.

Human are not: Key is not to allow humans to extract data out of the trusted environment.

Example of Machine to Human Boundary Protection.

https://wcp.omnitrust.jp/
