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SUMMARY 

 

Mortality is the fundamental property of all matter.  Various types of equipment 

used in manufacturing industry are no exception.  A machine, tool-group or piece of 

equipment, jointly referred to a „resource‟ may deteriorate in many possible ways. 

Depending on the form of degradation, preventive or corrective measures are employed. 

The preventive measures such as machine maintenance, equipment/ process monitoring 

etc. help keep the equipment functioning smoothly while corrective measures such as 

replacement, repair etc. aim at minimizing disruptions in production due to resource 

failure. In order to fulfill the production requirements, it is imperative that the resource 

management decisions (including preventive and corrective decisions) be taken in an 

optimal manner. More often than not, the resource management decisions are affected by 

other production related decisions like production planning and scheduling, job 

inspection, etc. The central theme of this thesis is to address the different ways in which 

manufacturing resources deteriorate and develop optimization models for resource 

management in conjunction with other production related decisions. 

Oftentimes, specialized equipment, used in relatively large quantities on the 

production floor are amenable to break frequently with use. The best example is a steel, 

aluminum or plastic mold (also called a die) used for the manufacturing of a variety of 

plastic goods, china, art work, machinery, electronics and building materials. After many 

uses and cleaning, the mold tends to wear out, deform, or lose precision due to deposits. 

Aside from a range of molds for products of different shapes and sizes, an inventory of 

spare molds needs to be maintained. This repeated-use-limited-life feature is also found 

in semi-conductor industry and printing industry in the form of masks and ink cartridges 

respectively. Additional examples are seen in general manufacturing environments; 

where expensive cutting tools, bushings, filtering equipment, spare parts etc. need 

frequent replacement due to wear or clogging. This category of resources is collectively 

referred to as perishable resources. In Chapter 3, the management of perishable resources 

is considered together with production planning and resource allocation or production 
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scheduling decisions. It is shown that these decisions are inter-dependent, and therefore, 

call for a combined optimization problem.  

This new class of problems is solved using the widely accepted framework of 

hierarchical planning and scheduling using mathematical programming models. The 

results of this approach are compared (on several avenues) with the solution of the 

resource management problem when solved independent of production planning. A 

rolling horizon methodology is employed when the parameters like product demand and 

resource life have associated uncertainty. 

However, when the system is plagued by high level of uncertainty, the 

performance of the rolling horizon approach is often unsatisfactory. To resolve this issue, 

the planning level problem is reformulated as a Markov decision process (MDP) in 

Chapter 4 and solved using an approximate dynamic programming (ADP) algorithm. The 

problem, in this form, resembles a popular class of problems called dynamic resource 

allocation problems (Powell 2005). However, the additional decisions related to 

production planning and resource procurement, introduce challenges in terms of problem 

formulation and determination of state transition function. Compared with the rolling 

horizon method, the ADP takes a more comprehensive view of the uncertainty, thereby, 

giving improved performances in all the stochastic models that are considered. 

The focus is then shifted to the more popular category of manufacturing 

equipment, i.e., relatively bigger machines that are very costly to replace. The problem of 

devising an optimal preventive maintenance strategy for a single machine deteriorating 

randomly has been extensively studied (Monahan 1982). It is assumed that the machine 

condition degrades progressively with use in a non-self-announcing manner. This implies 

that the machine condition is not observed directly, but the degradation is reflected in 

increased production of defective items or reduced product quality. Inspection of the 

processed job, therefore, helps monitor the machine condition. But in the presence of 

high inspection costs, job inspection also becomes a part of the decision-making. This 

optimization problem has been successfully solved as a partially observable Markov 

decision process (POMDP), owing to limited observability of the machine state. 
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When the aforementioned machine/resource becomes a part of the manufacturing 

supply chain, it is bound to interact with other resources and possibly operate on multiple 

types of jobs. These possibilities are addressed in Chapter 5, by considering two process 

flow topologies: (i) re-entrant flow and (ii) a combination of re-entrant and serial flow 

topology referred to as hybrid flow. Due to costly inspection, not every processed job is 

tested. Consequently, the untested, potentially defective items move on to the next series 

of operations, thereby getting accumulated in the system, until removed in final product 

testing. The job inspection decision must now be taken to minimize this possibility in an 

economically favorable manner. This quality-control aspect is the single-most interesting 

addition to the optimization problem, together with the fact that, the resource 

management decisions for multiple resources are inter-dependent. The combined 

optimization problems for the two process flow topologies are solved as a (considerably 

larger) POMDP. Recent developments in the area of POMDP solution methods 

contribute greatly to the successful solution of the above problems. It is shown that the 

rigorous method using POMDP formulation has a large potential for improvement over 

heuristic rules.  

Aside from machine maintenance, POMDPs have been successfully applied to a 

variety of stochastic problems with partial information. Their applications range from 

sensor allocation, robotics, network troubleshooting, moving target search etc 

(Cassandra, 1998). For this reason, POMDPs have received significant attention in the 

recent years (Spaan 2005; Thrun 2003; Simmons 2004). Since the exact solution methods 

are limited to very small sized problems, most research efforts have been spent on 

approximate solution methods. Approximate solution methods like point based methods, 

seek to perform Bellman updates on a subset of the state space (called belief space in this 

case). When the actions are continuous or have large number of dimensions (resulting in 

very large action spaces due to combinatorial reasons), the value updates are performed 

on a sampled set of actions. POMDPs with very large action spaces may also be solved 

using policy graph or policy iteration methods, but such methods are prone to local 

optima. In Chapter 6, an algorithm for the solution of POMDPs with high dimensional or 

continuous action spaces is developed. The Bellman updates are performed using a mixed 

integer linear program (MILP). MILP based Bellman updates can handle the continuous 
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or high dimensional actions while preserving the solution quality as opposed to the action 

sampling methods. The MILP based methods also provide better scalability with problem 

size. The concepts are illustrated by using a hypothetical POMDP with continuous 

actions followed by a network flow example. The latter corresponds to the case of 

discrete but high dimensional action space. The network flow problem also serves to 

represent yet another category of resource management problems, where the nodes of the 

network are prone to random contamination. This is a possibility in water, food and 

computer networks. Electrical networks, on the other hand, are prone to random outages. 

The network flow problem is solved using the existing enumeration based methods and 

the new (MILP based) solution algorithm. A comparison of solution times and solution 

quality are presented for both the examples.  

In an alternative formulation, the MILP based Bellman updates are developed for 

POMDP around post-decision belief states. Formulation around post-decision belief 

states removes the dependence of MILP solution time on the size of the observation 

space. This enables the algorithm to be applied to a wider spectrum of POMDPs.  

Chapters 1 and 2 are aimed at familiarizing the reader with the basics of planning 

and scheduling, resource degradation, inspection for diagnosis and quality control and 

existing models and methods. By formulation of problems and development of solution 

algorithms in Chapters 3 through 6, this thesis seeks to contribute an enhanced 

understanding, novel problems and efficient solution methods to the existing body of 

knowledge on (the general area of) resource management and related decision-making in 

various process industries. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Hierarchical decision-making in manufacturing 

In a typical manufacturing environment, a detailed planning process is adopted in 

order to ensure the best utilization of resources and maximize a firm‟s profitability. This 

is done in a hierarchical fashion due to differences in time-scales and the impact of 

decisions constituting the planning process. (Anthony 1965) and later (Miller 2002) 

provide details on the concept behind Hierarchical Production Planning (HPP). The 

decisions are broadly classified into three categories.  

Strategic planning:  

At the strategic manufacturing planning level, the firm must address issues that 

bear a long term impact. Such issues comprise of the total planned production capacity 

levels for the next two, three, or more years; the number of facilities it plans to operate; 

their locations; acquisition of manufacturing and storage capacities and procurement of 

resources etc. Decisions made at the strategic production planning level place constraints 

on the next level of decision making, i.e., tactical planning level.  

Tactical planning:  

At this level, the chief goal of the decision-maker is to obtain and use the 

available resources effectively and efficiently. Typical planning activities include the 

allocation of capacity to various products, planning workforce levels, logistics of 

sourcing and distribution, preventive maintenance scheduling, and total quality 

management. The use of existing infrastructure is maximized while staying within the 

constraints of the firm‟s manufacturing and distribution infrastructure (as determined by 

previous strategic decisions). As with the previous level of decision-making, the planning 

decisions carried out at the tactical level impose constraints upon operational planning 

and scheduling decisions as discussed further. Typical planning horizons are 12 -18 

months.  
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Operational planning:   

The routine decisions related to shop floor control fall under this category. At this 

level, it is ensured that individual processes run efficiently and effectively. Master 

production scheduling, labor scheduling, process improvement, inspection and repair, 

truck load quantities, short term carrier selection etc. are a few examples of operational 

planning decisions. 

At the lowest level of decision-making, i.e., the operational planning and 

scheduling level, most details about the individual processes are included. This leads to a 

high degree of complexity although the decisions have a very short term impact. As we 

move up the hierarchy, the system variables are aggregated. However, the risk associated 

with the decisions and their impact rises as we go from operational to tactical level and 

from tactical to strategic level.  As noted in (Miller 2002) “A true HPP system is a closed 

loop system which employs a “top down” planning approach complemented by “bottom 

up” feedback loops.  Given the emphasis of HPP systems on evaluating capacity levels 

and imposing and/or communicating capacity constraints form higher levels down to 

lower levels, it is imperative that strong feedback loops exist”. This is because at the 

higher levels, possible infeasibilities are ignored or obscured due to aggregation. If the 

information about these infeasibilities is not communicated back to the higher levels, the 

firm may always function sub-optimally and may pay dearly. Together with strong 

feedback loops, a judicious scheme for aggregation of information is needed to construct 

the planning problems at various levels. This aspect often blurs the line between different 

levels of decision-making and results in an interesting inter-play between decisions at 

various levels. Particularly, in systems where there is a notable deterioration associated 

with manufacturing equipment, the classification of decisions into various levels of 

planning may present substantial challenges. Deterioration in manufacturing equipment is 

discussed further. 
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1.2 Resource degradation and related decision-making 

Although resource is a general term, it is used in this work to specifically refer to 

a machine, equipment or tool group that facilitates production.  In general, all 

manufacturing equipment is prone to degradation with time. The features listed below 

determine their impact on decisions related to manufacturing:  

Type of degradation – The wear and tear associated with the usage of resource affects 

its performance. The degradation is generally reflected in falling product yields in flow 

type equipment, increased fraction of defective outcomes in discrete manufacturing 

(termed as process drift), larger number of non-conforming batches in batch processing 

etc. A complete failure or shutdown of the resource may also occur, leading to a halt in 

production. Yet another form of degradation is contamination of the resource to render it 

useless or even harmful for use.  This is seen in network flow problems where the nodes 

of the network that facilitate flow of materials or information, have finite probabilities of 

contamination. Although, the nodes loosely fit the definition of a resource, it represents 

an important class of degradation management problems. In general, the degradation is 

caused by numerous factors including usage, age, type of operation, environmental 

conditions etc.         

Corrective or preventive action – In view of the above mentioned deterioration, a 

preventive maintenance action needs to be taken to ensure equipment health. The 

frequency of the preventive action is largely dependent on the time scales associated with 

the degradation and trade-offs between the cost of maintenance and that of faulty 

products. Corrective action in the form of inspection and repair is required on the faulty 

outcomes. When the equipment breaks completely, it needs to be replaced or repaired. 

The downtime may encourage keeping spare equipment/resources.  The choice of 

preventive and corrective actions is governed by industry, manufacturing process and 

costs involved with maintenance, repair and replacement.   

Time scales – The period of time for which the equipment goes without showing signs of 

degradation is important to devise preventive and corrective actions. The time-scales 

associated with degradation are typically measured as expected time to failure or time 
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until the process yield falls to x% of the best possible yield. If the time-scales are very 

large, then the resource management decisions may be made independent of production 

decisions. However, if the time-scales are comparable with that of production, then 

resource failure or unavailability affects the production scheduling directly. In this case, 

the downtime associated with resource repair or maintenance must be accounted for in 

the production schedule. 

Degradation dynamics – The dynamics associated with the degradation play an 

important role in resource maintenance decisions.  The resource may degrade in a 

deterministic or stochastic manner. The variance associated with uncertain resource 

lifespan may be large. This warrants a more conservative preventive maintenance plan. 

Steep increases in defect fractions call for frequent product testing and resources prone to 

sudden and untimely failures require the presence of spares.   

Upstream and downstream processes – The resource management decisions may not 

be taken independent of the rest of manufacturing supply chain. In general, the resources 

at the beginning of the production sequence need to be monitored more closely. This 

would avoid losses in terms of downtime during a failure and (or) propagation of faulty 

jobs to downstream processes.     

Possibility of detection – Direct inspection of the equipment may be performed as part 

of routine check-up. When this is not possible or sufficient, inferential measurements on 

product attributes are taken to monitor the performance of the equipment. In situations 

where the quality is not reflected in process or control variables, installation of job-

specific inspection stations or sensor networks is required for product testing. When 

equipment inspection or job inspection is costly, an inspection strategy becomes a part of 

the decision-making as well.  

The knowledge of above factors is central to devising an efficient resource 

management plan and to establish whether resource management needs to be done in 

unison with other manufacturing related decisions like production planning and quality 

testing. As noted in above discussion, the resource failure rates may have associated 

uncertainty. This, together with other sources of uncertainty, poses challenges in 
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modeling and solution. The other sources of uncertainty and a brief discussion on 

solution methods are covered in the following section. 

 

1.3 Uncertainty and observability 

At different levels of the decision-making hierarchy, uncertainties present 

themselves in various forms. The presence of uncertainty results in several possible 

outcomes and future system states, often having far-reaching effects. Depending on the 

level and form of the uncertainty, it becomes imperative to factor it into the decision-

making. This is because extreme realizations of uncertainty may result in great loss of 

performance, operational infeasibility or both. Uncertainty in the realm of planning 

problems may be classified as below:  

Parametric uncertainty – When the problem parameters have randomness associated 

with them, the uncertainty is external to the system. The exogenous information about the 

parameters becomes available after the relevant decisions have been made. For example, 

the product demand for a firm‟s products is often uncertain and a buffer stock or safety 

stock is maintained to counter the effect of uncertainty. If the available stock falls short of 

extremely high realizations of demand, the stock-outs lead to loss of potential revenue 

and hamper the firm‟s reputation. Other examples of parametric uncertainty include 

market price for products, raw materials, utilities etc., raw material quality, conversion 

rates,  

Decision Uncertainty – Often the outcome of a decision cannot be known with complete 

certainty because of the uncertainties associated with the process. For example, a decision 

is made to produce x units at a particular machine in a given time frame. However, due to 

random failure, only x-y, y>0 units could be made. In a different scenario, x units are 

decided to be manufactured by assuming an expected process yield of beta. This implies 

that a fraction of produced units will be found non-conforming by appropriate quality 

standards. However, a higher realization of beta results in lower number of conforming 

units. Robot movement, production throughput, corrective or repair actions, order 

quantities, sensor failure are a few more examples of decision uncertainty.   
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State uncertainty - When the elements of the state of the system are not known with 

complete certainty, a probability distribution is maintained over the state. In control 

applications, state uncertainty is generally attributed to measurement noise and an 

estimate of the state is maintained. In planning frameworks, the presence of this type of 

uncertainty is referred to as partial observability. For example, in a retail store, the 

inventory of products in the store is seldom known with certainty. Partial observability of 

the state is also a concern in preventive maintenance planning where the deterioration 

level of equipment is not completely observed. Errors associated with measurement 

sensors also leads to randomness in state estimates.      

There is a fine line between the first two types of uncertainties in that they affect 

the future state in similar manners and the realization of uncertainty becomes available 

after an action is taken, i.e., the parameter values are realized or the effect of action 

becomes known. Therefore, both the parametric and decision uncertainties can be 

accounted for by similar modeling and optimization methods. However, in the case of 

state uncertainty, the realization of system‟s true state may never become available. 

Therefore, using the term uncertainty is a misnomer and it will be referred to as partial 

observability of state for future analysis. Specialized algorithms have been developed to 

solve optimization problems with partial state information.         

   Several techniques exist for solving general stochastic optimization problems:    

 Stochastic dynamic programming (Bellman 1956; Puterman 1994). 

 Mathematical programming methods like stochastic programming (Andrzej and 

Ruszczyński, 2003) and robust optimization.   

 Simulation methods like simulated annealing (Kirkpatrick and Vecchi, 1983), 

genetic algorithms (Schmitt 2001) or Monte Carlo (Fishman 1996) simulation.   

The applicability is largely governed by problem size, problem type (discrete or 

continuous states and actions) and search complexity. Most of the above methods 

optimize the expected value of the objective. Robust optimization considers the worst 
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case uncertainty by using a min-max approach while certain formulations like value at 

risk (var) or conditional value at risk (covar) also account for variance in the objective.    

 

1.4 Outlook 

As described in section 1.2, depending on the extent and type of resource 

degradation, other manufacturing decisions need to be taken in conjunction with the 

resource management decisions. For this purpose, three broad categories of resources are 

considered. The first category consists of small pieces of equipment that are present in 

large quantities on the production floor, and may move from one operation to the other. 

In the course of manufacturing, these resources are amenable to breaking (perishable 

resources), getting consumed (expendable resources) or exiting the system in some other 

way. Examples of such resources includes small fixtures of machines like masks, lenses 

in precision equipment manufacturing, substrates in catalysis, molds in building material 

industry, ink cartridge in printing industry etc. Human resources fall in this category 

when the employee turnover rates are high. This is true of industries like construction, 

military, call centers and consulting. The unique feature that differentiates the above from 

raw materials is that the resources can be employed multiple times before they exit the 

system. Since resources belonging to this category are generally required in relatively 

large quantities and the demand for them may not be well understood, an inventory is 

usually maintained. The demand for resources is determined by the production 

requirement and therefore, the inventory control at the product and resource levels 

becomes coupled. This problem can be viewed as a nested inventory control problem and 

is addressed in Chapter 3. In Chapter 3, mathematical programming models are 

developed for decision-making at planning and scheduling levels in a hierarchical 

fashion. Parametric uncertainty is handled by solving the planning and scheduling 

problem in a moving horizon fashion.  

Depending on the its form, a myopic view of the uncertainty taken by the rolling 

horizon solution approach may not be very effective. For this reason, an approximate 

dynamic programming (ADP) algorithm is implemented to solve the perishable resource 
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inventory control in conjunction with production decisions. The solution from ADP is 

compared with that of the rolling horizon method.  

The second category comprises the large machines which deteriorate gradually so 

that preventive maintenance needs to be performed on the machine/ resource from time to 

time. However, the degradation is prone to uncertainty and is seldom observed directly. 

Inferential measurements in the form of the quality of processed job are often taken to 

access the state of the machine. However, when product inspection is costly, it may not 

be economically favorable to test all the processed jobs and job inspection becomes a part 

of the decision-making. In a manufacturing system with multiple operations, the untested 

jobs move downstream for further processing. In the event that an untested job does not 

satisfy the quality requirements, this would result in propagation of defects, thereby 

raising quality control issues. This feature of defect propagation is addressed in Chapter 5 

by means of two process flow topologies: (i) a re-entrant flow system and (ii) a hybrid 

flow system, in a discrete/batch manufacturing system. Due to lack of full information 

about the system at all times, e.g., the machine state, the problem is formulated and 

solved as a partially observed Markov decision process (POMDP). A comparison with 

alternative solution methods and an analysis of the solution properties is presented.  

Over the last decade, considerable research efforts have been spent in the area of 

developing efficient algorithms to solve POMDPs. Since exact solution methods are 

limited to very small problem sizes, the focus is mainly on approximate solution 

methods. However, literature is relatively sparse on POMDPs with very large or 

continuous state, action and observation spaces. To this end, a mixed integer linear 

programming (MILP) based solution algorithm is developed in Chapter 6. In an 

alternative formulation, the POMDP solution is structured around the post-decision state 

variable to limit the effects of a large observation space. The methodology is 

implemented on a network flow problem, which comprises the third category of 

resources prone to degradation.  

A network comprises of nodes and edges that facilitate the flow of material like 

water, food, electricity etc. or information like computer network or supply chain 

network etc. Occasionally, the nodes of the network get contaminated and the 
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contamination is amenable to spread to the downstream node. It is therefore imperative to 

track down and repair the contaminated/corrupted node and divert any flows so as not to 

pass through it. This problem is also formulated and solved as a POMDP using the MILP 

based algorithm. The solution quality and convergence times are compared with those of 

the traditional method.  
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CHAPTER 2 

OVERVIEW OF DEGRADATION MODELING AND DECISION-

MAKING UNDER UNCERTAINTY 

 

2.1   Overview of degradation modeling, inspection strategies and solution 

frameworks 

Degradation of manufacturing equipment/resources can manifest itself in many 

different ways. For example, with age or deterioration, the equipment might increasingly 

produce lower quality products, may cease to work, may corrode downstream equipment 

etc. A particular type of degradation of interest is when the gradual degradation of 

production equipment is reflected in increased production of off-specification products. 

In this case, the detection of quality attributes of the products requires job inspection by 

means of measurement sensors. Literature is replete with studies on inspection allocation 

in manufacturing environments. Along with degradation management, much of the work 

in the past has gone into detecting the degradation by means of correct inspection 

strategy. Serial manufacturing systems have been most popular means of illustration of 

the concepts. A serial manufacturing line has sequential operations and the product flow 

is linear. The sensor allocation is performed with one of the two major objectives; 

namely, inspection oriented quality assurance policies that are aimed at product 

improvement by rework/ repair and the diagnosis- oriented sensor distribution strategies 

which are focused on diagnosing the deteriorating process/equipment. The two broad 

problem classes are discussed in further details.  

2.1.1 Inspection-oriented quality assurance strategies 

The inspection-oriented quality assurance strategies may be viewed as a 

corrective measure to ensure that the faulty products do not reach the end customers. 

These account for the trade-offs between the costs associated with inspection stations and 

the returns obtained by the improved quality of processed jobs. Some of the early works 

in this area are reported in (Raz 1986). Most of the authors that were cited, consider serial 
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manufacturing lines for inspection allocation due to ease of analysis. The literature on 

inspection allocation problems, since then, is comprehensively reviewed in  (Mandroli et 

al, 2006). A typical serial production line has single or multiple types of jobs, all with a 

predetermined sequence of operations. The allocation problem entails determining the 

optimal locations of inspection stations when there is limited inspection capacity. 

Inspection capability may also be limited by cost being substantial if it was to occur after 

every operation. The defect level found upon inspection can be a binary or continuous 

measure, and different decisions like rework repair, replace or scrap are taken depending 

on the production stage and extent of defect. The intensity of inspection, e.g. selective 

inspection and repeated inspection is also a decision to be considered. The inspection 

may be prone to imperfections and may have type I or type II errors as explained below:  

(i) the wrong rejection of a conforming unit (type I error)  

(ii) the erroneous acceptance of a non-conforming unit (type II error) 

 

The jobs may have multiple defect types as caused by different operations. The 

inspection stations may or may not be able to detect all defect types caused in the past. In 

the absence of the ability to detect all types of defects, the inspection is termed 

specialized. A sub-set of above mentioned issues have been considered in literature, 

which is briefly reported here.  

Earliest work in this area was conducted by (Lindsay and Bishop, 1964) who 

formulated a dynamic programming problem for basic issues related with inspection 

allocation. They also proved that an extreme point solution (0% or 100 %) is optimal, if it 

is assumed that all rejected items were scrapped, unless we have a constraint on final 

product quality level. The extreme point solution boils down to inspecting all jobs 

whenever an inspection station exists after an operation. A screening inspection program 

for a multistage process can be established by considering three related decisions. These 

include the location of inspection station, the level of inspection at each inspection point 

and types of inspection at any stage for specialized inspection stations. This concept of 

specialized inspection problem was further extended by (Rebello et al, 1995) who 

presented some exact and heuristic solution methods. (Lee and Unnikrishnan, 1998) 
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extended the above mentioned decision making to multiple part types which have 

different sequences of operation. They also relaxed the perfect inspection assumptions 

made by the above mentioned works and included inspection errors. Shiau (2003) 

assigned dynamic tolerances for inspection, by assuming a random defect generation 

model, and proposed heuristics for solution of the resulting large size problem. Kakade et 

al, (2004) proposed a simulated annealing approach to capture economic tradeoffs 

between product yield and inspection accuracy. Gurnani et al, (1996) integrated the 

inspection allocation problem with that of capacity planning and inventory levels. 

Another aspect of inspection allocation is dedicated to equipment diagnosis and process 

improvement. This aspect is discussed in the following section.  

2.1.2   Diagnosis-oriented sensor distribution strategies – Process improvement 

To facilitate process improvement or maintenance scheduling, sensor distribution 

strategies must have a deeper insight into the measurements of faults and defects. The 

process variables and quality variables that provide the information about machine health 

are the target of this study. The decisions involved in this type of study are  

(i) The workstations where to place the sensors 

(ii) The physical variable to be measured at each station 

(iii) Equipment maintenance decisions – service or replace the machine 

 

Mandroli et al, (2006) reviewed existing literature on quality-fault modeling and 

effectiveness of sensor systems. For optimal allocation in this case, a measure of 

effectiveness is maximized, the overall cost is minimized or yield is maximized with 

constraints on sensor allocation. Optimization approaches like Powell‟s direct search 

(Wang and Nagarkar, 1999), sequential quadratic programming or gradient-based search 

(Khan et al, 1999), exchange algorithms (Liu et al, 2005), have been used in the existing 

literature. Nurani el al, (1994) developed an optimal sampling plan specifically in semi-

conductor fab using a statistical process control approach.  

The sensor allocation is followed by machine/ process improvement. To this end, 

Rabinowitz and Emmons, (1997) proposed a setting where defects provide full 
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information about health of the machine and machine is repaired whenever it is detected 

to be malfunctioning. Expanding the work, Emmons and Rabinowitz, (2003), the authors 

proposed heuristics methods for inspection task scheduling in general deteriorating 

systems. Bowling et al, (2004) prescribed optimum process targets using a Markovian 

approach, while Yacout and Gautreau, (2000) included partial observability in their 

analysis. Yao et al, (2004); Marcus et al, (2004) considered the impact of production 

constraints on preventive maintenance (PM) scheduling in manufacturing systems. They 

developed a hierarchical method to obtain a time window within which PM must be 

scheduled. Cassady and Kutanoglu, (2005) integrated PM scheduling and production 

scheduling in an MILP framework.  

2.1.3     Existing sensor technology and defect and variance propagation models 

To be able to mathematically analyze the system, we need to model the defect 

generation by various operating stations/ machines. The model should be able to capture 

the propagation of defect in multi-stage setting and sources of variations at a particular 

station. Also, for process improvement and sensor distribution, appropriate process 

variables must be included in the model. Cochran and Erol, (2001) proposed analytical 

methods to model process flows, and performance measures like outgoing quality level 

and throughput rate. Zantek et al, (2002) established modeling techniques for correlated 

stages and estimated the parameter values by least squares method. Chan and Spedding, 

(2001) captured the propagation of defectives by design of experiments (DoE), response 

surface plot and a neural network model. State-space models have been frequently used 

to characterize the variance (Ding et al, 2000; Huang and Shi, 2004). Huang and Shi, 

(2004) used a state-space model to capture the propagation of variance in serial-parallel 

multistage systems. To detect the source of variance in processes, Lee and Apley, (2004) 

used linear structure model to generically represent the variation patterns. Batson (2004) 

described a simple probabilistic model that describes the serial effects on the processed 

parts. The cost of less-than perfect quality was approximated by a quadratic loss function 

called Taguchi loss function.  

To determine target applications for our methods, we reviewed the status of 

sensor technology in a discrete part manufacturing setting, for example, semi-conductor 
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manufacturing. Grochowski et al, (1997) summarized the current status and trends in 

integrated circuit testing. Kumar et al, (2006) reviewed the various yield modeling 

techniques specifically in semiconductor manufacturing. Xiong et al, (2002) successfully 

applied the modeling techniques for variation prediction in automotive assembling. 

2.1.4   General integrated control and optimization framework 

Given all these different aspects of decision making for inspection allocation and 

process improvement, there is a need to integrate them into a single decision making 

framework for optimal decisions. One example of such a framework is the fab-wide 

control framework developed for semiconductor manufacturing processes (Qin et al, 

2006). The authors used a hierarchical framework for integrated control. In the fab-wide 

framework that they proposed, at the bottom of the hierarchy lie the run-to-run controllers 

which optimize the local processing steps. These run-to-run controllers are controlled by 

an „island of control‟ which in turn is supervised by an overall fab-wide controller 

satisfying the economic goals. A similar integrated control framework was suggested by 

Tosukhowong (2006) for continuous flow process plants. Similar methodology was 

adopted by Vargas-Villamil et al, (2003), where use of Model Predictive Control (MPC) 

is made at the intermediate layer. Sethi and Zhang, (1994) discuss hierarchical decision 

making in stochastic manufacturing systems which brings together optimal control of 

parallel machine and dynamic flow shops. Very few attempts have been made at using 

frameworks that are different from hierarchical control frameworks. One such work 

(Heragu et al, 2002) proposes an intelligent agent based framework which is a hybrid of 

the hierarchical and heterarchical frameworks. They used the concept of holonic 

structures that accomplish individual as well as system wide objectives. Inman et al, 

(2003) considered the intersection of quality and production system design and suggested 

new research issues regarding trade-offs between productivity, flexibility and quality in 

manufacturing environment. 

2.1.5    Techniques for solution  

Since most of the above problems are multistage, Dynamic Programming (DP) 

has been widely used as a solution approach for these problems (Lindsay and Bishop, 
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1964; Gurnani et al, 1996). Bertsekas (1995); Sutton and Barto, (1998) contain 

comprehensive discussion on exact and approximate solution methods of the DP 

problem. Many of the above problems can be formulated as Markov Decision Processes 

(MDPs) in which transition between states follows Markov property. Quantitatively, this 

is a „memory-less‟ property where system state and stage-wise reward only depend on the 

one step prior state and action. Occasionally, the system state information is 

missing/hidden causing it to be a Partially Observable Markov Decision Process 

(POMDP). Other than DP, mixed-integer programming (MIP) and non-linear 

programming (NLP) formulations have been successfully used in inspection allocation 

problems (Rebello et al, 1995). Several heuristic methods like simulated annealing, 

genetic algorithms, random search methods and simulation are used when problem size is 

big enough to inhibit usage of exact solution methods. Some of the properties that 

heuristics (rules of thumb) must capture are as summarized in Lee and Unnikrishnan, 

(1998): 

 Inspect before costly operations so that these operations will not be performed on 

non-conforming items 

 Inspect before items that cover up/obscure non-conformities 

 Inspect before operations where faulty items may jam or break the machines    

 

Since MDP and POMDP have proven to be successful frameworks for solving 

problems related to inspection, maintenance and production scheduling, the two 

frameworks are reviewed in greater detail.  

 

2.2   Markov decision processes 

Markov Decision Processes (MDPs) provide a framework for modeling real world 

processes which have a stage-wise structure. The stage can denote a time epoch or other 

quantities like location, processing step etc. At any stage, the system is recognized as 

being in a state (designated as s) which is a set of attributes that aid decision-making. The 

set of all possible states is called state space (designated as S). Starting in state s S, there 



 16 

is a set of actions from which the decision-maker must choose. The set of all possible 

actions is called action space (A) and an element of the action space is denoted by a. 

When action a is taken in state s, and the system transitions to the next stage, it ends up in 

a unique next state s′ S in the absence of any uncertainty. However for stochastic 

problems, there is a set of possible next states for each state-action pair. The probability 

of transition to a particular next state, in this case, is governed by a state transition 

probability function T. In the process, reward r(s,a,s′) is received, which is determined by 

the reward function R. The dependence of r on s′ is often suppressed by taking a 

weighted average over all possible states at the next stage. At each stage, actions are 

taken so that the sum of stage-wise rewards is maximized. In the presence of uncertainty, 

the expected sum of rewards is maximized. When infinite stages are present, i.e., 

extremely large time horizon, the future rewards are often discounted using a discount 

factor γ. When the number of stages is infinite, the problem is called an infinite horizon 

MDP as opposed to finite horizon MDP for finite number of stages. In most applications, 

a stage symbolizes a time epoch. Therefore, we use the term time epoch or time step 

synonymously with „stage‟ for future reference.    

0
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More formally, a MDP corresponds to a tuple (S, A, T, R, γ) where S is a set of 

states, A is a set of actions, T : S×A×S→[0,1] is a set of transition probabilities that 

describe the dynamic behavior of the modeled environment, R: S×A×S→ R denotes a 

reward model that determines the stage-wise reward when action a is taken in state s 

leading to next state s′ and γ→[0,1] is the discount factor used to discount future rewards. 

A γ value close to 0, places very little weight on future rewards, while γ close to 1 results 

in very little discounting.    

The notational convention for MDPs is adopted from Hauskretch (2000) with 

small modification. For ease of illustration symbol p(.) is used to denote probability of a 

quantity and r(.) is used to denote reward (generally as a function of state and action). pij 

signifying transition from state s=i to s′=j is used to denote transition probabilities 
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associated with the Markov chain. Ta is used to denote the probability transition matrix 

corresponding to action a. Symbols s, s′ and a are used to denote current state, next state 

and action and belong to sets S,S and A respectively.    

One of the fundamental properties of the MDPs is that the transition and reward 

functions associated with the stage-wise transition of state are independent of the past 

states and actions. Referred to as Markov property, this memory-less feature enables the 

decomposition of the overall optimization problem into separate stage-wise problems. 

This is accomplished by using a recursive relationship between the value of being in a 

state at any stage. 

The goal is to maximize the (often discounted) sum of rewards over a time 

horizon which can be either finite or infinite (2.1), where t denotes the time epoch, st is 

the state at time t and π: S→A, is the policy that dictates the choice of action at time t.  

This is achieved by solving the Bellman equation (Bellman 1956) for finite or infinite 

horizon problems (2.2). It is well-known (Puterman 1994) that for infinite horizon 

problems, a stationary optimal policy of the form in (2.3) exists, where V
*
(s) is the 

average discounted infinite horizon reward obtained when the optimal policy is followed 

starting from s until infinity (Puterman 1994). This implies that the state to action 

mapping, in the form of optimal policy is independent of the time epoch. The existence of 

stationary optimal policy is conditioned on the properties of model elements. One of the 

sufficient conditions is that there be a finite action space As corresponding to each state 

s S, maximum attainable stage-wise reward is finite and discount factor γ [0,1) . For all 

applications in this work, the set of conditions noted here are satisfied. The alternative 

sets of sufficient conditions for existence of a stationary optimal policy for discounted 

infinite horizon MDPs can be found in Puterman (1994). In (2.3), a
*
(s) is the optimal 

action to be taken when the system is in state s, independent of time t. V
*
(s) is called the 

optimal value function and is obtained as the solution to Bellman equations (2.2) for all s.         
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It must be noted that the set of Bellman equations (2.2) (also called optimality 

equations), are difficult to solve analytically because of the presence of max operator. For 

the solution of MDPs in this work, one of the popular solution methods called value 

iteration (Puterman 1994) is chosen. The algorithm is shown in Figure 2.1. Starting with 

an arbitrary value function V0(s) for each state s S, the value function is iteratively 

improved using (2.4) until ε-convergence is reached. Subscript n denotes the iteration 

counter. The operator for one iteration can be denoted as H such that Vn+1 =HVn.. The 

sequence of estimates of value function V(s) for s S converges to fixed point solution. 

This is a consequence of Banach‟s theorem for contraction mappings (Puterman 1994). 

Since H is a proven contraction map, the convergence properties hold. 

 

 

 

 

Step 0. Set V0=0 for all s S 

fix a tolerance parameter ε>0  

          set n=1  

Step 1. For each s S compute:  

           

Ss

n
Aa

n ssVasspasrsV
'

1 )}'(),|'(),({max)(                               (2.4) 
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n
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Step 2.  If  || 1 nn VV       

                     set a
ε
= an+1 , V

ε
= Vn+1     and Stop  

             else, set n=n+1  go to Step 1 

 

 

Figure 2.1: Value iteration algorithm for solution of MDP 
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Due to ease of implementation, value iteration is perhaps the most widely used 

algorithm in dynamic programming. Certain other methods like policy iteration 

(Bertsekas 1995), a hybrid between value iteration and policy iteration (Powell 2007) and 

linear programming method for dynamic programs (De Farias and Roy 2003) are also 

used depending on the problem structure. The complexity of the algorithm shown in 

Figure 2.1 grows as a function of o(|S|
2
|A|). This is attributed to the three curses of 

dimensionality noted below:  

1. Equation (2.4) needs to be solved for all s belong to S, so the solution time is 

directly proportional to |S| 

2. The complexity of max operation depends on the size of the action space |A| 

3. The calculation of expectation within the max operator depends on the number of 

possible next states, i.e., |S|. 

 

In the presence of large state and (or) action spaces, the value iteration algorithm 

cannot be implemented in its exact form. Several approximation methods have been 

developed to circumvent this difficulty. Some of them being, approximate dynamic 

programming methods using value function approximations (Powell 2007), Q-learning, 

temporal difference learning (Barto et al, 1995; Sutton and Barto, 1998), linear 

programming methods using basis functions (De Farias and Roy, 2003) and dynamic 

programming methods using post decisions state (Powell 2007). Details of particular 

approximate solution methods used in this work are deferred until the specific 

illustrations/applications for better understanding. All the above methods assume that the 

system state is completely known or observed at all times. When this assumption does 

not hold, the equivalent framework is called a partially observed Markov decision 

process (POMDP) as discussed in the next section. 

 

 2.3  Partially observed Markov decision processes ( POMDP) 

POMDP is a discrete-time stochastic control process when the states of the 

environment are partially observed. Similar to the MDP, at any time, the system is in one 

of the states s in the state space S. By taking an action a, the system transitions to the next 

state s′ S according to known system dynamics p(s′|s,a) and accrues a reward r(s,a). The 
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next state s′ is not completely observed but an observation o may be made which is 

probabilistically related to the state s′ and action a by p(o|s′,a).         

More formally, it corresponds to a tuple (S, A, Θ, T, O, R)  where S,A,T,R and γ 

represent the same entities as described in section 2.2 on MDPs; Θ is a set of 

observations, and O : S×A× Θ→[0,1] is a set of observation probabilities that describe the 

relationship among observations, states and actions. The notational convention for 

POMDPs is also adopted from (Hauskretch 2000) for consistency. Symbol o Θ is used 

to denote an element of the observation space Θ. 

When the system state s is not perfectly observed, a history of all actions and 

observations (since t=0) need to be maintained. Due to the Markov property, this 

information is contained in the probability distribution over all states at any time. The 

probability distribution is referred to as belief state b(s) for s S. The belief states are 

continuous since they contain the probability values, which are continuous numbers 

between 0 and 1. Partial observability, thus converts the original problem into a fully 

observable MDP (FOMDP) with continuous states. Since all the elements of a belief state 

must add up to 1, the state dimension of FOMDP is one less than the size of the original 

state space.   

Similar to MDP, an infinite horizon POMDP has an optimal stationary policy     

π
*
 : Δ→ A which maps the belief states to optimal actions (Smallwood and Sondik, 

1973). Δ :R
|S|-1

(0,1) is the belief simplex containing all possible belief states. A policy π 

can be characterized by a value function V
π
 which is defined as the expected future 

discounted reward. V
π
(b) is accrued when the system is initially in state b and policy π is 

followed (2.6), where 10  is the discount rate that discounts the future rewards.        
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The value function corresponding to the optimal policy maximizes V(b) and satisfies the 

Bellman equation (2.7) for all b.  
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where, o

ab  is the belief state obtained when action a is taken in state b and observation o 

is made. The expression for o

ab  is shown in (2.8).  
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Similar to the value iteration for MDPs, the value update step for a belief point b is 

shown in (2.9). 
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However, exact value iteration may not be performed due to the presence of 

continuous states and consequently, infinite number of belief states. To alleviate this 

problem, researchers have looked into ways to exploit the fact that the optimal value 

function corresponding to POMDPs has a parametric form. For finite horizon problems, 

the value function is piece-wise linear and convex (PWLC) (Smallwood and Sondik, 

1973) and for discounted infinite horizon POMDPs, it can be approximated well with a 

PWLC function (Sondik 1978). 

  

The POMDP solution methods can be broadly classified into the following 

categories     (Hauskretch 2000; Spaan and Vlassis, 2005):  

1. Exact solution methods:  

Exact methods of solution of POMDPs were developed in 1970s and are still 

being improved. Notable among these are enumeration (of all possible linear 

functions) and pruning (Sondik 1978; Monahan 1982; Cassandra et al, 1997; 

Zhang and Lee, 1998; Zhang and Liu, 1997). Sondik‟s one and two-pass 

algorithms (Sondik 1978) and the Witness algorithm (Kaelbling et al, 1999; Littman 

et al, 1995; Cassandra 1998).  

However, the exact solution methods are limited to very small size problems. 

(Papadimitriou and Tsitsiklis,1987) demonstrate that solving a POMDP problem 

is an intrinsically hard task. Finding the optimal solution for the finite-horizon 
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problem is PSPACE-hard and finding the optimal solution for the discounted 

infinite horizon criterion is even harder. The corresponding decision problem has 

been shown to be undecidable (Madani et al, 1999), and thus the optimal solution 

may not be computable. 

 

2. Heuristic methods for value function approximation:  

Several methods have been proposed for approximation of the value function 

corresponding to the POMDP, e.g., approximation using the MDP value function 

(Astrom 1965; Lovejoy 1993), approximation using MDP Q-function (Littman et 

al, 1995) the fast informed bound Method (Hauskretch 2000), grid based 

approximations using interpolation by convex rules or curve fitting. 

   

3. Finite state controllers or policy graph methods (Kaelbling et al., 1999; Littman 

1996; Cassandra 1998) 

 

4. Point based methods.  

 

Over the years, many methods have been developed that make use of the PWLC 

structure of the value function to solve the POMDPs. Since, the exact solution methods 

are limited to problems of very small sizes, approximate point based solution methods 

like PERSEUS (Spaan and Vlassis, 2005), HSVI (Smith and Simmons, 2004), BPVI 

(Pineau et al, 2003) etc. have been studied recently, which expand the scope of POMDPs 

to problems of much larger sizes. PERSEUS is one of these methods, which uses the 

concept of asynchronous dynamic programming and randomly updates only a subset of 

belief states in one value iteration step. In this work, value updates in spirit similar to 

PERSEUS are used. The algorithm is described in further detail below.  

2.3.1  PERSEUS – an approximate solution method (Spaan and Vlassis, 2005) 

Given the PWLC structure of the value function, the value function at the n
th

 

iteration (Vn) is parameterized by a finite set of gradient vectors i

n , i= 1, 2, .., |Vn| (2.10). 

The gradient vector that maximizes the value at a belief state b (also referred to as a 
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belief point or just point) in the infinite belief space is represented by 
)(b

n in (2.11). 

Superscript i indicates the i
th
 gradient vector in the set and superscript (b) indicates the 

vector that maximizes Vn(b) for a particular b. During an exact value iteration step then, 

the value (Vn+1(b)) and the gradient (
)(

1

b

n ) corresponding to any point can be updated 

using the Bellman backup operator as shown in (2.12) through (2.14). 
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In PERSEUS, a subset B of belief points is obtained by taking random actions. 

This belief set is fixed and chosen as the new belief space for value function updates. Due 

to parameterization of the value function (2.10), an updated gradient vector for a belief 

point may improve the value of many other points in the belief set. This leads to the 

concept of approximate PERSEUS backups as shown in the algorithm below. Due to this 

approximate update, in each value backup stage, the value of all points in the belief set 

can be improved by updating the value and gradient of only a subset of points. The 

resulting value function estimate will follow the condition shown in (2.15) where HVn is 

the estimate, if the entire belief space were updated.   
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Perseus backup stage: Vn+1 = HperseusVn 

1. Set Vn+1 = ø. Initialize  to B 

2. Sample a belief point b uniformly at random from B and compute α = backup(b) 

3. If b.α ≥Vn(b) then add α to Vn+1, otherwise add 
i

nb
i

i
n

.maxarg'
}{

 to Vn+1.  

4. Compute  = {b B: Vn+1(b) < Vn(b)}. 

5. If  = ø then stop, else go to 2. 

 

 

PERSEUS is an elegant and fast method for solution of POMDPs with proven 

convergence properties. For convergence, it is required that the initial value function is 

always under-estimated everywhere. However, there are no performance guarantees with 

respect to the optimal value function. This is because the method considers a randomly 

selected belief set on which value iteration updates are carried out. This is done under the 

assumption that the parameterization using the gradient vectors would generalize well to 

the entire belief space. However, there is no indication of how good that generalization 

will be, even after the convergence criterion is met. Therefore, re-sampling techniques 

are used to ensure that the value function generalizes well to different parts of the belief 

space.   

 

With the basic understanding of related literature on formulation and solution of 

manufacturing related problems in the face of resource degradation, a planning and 

scheduling problem with non-stationary resources is presented in the following two 

chapters.
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CHAPTER 3 

PLANNING AND SCHEDULING WITH PERISHABLE NON-

STATIONARY RESOURCES 

 

3.1. Introduction 

Decision-making in manufacturing occurs at multiple levels ranging from high 

level planning decisions to low level shop-floor/ scheduling decisions. In the presence of 

different time scales, the decisions are taken in a hierarchical fashion to overcome the 

intractability of a combined large problem. Nevertheless, the controls/ decisions at 

different levels of decision-making affect one another.  

This chapter presents a new class of planning and scheduling problems: the 

perishable resource problem where the upward flow of information (from the scheduling 

level to the planning level) is more significant as compared to traditional formulation. 

The term „perishable resource‟ stands for resources (machines or equipment) that can 

break frequently, and whose rate of breaking is a function of their use. When large 

numbers of each type of resource are present, an inventory of resources needs to be 

managed by suitable reorder and allocation policies. However, the traditional methods of 

inventory control may not be applied directly because the demand for new resources is 

governed by the resource allocation and production decisions.  

Such systems are found, for example, in the building materials, semiconductor 

equipment and printing industries. The concepts developed may also be applied to a 

general resource management problem where resources exit the system at time scales 

comparable to that of production. A good example is workforce hiring, training and 

staffing decisions in an industry with high employee turnover rates. Construction, 

military, call center and consulting are a few examples of industries with high employee 

turnover. We have chosen the production of culture stone/ stone veneer
 
for illustration 

purposes. The resources considered in this study have the following attributes: 
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 Quantity – there are multiple resources simultaneously being used in the system at 

a given time.  

 Reusability – the resources can be used multiple times before they get consumed, 

break or exit the system.  

 Flexibility – one resource is dedicated to one job for a given production period. 

However, the resources can be assigned to multiple types of jobs by incurring 

transition expense in terms of cost, time or both.  

 Mortality – the time scales associated with the consumption/breaking of the 

resources are comparable with that of production.  

 

Due to the above mentioned characteristics, a perishable resource combines 

features of a conventional piece of equipment (reusability, flexibility) and those of raw 

materials (quantity, mortality). However, unlike raw material planning, the consumption 

equation of the perishable resource as a function of production is complicated because of 

the reusability aspect. Also, the time scales of breaking being comparable with that of 

production, the inventory control problems at the product and resource levels need to be 

addressed together.   

Consequently, in conjunction with the resource management decisions, 

production planning and scheduling decisions need to be made. In such a scenario, the 

typical objectives for the decision-maker, in the order of importance, are:   

 Keep up with the uncertain demand for product  (production planning) 

 Have an optimal resource re-order policy in the face of uncertain resource life, to 

satisfy the production schedule (resource-reorder) 

 Minimize the breakage rate of the resource by optimal allocation of resource 

(optimal resource allocation) 

 

These objectives lead to a bi-layer problem, as shown in Figure 3.1, with resource 

reorder and production planning as the high level decisions in monthly buckets while the 

resource allocation as the low level decision in daily buckets. Inventory is maintained at 

two levels in the supply chain, namely the inventory of products and that of resources. At 
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the planning level, the target inventory of products and resources at the end of each 

planning cycle are prescribed, while at the scheduling level, a detailed production 

schedule is generated by allocating the resources to required jobs. Since the resources 

have finite lives, resource life distribution contains information about how many 

resources are going to (or likely to) break in the next planning cycle. This information is 

communicated to the planning level at the beginning of each planning cycle. 
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Figure 3.1: Flow diagram for the bi-layer inventory control problem 

 

 

It must be noted that uncertainty in parameter values can be explicitly accounted 

for by using stochastic optimization methods like dynamic programming or stochastic 

programming. However, these methods soon become intractable with increased problem 

size. A discussion on stochastic treatment of the perishable resource problem is deferred 

until the next chapter. For formulation purposes, related literature on perishable inventory 
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problem (Haijema et al, 2004), flexible resource allocation (Harrison and Meighem, 

1999) and general resource allocation problems (Powell 2007) was reviewed.  

Perishable resource problem is distinguished from perishable inventory problem 

or a general resource allocation problem (Powell 2007) by at least two complicating 

features: (i) the demand for resources is determined by production decisions; therefore 

uncertainty is governed by decisions, (ii) there is a strong correlation between the 

inventories of products and resources, which need to be controlled simultaneously. For 

solution methods, the existing theory on inventory control (Hopp and Spearman, 1996) 

and hierarchical treatment of planning and scheduling problem (Miller 2002) was studied.  

 

This chapter is organized as follows. For ease of understanding the formulation 

and notation, the stone veneer example is presented in the next section. However, the 

concepts and notation are fairly general for systems involving perishable resources. The 

solution methods for scheduling and planning levels are discussed in sections 3.3, 3.4 and 

3.5. Results and discussion are presented in section 3.6.   

 

3.2. Problem description through stone veneer supply chain 

Stone veneer is an artificial stone used in building facades, gardens, etc. for 

decorative purposes. It is made by pouring a concrete mixture into molds and letting it 

cure. These molds facilitate the production of stones of various shapes and colors. The 

molds of a particular shape are painted in different colors to make a variety of nP 

different color grades. A mold can only be used once a day, and the facility has limited 

capacity (C) in terms of number of molds processed per day. The processing of one mold 

is referred to as one „run‟. There are multiple molds in the facility at a given time and 

these molds are the resources that are prone to breaking. Therefore, an inventory of molds 

needs to be maintained, to satisfy the production needs. In the presence of product 

demand uncertainty, stones of various color grades are also kept in store. Finally, the 

transition of mold from one color grade to another may lead to further degradation and 

eventually cause the mold to break more quickly. The transitions of molds from one color 

grade to the other are uni-directional. For example, only transitions from molds of light 
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color grades to dark are allowed. Therefore, the more the fraction of dark molds in the 

system, the more inflexible it is in terms of color grade allocation of molds.  

 

        In summary, inventory is held at two points in the system (as in Figure 3.1) and 

both affect one another. When the molds of a certain color grade fall short of the demand, 

the decision-maker may either perform a color grade transition of existing molds at the 

expense of flexibility of allocation, or procure new molds at added cost and increased 

mold inventory. This trade-off is a unique aspect of this study, coupled with the need to 

keep up with product demand. The modeling details on resource age and product demand 

are presented in the rest of this section along with the objectives and decisions. 

 

3.2.1 Modeling the resource age 

The resource degrades due to general usage and due to transitions from one color 

grade to the other. The mold life is modeled as the number of runs it has facilitated. The 

loss in transition can be represented as the number of lost runs per transition. This is 

captured in the following matrix, where DM stands for degradation matrix and lr for lost 

runs. Assuming all color grades of stone cause the same wear and tear on the mold, the 

diagonal elements are 1 signifying no transition. A transition from grade 1 to 2 would 

cause lr12 >1 number of lost runs.  

 

 

 

 

 

 

 

For modeling purposes, it is assumed that when a new mold enters the system, it has a 

finite life ζT associated with it. This implies that the mold would deliver ζT runs before 

breaking. ζT can be constant, deterministic or drawn from a distribution leading to 

stochastic resource ageing in the latter case. 
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3.2.2. Demand modeling 

 Demands for different types of products are often mutually or temporally 

correlated. While the mutual correlation is neglected in this study, the temporal 

correlation is addressed by considering the following two cases:  

(i) Cyclical demand – In this situation, demand for products follows a repeating trend 

as shown in Figure 3.2(a). If one demand scenario represents the set of demands 

of nP products at a given time, the scenario repeats every r time periods. E.g., if 

we have a single product (nP =1) and r=5, then a cyclical demand pattern can be 

represented as in Figure 3.2(b), where the circles show the demand for product 

and the arrows show the transition from one scenario to the other over one time 

period. In section 3.4.1, this concept is extended to include random transitions 

from one scenario to the other. The model is commonly known as a Markov 

chain.  

 

 

 

 

 
(a) 

 

 
(b) 

 

Figure 3.2: Demand patterns (a) cyclical demand pattern. (b) Cyclical demand pattern 

over a 30 unit horizon 
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(ii) Seasonal demand – In this case, the demand for products is low, medium or high 

depending on the time of the year. The demand trend is illustrated by an example 

with nP =1 in Figure 3.3. Again, the stochastic elements are introduced in section 

3.4.  

 

 

 

 

 
 

Figure 3.3: A seasonal demand scenario 

 

 

 

 

3.2.3 Resource replenishment lead time and reorder limit 

It is assumed that there is a lead time associated with the delivery of new 

resources. This implies that new resources are ordered during the current time period, 

they will arrive after l time periods, where l is the replenishment lead time. The lead time 

is treated as a deterministic parameter in all subsequent analyses. Additionally, there is an 

upper limit on reorder quantities of the molds. The restriction is applied to keep the 

reorder quantities from fluctuating significantly.  

 

The plant capacity is assumed to be 20 runs per day for all subsequent analysis. 

As shown in Figure 3.4, the scheduling time period consists of one day and the 

scheduling time horizon h is 10 days. Alternatively, planning time period is consists of 10 

days and planning is done over a horizon H of 30 time periods. Due to difference in time 

scales, the decision-making is divided between the levels as outlined in section 3.1. At 

the planning level, the optimal reorder quantities of the resource and the desired ending 
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inventory of products and resources at the end of each time period are determined. These 

values are then communicated to the scheduling level to generate optimal production 

schedule while also allocating the resources optimally. The details of formulation are 

presented in the next section. To gain an insight into the trade-offs involved, the 

deterministic problem is considered first.  
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Figure 3.4: Time scales associated with the planning and scheduling problems considered 

in this work. 

 

 

 

 

3.3. Deterministic problem –LP formulation 

3.3.1 Deterministic demand and resource life  

When the demand for products and number of runs that a resource delivers, have 

no associated uncertainty, the problem can be formulated as a linear program (LP) at the 

planning level. The planning LP generates optimal production and resource inventory at 

the end of each planning period, while satisfying production capacity constraints. Due to 

absence of uncertainty, the scheduling level can completely satisfy the inventory targets 

prescribed by the solution of planning LP. It is assumed that new orders for resources can 

be placed only at the beginning of each planning period and product demand is satisfied 

only at the end of planning periods.  The detailed formulation is presented below.  
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Planning LP – model M1 

The objective at the planning level is to maximize profit from product sales over 

the entire planning horizon. Production and resource reorder costs are accounted for, and 

constraints related to plant capacity and resource availability are applied. Holding costs 

for excess inventory of products and resources are also incurred. It should be noted that 

excess inventory of products and resources is needed even when the demand is 

deterministic but fluctuates significantly. In order to stabilize production and/or avoid 

capacity issues, inventory is built up at times of lower demand in anticipation of high 

periods in future. Finally, so as not to drain the inventory at the end of planning horizon, 

ending inventory for products and resources is set to be equal to the inventory values at 

the beginning of the horizon. The objective is achieved by making optimal decisions 

about production, resource transition and the number of new resources to bring into the 

system during each planning period. The associated variables are inventory of products 

and resources, product sales and resources that will break at the end of each planning 

period.  

As a practical requirement, the transition of resources is performed in a uni-

directional fashion. The set i of different types of products is ordered so that only the 

transitions from i1 to i2 such that i1<i2 are allowed for i1 i. It is also assumed that the 

new resources are ordered only for i1=1. E.g., if there are two types of products 

{light,dark} and only transitions between light to dark are allowed, then the new 

resources are always dedicated to making light products. They can be transitioned to 

make dark products in the course of time. Also, when the new resources arrive, their ages 

are assumed to follow a deterministic pattern. In section 3.4, where stochastic resource 

life is considered, the terminal age is modeled as a normal distribution. Therefore a 

deterministic pattern similar to normal distribution is chosen. This is shown in Figure 3.5. 

E.g. if a total of 10 new resources are ordered and the terminal resource life for the 

resources is distributed around a mean age of 17 runs, then 30% of the resources will 

have an age of 17, 20% will have ages 16 and 18, 10% will have ages 15 and 19 and 5% 

will have ages 14 and 20. This assignment is achieved using vector Aj in the planning LP 

model where the vector is given by [0 0 0 0 0 0 0 0 0 0 0 0 0 5 10 20 30 20 10 5]. 
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Figure 3.5:  Deterministic initial age distribution of new resources 

 

 

  In the planning LP (model M1), profit is given by the difference of revenue from 

product sales and cost of production, resource reorder and holding inventory of products 

and resources. Equations M1.1 through M1.4 represent the mass balance of products and 

resources. The resources have two associated attributes; the type of product (i) they are 

dedicated to making and the number of runs remaining (j). While the mass balance 

equations for products are straightforward, those for the resources include the new 

arrivals, the degradation of resources due to use (
tjijy ,1,3  ) and the transition of resources 

from one product type to another (
jtiiy ,1,2 ). The degradation term 

tjijy ,1,3  represents the 

usage of resources during a planning period. Since the planning period has a length h and 

a resource can be used only once a day, it cannot be used more than h times. Therefore, 

the difference j-j1 must be less than h. It is assumed that no runs are lost in the transition 

operation.  

In the presence of replenishment lead time l for new resources, information about 

previously placed orders that are scheduled to arrive at time t ( 01ijty  ) needs to be provided 

(equation M1.3). Similarly, the re-order decision variable 
ijty1  has an associated lag t-l as 

shown in equation M1.4.Equation M1.5 represents the fact that product sales cannot 

exceed demand and M1.6 through M1.7 place a limit on production in the form of plant 

capacity and resource availability respectively. M1.8 assigns ages to newly arrived 
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resource according to assignment vector Aj. Finally M1.9 and M1.10 are hard constraints 

on the inventory of products and resources at the end of the planning horizon and M1.11 

are the positivity constraints.  
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The deterministic problem is solved for a number of cases with varying parameter 

values for product demand and replenishment lead time. The different cases are 

summarized in the Table 3.1. Discussion on the results is deferred until section 3.6.  

3.4. Dealing with stochastic problems 

In most real world situations, parameters like product demand, resource life and 

resource replenishment lead time are not deterministic. The concepts and models 

developed in the previous section therefore need to be modified. The replenishment lead 

time of new resources is considered deterministic in this study since it is possible to 

regulate the delivery of the resources by supplier management. Product demand and 

resource life are modeled as stochastic parameters as shown below.  

 

3.4.1 Stochastic demand modeling 

The stochastic demand in this study is modeled as an extension to the previously 

considered demand patterns in section 3.2.2.  

(i) Highly fluctuating demand – On similar lines as the cyclical demand pattern, the 

demand is modeled as a Markov chain shown in Figure 3.6(a). Each circle 

represents a demand scenario, i.e., the set of demands for all products at a given 

instant. The arrows emanating from the circle and connecting it to other circles 

represent the possible scenarios at the next time period. One of the possible 

scenarios is realized at the next time period depending on the probability 

associated with the arrow. Starting with a unique demand scenario, the demand 

can follow many trajectories with varying probabilities as shown in Figure 3.6(b). 

Since it no longer follows a cyclical trend, the pattern is called highly fluctuating 

demand. 

 

(ii) Seasonal demand - Instead of considering high, low and medium levels of 

demand shown in Figure 3.7(a), the demand is modeled to lie within a band 

during each of the three parts of the year. The demand transitions 

deterministically from a low to high, and high to medium period, but the 



 38 

transitions within the band are stochastic. Three equi-probable values within the 

band are assumed at each time period. This would again result in numerous 

demand trajectories with associated probabilities, some of which are shown in 

Figure 3.7(b).  
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Figure 3.6: (a) Illustration of highly fluctuating stochastic demand pattern. (b) 

Realizations of a highly fluctuating demand pattern. 
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(b) 

Figure 3.7: (a) Seasonal demand pattern prone to uncertainty (b) Realizations of the 

stochastic seasonal demand pattern 

 

 

 

3.4.2 Modeling stochastic resource life 

As mentioned in section 3.2, a new resource is assumed to enter the system with a 

terminal age ζT, which is essentially the number of runs that the resource will deliver 

throughout its life. In section 3.3, ζT was assumed to be following a deterministic pattern 

similar to a normal distribution. In this section, ζT is assumed to be normally distributed 

with mean  and standard deviation . This implies that if 15 new resources entered the 
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system at time t and ζT (17,2) then a possible realization of resource life distribution is 

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 4 4 0 2 1] and several such realizations are possible.  

 

3.4.3 Solving the stochastic problem  

In usual practice, the planning problem is solved for projected future demand for 

products. The optimal ending inventory for products and resources is then generated 

using the LP described in previous section. Therefore, the desired inventory at the end of 

each 10 day period is known. During these 10 days, the scheduling level generates a 

detailed production schedule and resource allocation schedule to meet the ending 

inventory requirement at the end of the 10 day period. However, when resource durability 

and product demand have associated uncertainty, the ending inventory values of products 

and the resource life profile are not the same as predicted by the planning LP. The actual 

inventory values and resource life distribution need to be communicated to the planning 

LP at the end of each planning period. This is achieved by solving the LP in a rolling 

horizon fashion as shown in Figure 3.8. At the beginning of the horizon, the LP is solved 

for 30 time periods and the ending inventory targets for products and resources are 

generated. The decisions about resource reorder, production etc. are implemented at the 

beginning of the horizon. At the end of first time period, the age distribution of the new 

resources and the actual product demand become available. The horizon is shifted by one 

time period and the LP is solved again for next 30 time periods starting with the actual 

values of product inventory and resource life distribution.  

Moreover, the ending inventory targets prescribed by the planning level may not 

be feasible at the scheduling level. E.g., if the demand for products at the end of last 

planning period was substantially higher than the projected value, the system is left with 

lower inventories at the beginning of the current period. Production capacity and resource 

limits may not allow enough production for the scheduling level to match the ending 

inventory target. Alternatively, if the resource lives are realized to be lower than 

expected, then the resource availability may not be enough to produce goods up to the 

prescribed inventory targets. Consequently, an optimization problem at the scheduling 
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level needs to be solved taking into account the actual starting inventory and actual 

number of runs available from the resources at the beginning of each planning period. 

The time horizon h for the scheduling period is 10 days (equal to one planning period) 

and one scheduling time period is one day. The difference in time scales of planning and 

scheduling are shown in Figure 3.4 and the scheduling LP is shown by model M2.  

The scheduling LP has similar mass balance equations, capacity constraints, 

resource allocation and transition variables as contained in the planning LP. The 

production, inventory, transition and allocation variables in this case are designated with 

a tilda (~) sign to differentiate from those at the planning level. The important differences 

from the planning LP being:  

(i) Resource reorder and product sales are not a part of the decision-making 

(ii) Since revenue is not being generated at this level, the objective is to minimize 

cost of production while meeting the ending inventory targets at the end of the 

scheduling horizon (10 days) as prescribed by the planning LP. The latter is 

modeled as penalty variables penalty1i, penalty2i as shown in the model. If the 

system ends up with less inventory of product i, i=1,2,..nP and less number of 

remaining runs to make product i, i=1,2.. nP (equations M2.7 and M2.8), a cost 

proportional to the difference is added in the objective function. Weights w1 and 

w2 are reasonably chosen parameters.  

(iii) As per the assumptions stated in section 3.2, the resource delivers one run in one 

scheduling period as shown using allocation variables y3ijt in equations M2.3 and 

M2.4.  

(iv) The total production in one scheduling period cannot exceed the system capacity 

of C runs/day as shown by capacity constraint M2.6.  

(v) The ending inventory of products ( ihx~ ) and number of runs remaining from the 

resources ( ijhyj ~* ) are targeted to be more than or equal to those prescribed by 

the planning LP ( 1ix , 1* ijyj ). This is accomplished by constraints M2.7 and M2.8 

as described in point (ii).  
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3.4.4 Rolling horizon approach 

In order to evaluate the actual performance of the stochastic system, a simulation 

model is employed. The simulation model combines the process of taking realizations of 

parameter values at the end of each planning period with the optimization at planning and 

scheduling levels in a rolling horizon fashion. The schematic for the model is shown in 
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Figure 3.9. Variables t

ix and t

ijy  (with subscript t) denote the actual inventory of products 

and resources at the end of planning time period t. A stochastic simulator is employed to 

generate instances of the random parameters (product demand and resource life). At the 

beginning of the simulation model, t=1 and the starting inventory values are given by 

0

ix and 0

ijy . The planning LP is solved for t

ix , t

ijy and t

ijy1  for i=1,2,..nP; j=1,2,…ζT and 

t=1,2..30, where the variables stand for target product inventory, target resource 

inventory and resource reorder decision respectively at the end of each of the 30 time 

periods. Input in the form of the product demand at the end of first planning time period 

and new resources scheduled to arrive throughout the planning horizon is provided.   The 

target inventory of products and resource at the end of the first period is fed as input to 

the scheduling LP, while the reorder decision is fed to the random number generator. The 

latter generates a random life distribution for the new resources ijtY1  according to a pre-

specified normal distribution. ijtY1  is the actual inventory of new resources scheduled to 

arrive after a lead time of l periods. The scheduling LP uses as inputs, the actual starting 

inventory values (x
0
,y

0
) and the target inventory values ( 1

ix and 1

ijy ) passed by the 

planning level, to generate optimal production, resource allocation and transition scheme 

for one scheduling horizon (10 days). The target inventory for products from planning 

period indicates the inventory before product sales. Therefore, x3 is added to the target. 

Since scheduling problem is completely deterministic, the inventory values at the end of 

the scheduling horizon h (xh,yh) are the actual values. At the end of the first planning 

period, the demand for products is realized. Also, the new resources that arrive at the end 

of this time period are added to the resource inventory. The resulting inventory values are 

)0,max( 1

1

iihi Dxx and ijhijhij Yyy 11
. This completes one simulation run. The time 

counter is shifted by one time period and the run is repeated until t=30. 

The LP at planning level is solved using CPLEX solver through GAMS (version 

19.6) and the simulation is performed in Matlab (version 7a). The interfacing software by 

Ferris (1998) is used to perform the optimization and simulation repeatedly. 
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Figure 3.8: Flow diagram for the rolling horizon solution approach 

 

 

 

 

 

1. Set k=1 

        Initialize 0

ix  =0,  0

ijy  = 0,  01ijty  with values based   on lead time l 

2. Use stochastic simulator to obtain k

iD , the demand at the end of time period k 

3. Solve M1 (planning LP) to obtain itx , ijty , ity1  for i=1,2,…nP, j=1,2..20 , t=1,2,…30 

4. use 11iy  to obtain  ijtY1  using stochastic simulator  

5. Solve M2 (scheduling LP) using 1ix + 13ix , 1ijy , 1k

ix , 
1k

ijy to obtain itx~ , ijty~ for i=1,2,.. 

h 

6. Obtain k

ix  = max( ihx~ - k

iD , 0)  

       and 
k

ijy  = ihy~ + ijkY1   

7. If k=30, stop  

  else set k=k+1 and go to step 2.  

 

Figure 3.9: Solution algorithm for the rolling horizon solution approach. 
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      An important thing to note is that when the deterministic demand forecast for the 

next H time periods is fed into the planning LP, a buffer needs to be maintained so that 

the fluctuations in future demand are accounted for. A conservative heuristic is employed 

to this end, by inclusion of a pre-determined buffer stock or safety stock ss, where ss is 

treated as a parameter to be optimized. E.g. 10% extra is added to the forecast. Any 

excess is automatically corrected at the next time period.  

 

The rolling horizon approach is conventionally applied to planning and 

scheduling problems for production planning independent of resource planning which is 

done separately. This is shown in the next section. 

3.5. The decoupled problem 

In order to gauge the effectiveness of solving the coupled problem, the decoupled 

problem is also solved. This implies that the resource reorder and production planning 

decisions are considered independent of each other (conventional practice).  

3.5.1 Resource reorder   

      Resource procurement, when treated independent of production planning, is a 

standard inventory control problem with stochastic demand. In such a scenario, a policy 

of the form (s,S) is proven optimal for given demand distributions and provides a good 

approximation for the others. The parameter s is the reorder point and S is the reorder 

quantity. The optimal plan is to place an order whenever the stock is equal to or falls 

below s to bring the inventory to level S and do nothing otherwise. Since there is no fixed 

cost associated with placing a new order in the system considered, s is very high. The 

policy in this case is to always bring the stock of resources up to level S, where S is the 

only parameter to be optimized. Taking note of the flexibility of the resources and the 

fact that the resources deliver multiple runs, different quantities may be considered as 

stock in this case. E.g.,  

(i)    Total number of resources at any time 

(ii)   Separate parameters for different types of resources (Si for i=1,2,…nP) 

(iii)   Total number of runs available from all the resources.  
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(iv)   Total number of runs available from each type of resource.  

 

For this analysis, total number of resources is considered as stock. 

3.5.2. Production planning  

The optimal production quantities need to be determined at the planning level, in 

the face of uncertain demand. Since resource procurement is no longer a part of decision-

making, only production variable (x1i), product inventory (xi) and product sale (x3i) are a 

part of the planning LP. The model M1 is now modified to M3 with constraints related to 

product mass balance, demand and supply and system capacity. Resource availability is 

assumed to be 100% at all times.  
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Having obtained the planning level decisions, as shown above, scheduling model 

(M2) is solved in a rolling horizon fashion. The difference is that the two decisions 

(resource procurement and production planning) come from separate models in this case. 

The method is outlined in Figure 3.10.  
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Figure 3.10:  Flow diagram for the solution of the decoupled problem 

 

 

 

This approach proves advantageous in terms of computation time since the 

decision variables corresponding to the high dimensional resource vectors are dropped 

from optimization, but the simplification comes at the cost of potentially significant loss 

in solution quality. A discussion on the performance of this solution approach and 

comparison with that of the others is presented in the ensuing section. For simplicity, the 

solution approach described in section 3.3 is referred to as approach I, and those in 

sections 3.4 and 3.5 as approach II and III respectively. 

3.6. Numerical results and discussion 

3.6.1 Parameter values 

The solution approaches I,II and III are tested on the example with cost 

parameters shown in Table 3.1. The system consists of 2 types of products namely light 

and dark (nP=2). Allowable resource transitions are from light to dark only.  
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Table 3.1: Parameter values for the perishable resource problem 

 

 

The nominal resource life is 17 runs and the nominal demand scenarios for the 

constant, cyclical and seasonal cases are given by seacyccon ddd ,,  respectively for the two 

types of products. 
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The uncertainty is modeled as discussed in section 3.4. In the case of fluctuating 

demand, the scenarios are chosen so that the demand fluctuates around a constant mean 

of [100 100] for both product types, during one planning period. High level of uncertainty 

signifies higher deviations from the mean.  

It is also assumed that once a scenario is realized, the probability of the same 

scenario being realized at the next instant dominates over all others. This ensures that the 

demand stays at a given value for longer times, as seen in reality.  Twelve deviations 

from nominal demand are considered as scenarios sets s=1,2,..12 shown in Table 3.2. L 

and D correspond to light and dark products respectively. The probabilities of transition 

among these scenarios govern the uncertainty, where higher deviations from mean 

demand signify higher level of uncertainty. This is captured by three transition 
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probability matrices T1, T2 and T3 in the order of increasing level of uncertainty. s′ 

denotes the scenario at the next time period and all matrices are diagonally dominant.  

 

 

 

Table 3.2: Deviations from nominal demands for the Light and Dark products 
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In order to account for seasonality in demand, the same levels of uncertainty are 

considered for the seasonal nominal case. Multiple realizations for each type of demand 
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(constant and seasonal mean) and each level of uncertainty (low, medium and high) are 

considered to obtain average performance. (It must be noted that there are 12
30

 possible 

realizations, making the probability of an individual realization miniscule. Therefore 

obtaining a true average is very difficult). The realizations are drawn at random and are 

fixed for the different solution approaches. The comparison is mostly scenario based. 

Resource life is modeled as a normal distribution with mean of 17 runs. Low, medium 

and high levels of uncertainty correspond to standard deviations of 0.5, 1 and 2 

respectively.  

3.6.2 Features  

The models and solution approaches described throughout this article are tested 

along the features listed in Table 3.3, where lead time is the delay associated with 

resource order arrival, safety stock is the buffer added to the demand forecast. Two types 

of demands and three levels of uncertainty are considered as discussed. Various revenue 

and cost heads are reported in Table 3.4 for some of the cases. Average resource 

utilization defined as the ratio of total number of resources used and the total number of 

resources in the system is also reported along with the total missed demand to highlight 

the instances of lost opportunity. The effects of aforementioned features are examined 

after some general observations outlined below:  

 

(i)  Product sales contribute highest to the overall profit. Therefore, satisfying product 

demand is the chief driver for all solution approaches. The higher the missed 

demand, the worse is the performance.  

(ii)  The optimal issuing policy is to use the oldest resources and optimal transition 

policy is from oldest light resource to dark.  

(iii)  Different demand trajectories sum to different values of overall demand. 

Therefore, profit is scaled by the overall demand as the objective value in all 

analyses.  
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Table 3.3: Problem features and their levels considered for analysis 

 

Parameter level I II III 

Parameter name    

Demand type Constant fluctuating (cyclical) seasonal 

Uncertainty Low medium high 

 Lead time in mold 
order arrival 

1 unit 3 unit 5 units 

Safety stock (as % 
of product demand) 

5 10 20 

Solution approach Deterministic LP Rolling Horizon Heuristic (Q,r) for 
mold reorder 
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The effects of different features are now discussed:  

 

A. Effect of time varying demand  

To analyze the effect of time varying demand, the deterministic demand and 

resource life scenarios are studied. For three types of demand (constant, cyclical and 

seasonal), substantial difference lies in the values of average product inventories as seen 

in Figure 3.11(a). This is because when demand is uneven, inventory is built up 

beforehand. Nominal seasonal demand has higher deviations from the constant trajectory 

and therefore has higher average inventory of products. As a result, the production is 

leveled, as seen by the similar average resource inventories. The other revenue and cost 

heads are the same because although the demand deviates, it is known completely to the 

decision-maker.  

 

B. Effect of uncertainty  

In most cases, higher uncertainty results in lower performance in terms of profit 

per unit of demand for both approaches (I and II) as shown in Figure 3.11(b). This is also 

reflected in increasing values of missed demand. It is seen that although the resource 

reorder quantities are similar to the deterministic solution (imposed to be equal for 

approach I), the average resource inventories in both cases are lower. This signifies more 

resource breakage due to uncertainty in resource lives.  

 

C. Lead time  

Increase in lead time results in worse performance by both solution approaches (I 

and II) as seen in Figure 3.11(c). The result is expected because the further out into the 

future we look, the more uncertain demand gets.  

 

D. Safety stock  

Four values of safety stock or demand buffer are considered for approach II. In 

both demand profiles, 20% safety stock is the best heuristic (Figure 3.11(d)). As safety 

stock is increased further, the system keeps more inventory of products than required, and 
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one product cannibalizes the other in terms of its share of resources and production 

capacity.  

 

E. Solution approaches  

A comparison of the performance of the three approaches (I,II and III) is shown in 

Figure 3.11 (e) for the two types of demand (constant nominal demand and seasonal 

nominal demand). The decoupled problem (approach III), is solved for several values of 

S (30,35,40,45,50), where S is the maximum stock level. The best value for S is found to 

be 35 and the results are reported for this value only. It is seen that decoupled problem in 

all cases performs significantly worse than the LP without update and the rolling horizon 

approach. As much as 50% demand is missed in certain cases when using approach III. 

This confirms that treating resource procurement and production planning decisions 

together is imperative. The decoupled problem would perform particularly badly when 

the total resource usage varies significantly from one period to the other.  The latter is 

likely in most practical situations when either the product demand deviates significantly 

from the mean or resource allocation causes varying number of resources to perish.  

 

The rolling horizon approach performs 12-20% better than LP without update. 

However, it is seen that the performance gap reduces with increasing level of uncertainty 

which highlights the fact that rolling horizon cannot handle very high deviations from the 

expected values of uncertainty. This necessitates the use of solution methods that can 

explicitly account for uncertainty during optimization.   
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Figure 3.11:  Results and comparison (a) Average inventories of products and resources 

for the deterministic problem. (b) Profit per unit of demand for each level of uncertainty 

(L-low, M-medium, H-high). The first set (3 bars) corresponds to solution approach I and 

the second set corresponds to solution approach II. (c) Profit per unit of demand for each 

value of lead time in resource order arrival (1,3 and 5 units). First set for approach I and 

second for approach II. (d) Profit per unit of demand v/s buffer stock as obtained by using 

solution approach II. (e) Profit per unit of demand v/s level of uncertainty. First set for 

demand with a constant mean and the second set for demand with a seasonal mean. 

 

average 

profit per 

unit of 

demand 

average 

profit per 

unit of 

demand 

constant mean 
seasonal mean 



 57 

3.7. Conclusions 

Mathematical programming models are developed to determine optimal resource 

procurement and allocation policies in conjunction with production planning, when the 

resource is perishable. A hierarchical approach is used due to the difference in time scales 

of planning and scheduling problems. Uncertainty in demand and resource life is 

addressed by a rolling horizon solution approach.  It is shown that a significant loss in 

profitability is possible when the resource management is performed independent of 

production planning. The performance gap depends on the level to which the resource 

breaking rate is affected by usage, average resource life and variability in the total 

number of resources used per period. Stochastic optimization methods are required for 

improved decision-making by explicitly accounting for uncertainty during optimization. 

This is considered in the next chapter.   
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CHAPTER 4 

AN APPROXIMATE DYNAMIC PROGRAMMING APPROACH 

TO SOLVING PLANNING AND SCHEDULING PROBLEMS WITH 

PERISHABLE RESOURCES 

In the previous chapter, mathematical programs were developed for planning and 

scheduling with perishable resources. In the presence of uncertainty in product demand 

and resource life, the hierarchical framework was implemented in a rolling horizon 

fashion. This enabled the presence of a feedback loop to update the knowledge of system 

attributes at each time step. While solving the LP in a rolling horizon fashion, the most 

probable realization of uncertainty is considered. Therefore, the performance of the 

rolling horizon approach is determined greatly by the form of uncertainty. In general, the 

rolling horizon approach is well suited for problems where there is little likelihood of 

sudden and radical changes in the uncertain parameter. This is because the rolling horizon 

approach provides a reactive mechanism, which takes corrective action once the 

deviation from the most probable realization (or trajectory) is registered. In other words, 

the rolling horizon approach only has a myopic view of the uncertainty. For most 

applications however, the myopic view of the uncertainty does not suffice and proactive 

mechanism is desired. For such problems, exclusively accounting for the uncertainty 

during optimization is imperative. A particular example of problems requiring fore-sight 

with respect to parametric uncertainty is, when the problem attributes are changed 

permanently and drastically by decisions. In an inventory control problem, this situat ion 

may arise when the product demand inflates or falls rapidly, and the firm‟s performance 

during these scenarios determines its long run market share.  The same is true for pricing 

problems. This aspect is explained by means of an illustration in 4.1. The perishable 

resource problem is then reconsidered and the planning problem is formulated as a 

Markov Decision Process (MDP) in section 4.2.1. MDP is an elegant framework to solve 

stochastic decision problems. Owing to the large state and action spaces, an approximate 

dynamic programming (ADP) algorithm is employed and discussed in detail in section 
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4.3. Since the uncertainty space is large as well, approximation of the expectation is 

performed during value function updates. MDP solutions are presented for three cases: (i) 

deterministic case, (ii) the case with an instance of the uncertainty model considered in 

Chapter 3, (iii) the case with product demands prone to inflation. The performance of the 

ADP algorithm is compared with that of the rolling horizon approach outlined in Chapter 

3.    

4.1 Inventory planning under inflationary or recessionary demand scenarios 

– an illustration 

The inventory control problem is the one faced by a firm that must decide how 

much to order/produce in each time period to meet demand for its products. The ordering 

decision is made in the presence of demand uncertainty, so that there is a possibility of 

shortage or overage, pertaining to high and low realizations of the uncertainty 

respectively. The backorders and (or) extra stock can be carried over to the next time 

period. Typically, both shortage and overage are penalized, since the former leads to loss 

in potential revenues and the latter adds to the inventory holding cost. The optimal order 

quantity at each time would thus minimize the total cost including that of shortage and 

overage over the time horizon. This is illustrated by a simple example below:  

 

Example I: 

For simplicity, let us consider an infinite horizon problem with a single product 

and the future costs discounted by a factor of γ. y1t is the order quantity at time t. yt is the 

on hand inventory at the end of time t and it is assumed that backorders are not allowed. 

The order arrives at the beginning of time t and the demand is realized at the end of the 

time epoch t.  At each time, the demand for product, t, is either 4, 5 or 6 units, with 

equal probability i.e., 0.33. The cost function is shown in (4.1), where CP and Ch are the 

costs of missing demand and holding inventory respectively. Cost associated with placing 

an order is also accounted for by considering the fixed ordering cost Cf and variable cost, 

Cv per unit of ordered quantity. Unlimited supply of product is assumed at each time. The 

inventory control problem presented above can be formulated as an MDP where the state 

comprises yt and decision is y1t. Since the demand scenarios are equi-probable at each 

time, the demand state does not need to be the part of the state description. The MDP is 
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solved using value iteration (described in section 2.4 of Chapter 2) and the optimal policy 

πI is as shown in (4.2) for CP =1 Cf= 0.3 and Cv=0.2, and Ch =0.1. It is a well known 

result (Hopp and Spearman, 1996), that the optimal policy is of the parametric form (s,S) 

when the uncertainty has an underlying Markov chain. The parametric form of the policy 

translates into placing an order whenever the inventory falls below s to bring it up to S. 
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A variation in the demand model is considered next. Example II is used to 

illustrate the dependence of future demands on firm‟s performance during a temporary 

surge in demand. The example is motivated by the fact that if the firm continually misses 

demand, the goodwill of the firm would be affected. This might result in permanent loss 

of some customers or loss of market share. Consequently, the firm may see reduced 

demand when the inflation in demand subsides.      

Example II:  

Figure 4.1(a) shows a demand model where the product demand can be in one of 

the three states ζ {1,2,4}. The first state, i.e., ζ=1 is similar to one in example I, where 

demand can be 4,5 or 6 units with equal probability (designated as 5±1). This is referred 

to as the nominal demand state. At each time, with finite probability, demand may 

transition to an inflationary state designated by circle 2.  State 2, i.e., ζ=2, represents the 

case of increased demands for goods due to boom in the economy, industry growth or 

other socio-economic or technology related factor. Once in state 2, the system may 

transition back to nominal demand state, i.e., ζ=1 with finite probability at each time. The 

demand in state ζ=2 is 10±1, where all three values are equi-probable. However, if the 

overall shortage during the inflationary state exceeds a certain limit 1, the firm 

permanently loses market share and the demand transitions to state ζ =4, which is lower 
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than the nominal demand. This is referred to as the reduced-nominal demand state. The 

demand in this state is 4±1. It is required that the order quantities not exceed 10 units at 

each time. The MDP formulation of the above problem is an extension to example I. The 

system state must now contain more information in addition to on-hand inventory, like 

the current demand state and cumulative shortage when in demand state 2. The demand 

model is represented by Figure 4.1(a) and the transition probabilities are shown as arrows 

of the equivalent Markov chain in Figure 4.1(b). The diamond in Figure 4.1(b) represents 

the test of whether the cumulative shortage during demand state ζ =2, exceeded the 

predefined limit 1, and the circles represent demand states. Decision has to be made for 

order quantities at each time so as to maximize profit (4.3) in this case. This is 

accomplished by adding the revenue from product sales at CP per unit. Consequently the 

shortage cost is eliminated from the expression in (4.1). It is assumed that each product 

sale brings revenue of CP units. The ordering cost has fixed and variable components (Cf 

and Cv) similar to example 1, and unit holding cost is given by Ch.  
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Figure 4.1: (a).A demand model involving inflationary demand scenario. (b) Illustration 

of transition probabilities of the Markov chain  
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The parameter values are shown in Table 4.1(a) and the optimal policy ( II ) for 

the considered parameter values is reported in Table 4.1(b). It turns out that the optimal 

policy is still of the parametric form (s,S) and depends on the on-hand inventory and 

demand realization but is independent of the cumulative shortage. The optimal policies 

pertaining to each individual demand state ( 4,2,1,I ) are also reported. The two 

policies are different for ζ =1,2,4, I being the sub-optimal policy for the problem in 

example II. 4,2,1,I  are obtained by using demand states ζ =1,2 and 4, individually 

in example I. It must be noted that 4,2,1, ii

I would be the best possible policy obtained 

if the problem in example II was solved using a rolling horizon approach.   
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Figure 4.2: (a) A demand model involving inflationary and recessionary demand 

scenarios.(b) Illustration of transition probabilities of the Markov chain  
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This is because the algorithm would fail to consider the possibility of demand transition 

owing to low probability values. On the other hand, policy II for ζ=1 is more aggressive 

and orders more in view of the upcoming demand inflation, while the reverse is true for 

ζ=2. Since ζ=3 is the absorbing state, the corresponding two policies are understandably 

the same. 

Example III:  

An additional demand state is considered in this example as shown in Figure 

4.2(a). From the nominal state, demand may also transition to a recessionary state 3. This 

state is marked by a steep decline in product demand due to economic recession, 

defamation of the product, introduction of a better substitute etc. and demand is likely to 

be restored to nominal state in future. Since the demand falls suddenly, a lot of inventory 

may be accumulated if the firm does not plan ahead. If the cumulative inventory during 

recessionary demand exceeds 2, the firm is required to renegotiate supplier contracts to 

permanently reduce the limit on order quantities. This is called reduced-order limit. The 

downside is that, even if the demand is restored to normal, the firm may not order enough 

goods and thereby lose demand continuously. The transition probabilities are shown in 

Figure 4.2(b). Together with the attributes listed in example II, the system state contains 

cumulative inventory during recessionary demand and current order limit. The optimal 

policy ( III ) obtained by solving the MDP is reported in Table 4.2(b) for the parameter 

values shown in Table 4.1(a). It is seen that the parametric (s,S) form of the policy is still 

maintained and the policies corresponding to the individual demand states 4,3,2,1ii

I  

are more similar to III  as compared to II . This is attributed to the fact that in example 

III, there is a possibility of an increase as well as decrease in product demand. The two 

factors, therefore, compensate for one another.  
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Table 4.1: Parameters and policies for the inflationary demand scenario (a) Parameter 

values for the inventory control problem, (b) Policies corresponding to approaches I, II 

C p C f C v C h

1 0.3 0.2 0.1

C p C f C v C h

1 0.3 0.2 0.1
 

(a) 

1 2 4

C ombined  s 4 9 3

-do- S 6 10 4

Independent  s 3 10 3

-do- S 4 11 4

1 2 4

C ombined  s 4 9 3

-do- S 6 10 4

Independent  s 3 10 3

-do- S 4 11 4
 

(b) 

 

 

 

Table 4.2: Policies corresponding to approaches I and II, for the inflationary and 

recessionary demand scenario 

1 2 3 4

C ombined  s 4 9 2 4

-do- S 6 11 4 5

Independent  
s

5 10 3 4

-do-
S

6 11 4 5

1 2 3 4

C ombined  s 4 9 2 4

-do- S 6 11 4 5

Independent  
s

5 10 3 4

-do-
S

6 11 4 5
 

 

 

 

From the above exercise, it may be concluded that for a general system where the 

complete structure of uncertainty is not revealed in a short horizon, ADP methodology 

has a high potential for improved performance as compared with a rolling horizon 

approach.  

4,2,1,I  

II  

 

III  

 

4,3,2,1,I

 

 

policy 

 

policy 
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For the PR problem, the planning level bears more far reaching effects and 

therefore calls for rigorous treatment of uncertainty. The formulation of the planning 

problem as a MDP is presented in the next section. The reader is referred to Chapter 3 for 

problem details and assumptions.       

4.2   Formulation of the perishable resource problem as MDP 

To be able to successfully formulate the PR problem as MDP, the most important 

requirement is the Markov property or the memory-less property. This implies that, the 

next state and stage-wise reward must depend only on the current state and action. The 

resource life is independent of past decisions and states. Also, since the demand for 

products was assumed to have an underlying Markov chain in Chapter 3 and in examples 

presented in section 4.1, this condition is met. Finally, for simplicity of illustration, we 

opt to formulate the infinite horizon problem which pertains to a stationary optimal 

policy. A discount factor γ=0.9 is used in all cases. Demand model is represented by d(ζ) 

for general discussion where ζ=1,2,..nD, designates the states of the Markov chain and 

d(ζ) the demand associated with that state. Specific demand models are deferred until 

section 4.3.3.  

 

4.2.1      MDP formulation 

As discussed in Chapter 2, a MDP is characterized by the tuple (S,A,T,R, γ) whose 

descriptions in the context of the PR problem are shown below. For consistency, 

notational convention is followed from Chapter 3 as much as possible.  

 

 State  

         The state at time t, (st) includes four pieces of information: 

(i)   Product/stone inventory  -xit                     i=1,2,…nP  

      (ii)  Resource/mold inventory –   yijt              i=1,2,…nP; j=1,2,... ζT  

      (iii) Product demand scenario - δt,                      δt {1,2,..nD}  

      (iv) Past orders -  y1i,t1                                                   i=1, t1= t-1, t-2,…t-l 

 

st = [xit   yijt  kt   y1i,t1]             (4.4) 
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dim(st) = nP + nP *
max

T  + 1 + l           (4.5) 

   |S|= 
l

D

nn
ynyx TPP )1()()( maxmaxmax

max

         (4.6) 

 

  The state description, state dimension and the size of the state space is given by 

(4.4), (4.5) and (4.6) respectively. xmax and ymax are externally imposed limits to keep the 

problem size finite and ensure that an unreasonable size inventory is not held in the 

system. y1max is the upper limit on reorder quantities of the resource and max

T is the 

maximum possible resource life. 

 

 Action  

      The actions/decisions are clearly defined in Chapter 3 and classified as planning and 

scheduling level decisions. The three types of actions at time t are: 

(i) Production quantities - x1it                                     i=1,2,….nP  

(ii) Resource reorder - y1it                                            i=1 

(iii)Resource transition and allocation - sch

tjiiy ,,1,2          i=1,2...nP; i1=1,2...nP; ;   j=1,2,. ζT, 

                                                              sch

tjjiy ,1,,3            i=1,2...nP;   j=1,2,. ζT,,j1=1,2,..,j-1 

 

As outlined in Chapter 3, the production and resource ordering decisions are 

planning level decisions while the resource transition and allocation decisions are 

determined at the scheduling level in order to best meet the production requirements. 

(The time scales t and t’ for the two levels are shown again in Figure 4.3). Therefore, 

only the production and resource ordering decisions are considered for the planning 

problem. The resource allocation decisions are obtained by solving the scheduling 

problem (thereby indicated by suffix sch), a discussion on which is deferred until section 

4.3.3. Since only the light molds are ordered at any time, the resource reorder decision 

contributes only a single dimension to the decision space.   

 

at = [x1it  y1it]               (4.7) 

dim(at)= 1Pn               (4.8) 
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|A|= maxmax 11 yx Pn
              (4.9) 

 

The description of action, action dimension and the size of the action space is given by 

(4.7), (4.8) and (4.9) respectively. Again x1max and y1max are limits on production and 

reorder quantities respectively. 
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  Figure 4.3: Time scales of the planning and scheduling problems 

 

 

 

 State transition function 

     The probabilities of state transition are dependent on two sources of uncertainty:  

(i) Product demand - i  di(ζ) 

(ii) Resource life distribution - j   (μ, ζ) 

 

   While product demand affects the product inventory, resource life distribution 

determines the resource inventory at the next time step. (4.10) and (4.11) show the 

transition equations for product and resource inventory at the next time step. Depending 

on the combined realization ω of the uncertain parameters i and j, the state at the next 

time is obtained.  

)0,
~

1max(1, itititti Dxxx                                               (4.10) 
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 Stage-wise reward  

The reward function (4.12) consists of the following terms: 

(i)  Revenue from product sales 

(ii)  Cost of procuring new resources 

(iii)  Cost of production  

(iv)  Cost of holding product and resource inventory   

 

j j
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                       (4.12) 

 

The objective is to determine a policy π that maximizes the infinite horizon discounted 

reward V
π
(s) when the initial state is s (4.13).
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 In order to determine the state at the next time step, resource transition and allocation 

decisions need to be taken. They are determined at the scheduling level. Due to the 

absence of sources of uncertainty at the scheduling level, a linear program (LP) similar to 

M2 in Chapter 3 may be solved. However, in order to achieve computational efficiency at 

the planning level, a heuristic is developed to determine the resource transition and 

allocation decisions. The heuristic is guided by the solution of LP described by model M2 

in Chapter 3.  

4.2.2  A heuristic to obtain resource transition and allocation decisions  

The resources are allocated in a way that prioritizes the fulfillment of production 

plan for the planning cycle. This is done through the path of minimum color grade 

transitions in order to ensure maximum possible flexibility in the future. The heuristics 

are schematically shown in Figures 4.4(a) and 4.4(b). The details are presented below:  
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The resource transition heuristic  

Since it is assumed that only light resource (i=1) can be ordered, resource 

transition needs to be performed for production of dark products (i=2). In order to 

determine the number of possible transitions, excess light runs, excess_light are 

determined at the beginning of the scheduling horizon. Since a resource can be used a 

maximum of 10 times (scheduling horizon is 10 days and the resource can be used only 

once a day), the number of available runs needs to be adjusted. The adjustment needs to 

be made for resources with more than 10 runs remaining. Now, the shortage in dark 

resources is determined in terms of number of runs, short_dark. The smaller of the two 

quantities, i.e. excess_light and short_dark is scheduled for transition. While 

transitioning, the oldest resources are prioritized. This ensures that maximum resource 

inventory is held as light resources, imparting flexibility in the future.  

 

The resource usage heuristic  

To be able to successfully allocate the resource to production, production 

quantities need to be determined at each scheduling time period. The total production 

requirement in the given planning period, i.e. x1i, i=1,2 is equally divided into 10 days. 

Moreover, the overall fraction of light products, i.e. ν, is maintained during each 

scheduling time epoch t′. Having determined the production quantities, resources are 

allocated based on newest-first rule. This is because when the resource life distribution is 

very uneven, the resources with more number of runs left must be utilized early so as not 

to run out of resources. 

  

Having obtained a simple heuristic to determine the state transitions, we analyze 

the size of the MDP problem and present an ADP algorithm for its solution in the next 

section.  
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Figure 4.4.  Heuristics for (a) resource transition and (b) resource usage at scheduling 

level 

 

 

4.3. Solution of the MDP 

4.3.1 Problem size  

The state space  

Using the expressions in (4.5) and (4.6) and parameter values shown in Table 4.3, 

the state dimension and size of the state space may be obtained as below:  

dim(s)  -  2 + 40 + 1 + 3 = 46 

|S|  -  400
2
  × 100

40
  × 12  ×100

3  
~  1.9*10

93
 

It must be noted that the term 
max

)( max
TPn

y contributes the most to problem size. While 

implementing the ADP algorithm, we will use an aggregation scheme to effectively 

reduce the problem size on this account.  
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The action space 

For the parameter values shown in Table 4.3, the dimension of the action/decision 

variable and the size of the action space is as shown below:  

dim(a) -  2+1 =  3 

|A|  -  200
2
  × 20  = 8 ×10

5 

The assumption of maximum capacity utilization is made to further reduce the 

action space. E.g., if the plant capacity is 200 per planning cycle and x1it=160 for i=1, 

then x1it =40 for i=2, given that the resource requirement is met. Therefore, the 

dimension of at is now 2 and |A| = 200 × 20  = 4000.  

 

The uncertainty space 

Although the demand scenarios are finite, the life of each incoming resource is 

drawn from a normal distribution. With max

T =20, there are practically infinite 

possibilities for the resource life distribution at each time even after coarse approximation 

of the normal distribution. Consequently, the computation of expectation in the Bellman 

equation presents a computational challenge.  

 

Since the state and uncertainty space are very large, exact solution methods may 

not be used to solve the MDP. In order to circumvent the difficulty posed by large 

problem size, an approximate dynamic programming algorithm is employed. The 

algorithm is presented in the following section.  

 

 

 

 

 Table 4.3:  Parameter values for the perishable resource problem 

 

Parameter np max

T  nD xmax ymax x1max y1max l 

value 2 20 12 400 100 200 20 3 
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4.3.2.  An Approximate Dynamic Programming algorithm  

As noted in section 2.2, MDPs are traditionally solved using dynamic 

programming and optimal solution is obtained by solving the well known Bellman 

equation (4.14). The optimal policy is obtained as a function of system state (4.15) 

(Puterman 1994) presented in section 2.2 of Chapter 2.  
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          However, when the state space is large, it becomes practically impossible to solve 

(4.14) for each states s S. Additionally, when the state transition matrix is not sparse 

(high uncertainty), the exact computation of expectation is not viable.  Therefore, we 

make use of approximate dynamic programming (Bertsekas 1995) also called real time 

dynamic programming (RTDP) (Sutton and Barto, 1998). The central idea of the 

algorithm is that, instead of working with the entire state space, a subset of states or 

sample space is maintained as prototype states. Moreover, the set of prototype states or 

the reduced state space evolves over time as we step forward in time. Since the entire 

state space is not considered, the value function needs to be approximated for the states s′ 

when they are not part of the sample space. To this end, a local approximation in the 

form of k-nearest neighbors (Hauskretch 2000) is used. The method draws on the notion 

that similar states would exhibit similar behavior in terms of associated value function 

and decision-rule. The parity among the states is described by a Euclidian distance 

measure. As the distance increases, the states become increasingly different. The same 

notion of parity between the states is exploited to keep the size of the sample space from 

getting very large. Each state in the sample space is seen as representing a cluster of 

neighboring states, lying within a circle around it. The circle can be drawn using the same 

Euclidian distance as criterion for radius.  

 

The algorithm is schematically shown in Figure 4.5. The sample space designated 

as S, is initialized with the pre-specified starting state s0. If not specified, a random state 

can be chosen as s0. The iteration counter, set as n=1 represents one complete experiment 
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until the end of horizon H. t is the time counter which goes from 0 to H and resets to 0 for 

each new iteration. The value function for the s0 is initialized and an iteration given by 

(4.16) is performed. During the value iteration, the value function for the next state s′ is 

determined by using an aggregation scheme compress and k-nearest neighbor 

interpolation as described below:  

 

State aggregation function compress: Since the dimension of the state is high and the 

resource inventory is the single-most contributing factor, the state is aggregated for the 

purposes of maintaining the sample space and value function determination. The 

aggregation scheme lumps together the resources with several lives into two large 

buckets new and old. If the resource has more than 10 runs remaining, it is termed as 

new, otherwise old. A finer aggregation is also possible. Therefore, the dimension of the 

state is greatly reduced in leu of lost information. As an additional data, the total number 

of runs available from all the resources is also made a part of the state description. The 

aggregation is represented by compress and the aggregated state is identified as s
c
 as 

shown in (4.17).  

ltniforyjyyyxscompresss Pt
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      (4.17) 

 

Value function approximation – The Euclidean distance δs (subscript s for distance 

from state s) used to establish similarity between a query state c

Qs '  and a state s
c

S is 

shown in (4.18). In (4.18), subscript m {1,2,..dim(s)} denotes the dimensions of the state 

and wm are parameters that are used to place weights on different dimensions. It is 

believed that a difference in the values of certain dimensions of the state would cause the 

value function to change greatly across different states as compared with others. For such 

dimensions, a large weighting factor wm is suitable. For notational clarity, the subscript c 

for the aggregated states is suppressed. Once the distance between the query state and all 

the states (that belong to the sample space) is known, the top k states sorted by ascending 

order of the distance δs, are chosen for interpolation. The k states are generally referred to 

as nearest neighbors. The nearest neighboring states are designated as s={1,2,…k} with 

some abuse of notation. The value function is now computed by (4.19). If |S| < k, |S| 
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neighbors are used. Since 0
1

s

and 1
1

1

k

s s

, the interpolation is convex and the 

contraction map is preserved.   
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While attempting to perform the value iteration, the maximization is performed 

over all actions in the action space. Since dim(a) is small, a homogenous grid is used to 

reduce the size of the action space. E.g., resource order can only occur in multiples of 4 

and production is assumed to take place in batches of 10. Additionally, for a state-action 

pair, many next states are possible owing to large uncertainty. Since exact computation of 

expectation over all possible next states s′ is not possible, sampling methods are used as 

described below. 

 

Approximation of expectation: The idea of approximation of expectation is simple. 

Starting from s0, for each action a A, samples of next states s′=f(s0,a,ω), ω Ω are 

obtained, where Ω is a set of sampled values of uncertain parameters. ω Ω also have 

probabilities associated with them. These are designated as pω and are re-normalized to 

ensure convergence. The value iteration update based on sampled uncertainty is shown in 

(4.20)  
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In Figure 4.5, the approximation is illustrated for only one sample realization of the 

uncertainty. Higher number of samples helps convergence.  
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After the value iteration update, one or a set of maximizing actions a
*
 are obtained. a

*
 is 

the best action for state s0 based on the knowledge so far. However, because of the 

approximation of expectation mentioned above, the value function is a biased estimate of 

the mean discounted reward. Also, since all the states in the sample space are not updated 

during one iteration, exploration needs to be performed to access different parts of the 

original state space. This is accomplished by perturbing the action around the best known 

action a
*
. This is described below.  

 

Exploration v/s exploitation: The perturbation in the action is performed by using 

a
*
+Δa

{n}
 instead of a

*
 to move forward in time. The perturbation Δa

{n}
 is dependent on 

the iteration counter n. At the beginning of the algorithm, the value function estimates are 

poor and very few states are a part of the sample space for successful interpolation and 

good representation of the original state space. This is the reason why higher degree of 

perturbation in action is needed. As the number of iterations increase, Δa is dampened to 

be able to exploit the information obtained so far. The specific form of Δa used for the 

PR problem is shown in (4.21). q represents a general quantity, e.g., production and 

reorder, λ1 (0,1], λ2>0 are parameters and qmax is the maximum possible value of q. For 

the perishable resource application λ1=0.4 and λ2=1.5 are used.  

n
qqq 2)( max1

*
                                                                                           (4.21) 

  

Having performed the value iteration update for the initial state s0, and obtained 

the perturbed action a
*
+Δa

{n}
 , next state s1 is obtained by taking one sample realization 

of the uncertainty ω1. In usual practice a sample trajectory for the experiment, i.e., 

ω1,ω2,..ωH is generated a priori. At this point, it needs to be determined whether 
cs1  must 

be admitted to the sample space.  

 

Conditional admittance to sample space - The next state
cs1  is not admitted if it has 

enough representation in the sample space, i.e. there is at least one state in the sample 

space, that is similar to
cs1 . The state is referred to as an alias. An alias is also determined 

based on the distance criterion seen in (4.18). A neighbor is called an alias if its distance 
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from the query point is below a pre-defined threshold δ
max 

(4.22). Having obtained s1, the 

time counter is increased and the iteration is repeated. If s1 was admitted to the sample 

space in the previous iteration, its value function would be assigned by the next value 

iteration. Otherwise, the aliases are used as s1 for updating the value function. A small 

value of δ
max

 would result in a very large state space whereas a large value of δ
max

 would 

result in poor representation of the relevant state space by the sample space. Therefore, 

δ
max

 is an important parameter which must be chosen carefully.   

 

 }),(:{)( maxssssalias QQ                                                                     (4.22) 

  

As pointed out earlier, the value function estimate obtained after value iteration is a 

biased of the true mean, a smoothing parameter αε is used.  

 

Value function smoothing - This technique essentially determines a moving average 

estimate of the value function V(s
c
) s

c
S. Represented by (4.23), the value function 

update at the n
th

 iteration is obtained as a convex combination of the old and new values. 

The smoothing factors 10   are generally different for each state in that they 

depend on the number of times the corresponding state has been visited (designated by 

ε
{s}

). Therefore ε
{s}

 needs to be stored for each state s
c

S. In order to strike the balance 

between exploration and exploitation, much the same way as with the action, αε must be 

dampened with time as well. Expression (4.24) is used to achieve the same with λ3=20 for 

the perishable resource problem.   

)( 3

3
                         (4.24) 

 

When the incumbent state does not belong to the state space, the aliases are used 

for value function update. The iteration is repeated until either the computational limit is 

reached or the value function convergence criterion is met.  
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Step 6.    If n<N, set n=n+1 and go to Step 1 

                    else Stop  

 

Figure 4.5: An approximate dynamic programming algorithm 
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The number of states as a function of iteration count n is shown in Figure 4.6(a) 

for a particular demand model (described in the next section). Selected states are added as 

they are encountered during each iteration. More states are added in the initial iterations 

and the number of new states to be added to the sample space dwindles as the sample 

space becomes a good representation of the relevant state space. A good strategy is to 

start with a high value of δ and keep reducing it until the performance for two successive 

values is comparable. Really high values of δ result in very few states in the sample space 

as seen in Figure 4.6(a). Also, the convergence of the value function for some of the most 

visited states is shown in Figure 4.6(b). Depending on the initialization, the value 

function either trends upwards or downwards and finally converges after sufficient 

number of iterations. 

4.3.3. Demand modeling revisited 

Three different demand models are considered:  

(i) Deterministic demand- The seasonal demand pattern (4.25) used in Chapter 3 

(section 3.4) is used. The demand pattern (4.25) in assumed to repeat until t , while 

counter τ=1,2,..30 is included in the state definition. The counter resets to 1 after τ=30.  

3021]100100[

2011]140140[

101]6060[

)(

if

if

if

d sea                     (4.25) 

 While implementing the ADP algorithm shown in Figure 4.5, for the 

deterministic problem, the smoothing operation (4.23) is not needed. This is because of 

the absence of uncertainty leading to exact value update for every state. The action is still 

perturbed to counter the effects of dicretization.  
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Figure 4.6: (a) number of states growing with iterations, (b) Convergence of value 

function 
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(ii)  Demand with fluctuations around a constant mean 

Similar to Chapter 3, the stochasticity in demand is modeled as a Markov chain 

with twelve states shown in Table 4.4. These states represent deviations from nominal 

demand for the light and dark products. The transition probabilities pertaining to low, 

medium and high cases of uncertainty are given by T1 (4.26), T2  (4.27) and T3 (4.28) 

respectively.    
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Table 4.4:  Deviations from nominal demand for the light and dark products 

65%65%12

-70%-70%11

-40%-40%10

45%45%9

-40%60%8

60%-40%7

-60%40%6

40%-60%5

20%20%4

-25%10%3

10%-25%2

0%0%1

DLs
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0%0%1

DLs

 

 

 

The high uncertainty case corresponding to probability transition matrix T3 is considered 

around a constant mean of [100 100].  

(iii) Inflationary demand case 

In addition to the regular demand scenario in (ii) above, an inflationary demand 

scenario and a less-than-regular scenario is considered similar to example II. (To avoid 

confusion, the first demand scenario is referred to as the regular demand and the third is 

called less-than-regular demand). The nominal demand associated with the regular 

demand scenario, in this case, is given by [80 80], while the nominal demand during 

inflationary scenario is marked by [120 120]. If the cumulative shortage exceeds a pre-

defined limit, the demand corresponds to a less-than-regular scenario for which the 

nominal demand is given by [70 70]. This is shown in Figure 4.7 along with the 

probabilities of transition between the scenarios. While demand is in one of the regular, 

inflationary or less-than-regular scenario, it is also amenable to deviations from nominal 

demand. Deviations listed in Table 4.4 are considered along with probability transitions 

associated with matrix T1 (low uncertainty). The demand model considered here is like a 
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looped Markov chain. A realization of the model is shown in Figure 4.7. The model is 

similar to the random fluctuations around a seasonal mean, except that the mean 

switches are random and the probability of switching depends on actions/ performance. 

Resource life is considered to be 17 for the deterministic demand case. For the stochastic 

demand cases resource life is normally disctributed with mean 17 and variance 1.  
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Figure 4.7. Sample realization of switching mean (inflationary demand scenario) 

 

 

4.3.4  Results and discussion 

The results obtained by using the ADP algorithm for three demand cases 

described in section 4.3.3 are shown in Table 4.5. The results from solving the LP for the 

deterministic demand and resource life and those from solving the moving horizon LP for 

the rest of the cases are also shown. For the deterministic case, LP gives the optimal 

result while the performance of ADP is suboptimal due to the value function 
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approximation, state aggregation and reduced state space. The infinite horizon discounted 

profit obtained from ADP is 94.5% of the optimal solution.  

For the stochastic demand and resource life cases, however, the rolling horizon approach 

misses substantial amounts of demand. The behavior is expected since the rolling horizon 

method only considers the most expected demand trajectory for decision making at each 

time. When the demand deviations change, the actions recommended by the rolling 

horizon approach cannot cope with the modifications in demand. The behavior is more 

pronounced in the case of inflationary demand. This is because, in the rolling horizon 

approach, the cumulative shortage is almost always higher than the prescribed limit to 

sustain the regular demand. This is not the case in ADP approach, due to which a higher 

overall demand is observed, leading to higher sales and profit. 

   

Table 4.5: Results from ADP and rolling horizon solution methods 

 

 

    ADP     LP   

Demand case        I II III I II III 

          

total profit 529827.18 445917.47 429285.89 560310.30 409244.30 367832.29 

total sales 16878.00 14205.00 13963.00 17939.80 13501.33 13006.21 

total production 17042.00 14285.00 13763.00 17919.80 13481.33 13103.43 
Average 
product inv 142.52 300.26 30.52 19.20 276.02 73.74 
Average 
resource inv 11.65 19.93 7.91 9.68 21.93 10.67 

total reorder 996.00 1006.00 1010.00 1013.99 908.77 906.48 
total lost 
demand (L) 947.00 898.70 4208.00 2120.00 2228.64 4381.68 
total lost 
demand (D) 1135.00 3594.80 3699.00 1810.20 2560.03 4382.11 
total demand 
(L) 8940.00 10045.00 10704.00 8940.00 10045.00 10644.00 
total_demand 
(D) 10020.00 8245.00 11166.00 10020.00 8245.00 11126.00 
profit per unit 
of demand 27.94 24.38 19.63 29.55 22.38 16.90 
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4.4 Conclusions 

An alternative approach to solving the planning and scheduling problems with 

perishable resources is presented in this chapter. Due to absence of uncertainty at the 

scheduling level, the decisions are determined by heuristics for resource transition and 

allocation. These heuristics are guided by the solution of LP which was formulated in 

Chapter 3. For the solution of the large sized planning problem, an approximate dynamic 

programming algorithm is presented. For the deterministic problem and for the parameter 

set considered, the solution obtained by the ADP algorithm is 94.5% of the optimal 

solution.  

Two models are considered to account for uncertainty in demand and resource 

life. While resource life is drawn from a normal distribution, the demand is modeled to 

randomly deviate (i) from a constant mean and (ii) from a randomly switching mean. The 

probability of mean switching in case (ii) is dependent on current state and action. It is 

observed that for both the stochastic demand models, the ADP algorithm produces 

substantially better solutions as compared with the rolling horizon approach. This is 

because the form of the uncertainty cannot be successfully captured using the rolling 

horizon approach. Additionally when mean switching depends on the performance, poor 

decision-making has a more far reaching effect on overall performance.  
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CHAPTER 5 

HANDLING DEFECT PROPAGATION IN SYSTEMS WITH 

STATIONARY EQUIPMENT AND COSTLY JOB INSPECTION 

5.1 Introduction 

Many manufacturing systems have large machines/ equipment that deteriorate 

randomly. Examples can be seen in auto-parts manufacturing, semi-conductor 

manufacturing, chemical process industry, etc. The effect of this deterioration is generally 

reflected in one or a combination of the following: lower yield, higher fraction of 

defective intermediates, higher operating or maintenance cost, or increased probability of 

complete failure of the equipment. The random deterioration in a single machine is often 

modeled as a Markov chain (Osaki 2002), where the equipment can be in one of N states 

at any time. State is designated as i=1,2,…,N, with 1 being the best state and the machine 

progressively degrading until it reaches an absorbing state N. The state N may 

characterize a completely failed state or a state of worst possible machine performance 

leading to least economically favorable production scenario. The states 1,2,…N are rarely 

known to the decision-maker and the machine may end up in state N (failed), without 

decision-maker‟s notice termed as „silent failures‟ in (Ivy and Polak, 2005).      

 

To keep the machine from ending up in a failed state, an optimal maintenance 

policy is needed. Typical decisions include renewal/ replacement (bring the machine back 

to the state 1), repair (bring it back to a relatively newer state), machine inspection (incur 

a cost to know the machine condition), or inspection of machine‟s output. The inspection 

is needed because the machine condition is not directly observable and may lead to 

perfect or imperfect knowledge of the condition depending on the quality of observations. 

Xiong et al, (2002) present a survey on replacement and repair policies for randomly 

deteriorating systems found in existing literature and industry. Typical policy structures 

are block replacement, age replacement, order replacement, failure limit policy, 

sequential preventive maintenance policy, and repair cost limit policy. A more rigorous 

approach, introduced by Girshick (1952) is to use a Partially Observable Markov 
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Decision Process (POMDP) framework to obtain an optimal repair and inspection policy. 

To this end, a survey of maintenance studies on single machine systems prone to 

stochastic degradation is given in Pierskalla and Voelker, (1976); Monahan (1982). 

Structural properties of the optimal value function and optimal policies are derived for 

many cases.  

 

A case of particular interest is the one where the machine deterioration is reflected 

in increased production of defective jobs considered by Smallwood and Sondik (1973). 

The information about the machine condition may be known only by means of costly 

inspection of the machine output which relates probabilistically to the machine condition. 

The problem of costly job inspection is considered by Smallwood and Sondik, (1973); 

Ehrenfeld (1976); White (1979); Monahan (1980), and is referred to as the case with 

„imperfect and incomplete observation‟. Due to high cost of inspection, it may not be 

economically favorable to test every processed job. Such characteristics are prevalent in 

jobs requiring specialized testing for quality variables like electrical properties, 

radioactivity, product composition, uniformity, etc.  

 

In most real world situations, a job undergoes a series of operations on multiple 

machines. Therefore, the notion of incomplete job inspection motivates the analysis of 

defect accumulation and propagation in systems with multiple operations and (or) 

multiple machines. This is because the untested defective intermediates would propagate 

through the system, until found defective in the final testing. Due to the possibility of 

accumulation of defective intermediates, job scheduling may also be affected by machine 

renewal and job inspection decisions. It should be noted that even if the inspection of all 

jobs was favorable, in the presence of inspection errors of type I (Lee and Unnikrishnan, 

1998), defective jobs would be reported as non-defective and allowed to propagate 

through the system. Only error-free or perfect inspection is considered in this work but 

the analysis can be easily extended to type I errors. The above mentioned aspects of 

defect accumulation and propagation in systems with stochastically degrading machine(s) 

are addressed by considering two process flow topologies:   
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(i)  a re-entrant flow system characterized by a job going through the same operation 

more than once 

(ii)  a hybrid flow system which is a combination of serial and re-entrant flow 

 

Since the knowledge of the deterioration level of the machine(s) and the un-tested 

defective jobs is not completely available, the problems are formulated as POMDP. 

However, addition of scheduling decisions in the presence of partially observable states 

leads to fairly large size problems even for simple real world systems. Fortunately, recent 

research (Pineau et al, 2003; Smith and Simmons 2004; Spaan and Vlassis, 2005) in the 

area of approximate solution methods for large POMDPs proves helpful in this regard.  A 

point based solution method called Perseus (Spaan and Vlassis, 2005) is used to solve the 

above-mentioned problems and the experimental results are reported. Comparison with 

prevailing periodic policies for maintenance and inspection are also presented. 

5.2 System Description 

In this work, discrete manufacturing systems with single or multiple machines are 

considered. The general characteristics of the system and modeling assumptions are as 

follows: 

5.2.1 Modeling machine deterioration 

All machines considered in subsequent problems are modeled to be deteriorating 

according to an underlying Markov chain. A good state is differentiated from a bad state 

by the associated probability of defect generation βs, such that βs < βs+1 for s=1,2…N-1.   

Actions of machine renewal, job inspection and job scheduling are considered. The 

processed job is observed to be either defective or non-defective with complete accuracy 

whenever job inspection is performed. In case of multiple machine systems, the state 

transition probabilities and defect probabilities corresponding to machine states are 

independent from one machine to another unless otherwise mentioned.  

5.2.2 Defect accumulation and propagation 

It is assumed that a defective job can be scrapped or reworked (depending on the 
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problem specification), only when a job inspection is carried out at that instant. If the job 

is not inspected due to economic reasons, the defective jobs tend to accumulate and 

propagate through the system. Figures 5.1(a) and 5.1(b) show a serial manufacturing 

system and a parallel assembly system respectively (Mandroli et al, 2006). The jobs 

(denoted by al for job completing the l
th

 operation) that are found defective can be 

reworked/ repaired in the serial manufacturing system, while defective jobs would be 

scrapped in the assembly system when found defective. The defective jobs that are not 

inspected would go on to the next operation or final assembly. It is assumed that when a 

job is inspected, defects caused by all prior operations are revealed as opposed to just the 

last operation. 
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Figure 5.1: (a). Serial production system with rework (b) Assembly system with scrap 
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For the purpose of modeling, the defective jobs in the system need to be kept 

track of at all time. Therefore, at any time, the system state can be fully characterized by 

two pieces of information: (i) the state of all the machines (ii) the total number of 

intermediates and the fraction of defective items in them. To differentiate the general 

system state from machine state, the latter is referred by machine condition or 

deterioration level in subsequent analysis.  

5.2.3. Objective 

Most studies on optimal maintenance policies for randomly deteriorating systems 

minimize the finite or infinite horizon cost (Smallwood and Sondik, 1973; Osaki 2002; 

Ivy and Polak, 2005). This is because the degradation of the machine is reflected in 

increasing operating cost and/or increasing maintenance cost as the machine regime gets 

worse. For example in (Ivy and Polak 2005), the cost of repair increases with the extent 

of repair, which in turn depends on how severe is the deterioration. In this work, it is 

assumed that the cost of renewal is the same for all machine regimes. Since inspection is 

carried out on jobs only, inspection cost is not a function of machine regime. 

Consequently, the deterioration is only reflected in the fraction of defective jobs, an 

increase in which leads to lower revenue. Therefore, the infinite horizon profit is 

maximized for all illustrations.  

A good heuristic used in industrial applications is to employ an age 

replacement/renewal policy and periodic inspection policy. In similar spirit, heuristics of 

the following nature are used to establish a lower bound on the POMDP solution. 

- maintain every ζm time units 

- test every ζt time units 

The best periodic policy also helps to obtain a sample set of belief points 

representing the relevant region for carrying out PERSEUS iterations. The FOMDP 

solution provides a loose and unachievable theoretical upper bound.  

5.2.4. The single machine system 

For a single machine prone to random degradation, the following cases have been 

extensively studied:  
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 Fully observable – the machine state is perfectly observable 

 Unobservable – no information about the machine condition is available at any time 

 Imperfect observation – imperfect observations e.g. information about processed job 

is readily available at all times 

 Costly inspections – machine inspection or job inspection may be carried out at a 

cost.  

 

For all of the above cases (Derman 1963; White 1979; Monahan 1980) have proven 

the existence of optimal control limit policies under certain assumptions on the system 

dynamics and reward function. A particular instance is the unobservable case where the 

optimal policy is to replace every m runs, where m can be infinity (Derman 1963). The 

conditions for such a policy to be optimal are:  

( ) ( , ) is nonincreasing in

( ) For an ordering '

( , ') ( , ) is monotonein

( ) is nondecreasing in for , {1,2,.. }
N

ij

j k

i r s a s a

ii a a

r s a r s a s
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In order to understand the concept of partial and incomplete observation and lay 

the foundation for future illustrations, an instance of the „general repair and inspection 

model‟ presented in (Monahan 1982) is shown as illustration I. For ease of exposition, the 

transition probability matrix is considered to be an upper triangular matrix for all actions 

except that of machine renewal. This requires that pij =0 for i<j and pNN = 1, making s=N 

an absorbing state.  The transition probabilities corresponding to the renewal action have 

pi1 =1, pij=0, j 1. 

Illustration I:  A hypothetical machine produces one job per unit time and is prone to 

deterioration according to the model described earlier in this section. Pertinent decisions 

include machine renewal and job inspection, both of which are assumed to be 

instantaneous and have associated costs CM and CI respectively. The machine may 

transition to a different deterioration level at each time. Degradation time-scales are 

therefore controlled by the probability transition matrix corresponding to the action(s) of 
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non-renewal. A reward CP is received only if the processed job is non-defective (which is 

determined for all jobs during final testing before product sale).  

S ={1,2,.. ,N} 

A ={a1,a2,a3}: a1 - do nothing;  a2 - inspect;  a3 - renew 

O={o1,o2,o3}: o1- no defect; o2 - defect; o3 - no observation 

R(s,a,s’) = (1- s’)CP-IM(a)CM-II(a)CI 

Oa2(o1|s’) = 1- s’ ;    Oa2(o2|s’) = s’   

Oa(o1|s’) = 1 for  a  a2        

 

where, IM(a) and II(a) are binary numbers equal to 1 when the machine is renewed and 

job inspection is performed respectively. The POMDP for N=3 (three levels of 

deterioration) with CP = 1000, CM = 10000 and three different values of CI (parameter 

sets 1,2 and 3 shown in Table 5.1), is solved using PERSEUS (as discussed in Section 2.3 

of Chapter 2) and the optimal policy structure is shown in Figure 5.2 (for CI =150). It is 

seen that the optimal policy has a control limit structure due to the following system 

properties. 
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The policy can therefore be compactly represented as (5.1) for the above 

parameter values. It can be shown that a general system with N-state deterioration and 

above properties satisfies the monotonicity properties shown by (Monahan 1982).  Those 

noted above represent sufficient conditions for monotonicity results to hold. This is 

demonstrated in appendices A through C.  
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Figure 5.2: Optimal policy for three-state single machine problem 

 

 

In the illustrations to follow, the concept of imperfect and incomplete observation 

is extended to multiple type of jobs operated on a single machine (illustration 2) and 

finally to multiple type of jobs operated on multiple machines (illustration 3). In both 

examples, propagation of defective jobs contributes most to the problem size and 

computational complexity.  

                                          

5.3 A re-entrant flow example - modeling and solution 

5.3.1 Description 

Illustration 2:  The machine in illustration 1 again operates on one job per time unit 

and undergoes degradation at each time, according to the Markov chain similar to the one 

in illustration 1. However, the job cycles back to the machine until it undergoes the same 

operation L times, after which it leaves the system as product. (This re-entrant 

characteristic is observed in semi-conductor fabrication where multiple layers are 

deposited on silicon wafers. Therefore, jobs at various stages of production compete for 

the same resources). The process is shown in Figure 5.3, where l refers to the job and 

subscript l=0,1…L refers to the number of operations that the job has gone through. For 
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simplicity they are called l layers. There is a queue before the operation where 

intermediate jobs wait for processing. Therefore, an added decision in this case is job 

scheduling, i.e., which of the intermediates l ,l=0,1,…L-1 to admit for processing. Each 

intermediate can be inspected if the decision-maker so chooses. Defect in all existing 

layers can be detected at the time of inspection. If found defective, the intermediate job is 

immediately scrapped/ removed from the system. But if the inspection is not carried out 

at each time, then defective items would propagate through the system. The product 

brings revenue CP only if all the L layers are non-defective. The costs for machine 

renewal, job inspection, processing l
th

 layer and raw material 0 are CM, CI, Cl and C0 

respectively. The overall objective motivated by quality management is to devise an 

optimal machine renewal, job inspection and job scheduling policy that maximizes the 

infinite horizon profit from product sales. It is assumed that supply of 0 is unlimited and 

final product L is always tested. (The symbol is used to differentiate the job from 

action a. The nomenclature with tilda (~) is maintained to denote jobs and machines in 

subsequent analysis, in order to avoid confusion with variables related to state and action 

spaces). 
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ãL-1

ã0
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Figure 5.3: Re-entrant flow problem  
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The above problem is interesting in the following ways: 

i. It allows for analysis of the propagation and accumulation of defective jobs by 

means of a compact system representation.  

ii. For very small and very large queue sizes, the system would behave as a serial 

production (Figure 5.1(a)) and assembly system (Figure 5.1(b)) respectively. For 

example, when no jobs are allowed to wait in the queue, one job remains in the 

system until completion. This is similar to the job going through a sequence of L 

operations in a series. On the other hand, if a large number of intermediates are 

waiting in the queue for processing, then it acts more like an assembly system.  

iii. Job inspection now serves two purposes, i.e., it not only provides information 

about the machine degradation, but also gives information about defective 

intermediates so that they can be picked out of the system to save the cost of 

additional operation on them. 

iv. The job gathers value with each deposited layer. With better inspection and job 

scheduling, it is possible to reduce the number of good layers lost on bad 

products. This is because, a product is considered defective if at least one layer on 

it is defective.   

 

Similar to the previous illustration, the system is modeled as a POMDP. The 

modeling details are included in the formulation and examples are presented for a three 

layer product, i.e. for L=3. The problem is referred to as the re-entrant flow problem. It is 

worth noticing that the state dimension and consequently, the size of the state space are 

significantly larger in this case. This is because now the total number of intermediates in 

the system and the fraction of defective intermediates need to be accounted for. The 

action space has an added dimension of job scheduling and the state transition probability 

matrix also takes into account the probability of defect propagation. 
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5.3.2 Formulation as POMDP 

State 

The system at any time is fully characterized by the total number of jobs, the fraction of 

defective jobs and the deterioration level of the machine. Therefore, 

s = [n1 n2  ...nL-1 d1 d2 ...dL-1   ] 

nl {0,1,2.., }- total number of l in the queue for l=1,2..L-1 

dl  {0,1,2..,nl} - number of defective l in the queue for l=1,2..L-1 

  {1,2..,N}- discrete integer representing the deterioration level of the machine 

The state space consists of all possible combinations of the above parameters. For 

instance, if L=3 and if the maximum allowable number of jobs in the queue  ( ) is limited 

to 3 (i.e., n1 + n2 ≤3), then there are following (n1,n2) combinations:  (3,0) (2,1) (1,2) (0,3) 

(2,0) (1,1) (0,2) (1,0) (0,1) (0,0). For a particular value of n1 say 3, d1 can hold four 

possible values from 0,1,2,3. Therefore, the total number of possible combinations for [n1 

n2 d1 d2] is 35. With 3 deterioration levels for the machine, the size of the state space is 

105 (35 × 3). Similarly, the size of the state space for maximum queue sizes of 4 and 5 

are 210 and 378 respectively.  

Action/ Decision 

a = [ a1 a2 a3]    

where  a1 {0,1,2,..L-1} pertains to the job scheduling decision (admit 0 , 1 … L-1) ; a2 

{0,1} pertains to job inspection decision (test (1) the processed job or not (0)) ;  

a3 {0,1} pertains to renewal decision (renew the machine(1) or not (0)). Assuming all 

final products are tested, the size of action space for L=3 is ((3 x 2)-1) x 2 = 10.  

Observation 

o {o1,o2,o3}   
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Transition and observation probability matrices 

For a queue length of 3, T is a 105 × 105 × 10 matrix incorporating the 3 sources 

of uncertainty mentioned below:  

a). Machine regime switching - As shown in illustration 1, the machine can switch 

between regimes with certain probabilities in a non-deterministic manner. 

b). Defect generation - Defect generation is probabilistic and the defect probability (βs) is 

set by the regime in which the machine is operating.  

c). Error propagation- Since not all intermediates are tested, the queue can contain 

defective intermediates, designated as d1 and d2 in the state description. Probability that a 

defective intermediate is picked and operated upon is given by q: 

l

l

n

d
q                 For l being operated 

For a queue length of 3, O is a 105 × 10 × 3 matrix. It must be noted that the total 

number of the intermediates in the sysem (n1 n2  ...nL-1) are always observable. The 

specific form of state transitions for three levels of machine deterioration, L=3 and  a1=1 

is shown in Figure 5.4. If nl = 0, admitting l for processing is not a permissible action. 

To avoid this situation while implementing the POMDP policy, l-1 is admitted.  

Objective 

The infinite horizon discounted profit/ reward is given by (5.2): 

))()()(

)()((max

00

1

1

...,
*

21

ttlltII

t

tMMtPP

t

aaa

aICaICaIC

aICaIC
V

                                                          

    (5.2) 

where γ is the discounting factor, at is the action at time t and all I‟s (IP, IM, II, Il, I0) are 

binary and are equal to 1 when a non-defective product is produced, when a maintenance 

job is run, when an intermediate job is tested when l is run and when raw material 0 is 

admitted at time t, respectively.    
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(c) 

Figure 5.4: State transition for the re-entrant flow problem for 3 levels of machine 

deterioration and L=3 (a) Possible values of the machine condition at the next time step 

(  ′) given the current machine condition (  ) and the renewal decision. (b) Probabilities 

associated with defect generation (  ) and propagation ( 11 nd ). (c) Possible next states 

and observations depending upon job scheduling and job inspection decisions and 

realization of uncertainty. 
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The maximum allowable size of the queue largely governs the size of the state 

space which eventually controls the size of the problem. The above problem is solved for 

maximum queue lengths of 3, 4 and 5. Three different parameter sets (4, 5 and 6) shown 

in Table 5.1(a) are considered. 

 

The parameter values are reasonably chosen to represent the trade-offs among 

different cost heads in a typical manufacturing environment. Since the queue length is 

constrained, holding cost/ work in progress (WIP) cost is not considered. All problem 

instances are solved using the algorithm shown in Figure 5.5. An initial belief sample set 

is obtained by using three different policies (i) optimal policy for the FOMDP problem, 

(ii) best periodic or block replacement and inspection policy, and (iii) policy to select a 

random action at each time. The algorithm uses PERSEUS iterations on the fixed initial 

belief set until ε convergence is achieved. A new sample is then obtained using the 

current value function for POMDP and the above is repeated (this is called one sample 

iteration). These sample iterations are carried out until the performance of two 

subsequent sample iterations is found to be δ-close for a randomly chosen test belief set. 

 

The results are reported in Table 5.2. Table 5.2 includes the size of the problem 

for the queue sizes considered. |V| is the size of the optimal policy, i.e., the number of 

gradient vectors i

n , i= 1, 2, .., |Vn|. Profit for POMDP is the average profit obtained by 

starting in s=1 ([0 0 0 0 1] -no jobs in the system and best machine condition) and 

following the optimal policy. Average is taken over 100 experiments in all cases. 

FOMDP profit reported for starting in state s=1, acts as the theoretical upper bound and 

cannot be achieved. The difference in the two values provides the extent to which the 

partial observability affects the performance. For parameter set 5, the processing costs for 

layers 1,2 and 3 are higher as compared to those for parameter set 4. This causes 

reduction in the overall profit as compared with parameter set 4 but evidently no 

difference in the optimal policy for fully observable problems. However, in the partially 

observable case, the (near) optimal policy results in increase in average queue size 

(number of intermediates in the queue at any time) with increase in processing cost. This 

is because the system is more cautious about running an expensive intermediate when 
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machine deterioration level is high. In parameter set 6, the defect probabilities associated 

with machine deterioration levels 2 and 3 are increased, which leads to further reduction 

in overall profit. The general characteristics of FOMDP policies are discussed in further 

details.   

5.3.3  Characterization of FOMDP policy 

In order to understand the system behavior, the optimal policy corresponding to 

the FOMDP problem is analyzed. It is seen that the machine renewal, job inspection and 

job scheduling decisions are mutually correlated and therefore a compact representation 

of the policy is not possible. The general characteristics of the optimal policy are 

discussed further:  

 

1. The optimal policy is a strong function of the probability of defect generation and 

that of defect propagation. The former is the determined by s, the defect 

probability associated with machine deterioration level s and the latter is the 

probability that the incoming job is already defective. The latter is given by dl/nl. 

Also the term „expensive intermediate‟ is used to denote al with relatively large l.  

2. The machine is renewed when defect generation probability is high (3 and(or) 2) 

and defect propagation probability is low.  

3. Job inspection is carried out when both of the above probabilities are high and 

when an expensive intermediate is admitted for processing. Note that according to 

problem specification, L is always tested.  

4. An expensive intermediate l is admitted for processing whenever nl 0 and defect 

generation and propagation probabilities are low. Otherwise, al-1 is picked for 

processing.  

 

For the cost values considered, the system tends to keep a small number of 

intermediates in the system as guided by the optimal policy. This is the reason why the 

optimal policy and the performance of the reentrant flow problems with varying limits on 

queue sizes (3,4 and 5) are the same (please see Table 5.2). As for the structure of the 

POMDP policy, trends similar to the FOMDP policy are observed. However, job 



 101 

inspection also serves the purpose of determining machine condition which is not known 

with certainty along with the fraction of defective intermediates. The policy space is very 

large in the case of POMDP problem to be represented in a meaningful way. This is 

because the optimal policy is a map between the high dimensional belief state to a 

relatively small set of actions. Since the policy is characterized by the value function, 

some conjectures on the structure of the value function for re-entrant flow problem are 

presented in section 5.3.  The case with multiple machines in the hybrid-flow example is 

presented below. It combines the re-entrant flow feature with serial flow topology as 

shown further. 

 

 

 

 Step 0.      Generate a sample belief B with 10,000 belief points by simulating the 

system under the policies below:  

(i) FOMDP optimal policy assuming full observability 

(ii)  Various periodic maintenance and inspection policies 

(iii) Random actions  

                Initialize )},(min{min asrV
sa

init  

  Step 1.    Using B and V
init

, run PERSEUS iterations as shown in section 2.3 of 

Chapter 2 for ε = 0.01. The converged value function is denoted by 
*

PERSEUSV   

  Step 2.      Use *

PERSEUSV  to sample another belief set B̂ with 10,000 states.  

  Step 3.      Set *0

PERSEUSVV . Make one PERSEUS iteration to obtain V
1
 

  Step 4.      If  01.0|| 01 VV , stop, else set B= B̂ , V
init

 = V
1
, go to Step 1.  

 

Figure 5.5. Algorithm I for solving POMDP 
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5.4 A hybrid flow example – modeling and solution 

5.4.1 System Description 

Illustration 3: There are three machines (A,B,C) similar to the one in Illustration 1 

that undergo degradation  according to separate independent Markov chains and defect 

probabilities. The machines are in series and the jobs have a pre-defined order of 

operation as shown below:  

      1. Three layers at machine    

      2. Two layers at machine   

      3. One layer at machine   

where layer again refers to one machine operation for simplicity. The jobs being operated 

at machines ,  and  are designated as l, l, and l respectively, where the subscript l 

refers to the number of layers already deposited. The process is schematically shown in 

Figure 5.6. Due to the difference in times of operation, the machines must deteriorate 

after each run in this case. However, for simplicity, it is assumed that all machines can 

transition to a lower deterioration level at each time unit but the result is only reflected on 

the next job to be processed and not the current job. There is an inspection station after 

machines  and . If an intermediate is tested and found defective, it is sent to a repair 

station where only the topmost layer can be repaired. It costs CR for each repair and the 

repaired job is returned to the system for further processing. It takes 2 time units for an 

operation at , 3 units at  and 6 units at . Unlike in Illustration 2, there is no possibility 

of queuing the jobs in this system. Jobs are fed sequentially, there is one job at each 

machine at any time and product is obtained every 6 time units. It is assumed that 

machine maintenance, job inspection and rework take negligible time. However, if a 

defect is detected in the last layer of  or , then repair is not required and it can be 

repaired by the subsequent operation (  or  resp.) without any additional cost. Reward 

is received only when all the layers in the final product 1 are non-defective. The 

objective is to maximize the average infinite horizon discounted profit while obtaining an 

optimal renewal policy and job inspection policy for all three operations. It is assumed 

that the final product is always tested.  
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ã0

(raw

material)

test
y

n machine

B̃

b1̃

test
y

n
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Figure 5.6  Hybrid –flow system 

 

 

The feature of the above problem that a defect in the last layer of  and  can be 

corrected by subsequent operations is seen in automotive assembly where downstream 

correction of errors in physical dimensions of jobs is possible. Due to this feature, the 

maintenance decisions downstream affect the upstream processing. The system is 

balanced since a job spends exactly 6 time units at each machine. A time counter t 

(t=1,2..,6) is used to designate the time elapsed since the job first entered the machine. It 

is assumed that the machine can be serviced and job can be inspected only at the end of a 

run. Therefore, maintenance and inspection at machine ,  and  can be done when t is a 

multiple of 2, 3 and 6 respectively. The formulation of the problem as a POMDP is 

presented below. 

 

5.4.2 Formulation as POMDP 

State 

The system at any time is fully characterized by the following  

s = [       t defect   defect   defect ] 

where,  

 ,  ,  {1,2,..N} represent the regime of machines ,  and  
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t1 {1,2,..,6} time elapsed until the jobs , ,  started getting processed at machine ,  

and  respectively. 

defect {0,1} shows whether the jobs  that are being processed have one or more 

defective layer(s) (1) or not (0)  

Action/ decision 

a = [renew   renew   renew  test   test ] 

renewi {0,1} for i = , ,  , pertains to whether to renew the machine i (1) or not (0) 

testi {0,1} for i= ,  pertains to whether to test the processed job i(1) or not (0)  

Observation 

o = [o  o   o ]  

where  oi {o1,o2,o3} for i= , 

            oi {o1,o2} for i=   

This is because the final product is always tested 

Transition Probability Matrix 

 T incorporates the following sources of uncertainty 

a). Machine regime switching - As shown in illustration 1 (Figure 5.4(a)), the machines 

can switch between regimes with certain probabilities in a non-deterministic manner.  

b). Defect generation - Defect generation is probabilistic and the defect probability (βs) is 

set by the regime in which the machines are operating.   

Objective 

Maximization of the infinite horizon discounted profit/ reward given by (5.3): 
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                   (5.3)                                                                         

where, 

γ is the discounting factor, at is the action at time t and all I‟s (IP, IM, II, I0) are binary 

and are equal to 1 when a non-defective product is produced, when a maintenance job is 

run, when an intermediate job is tested, and when raw material 0 is admitted at time t, 

respectively.    

 

The above is solved for two possible regimes (N=2) for each machine and the 

parameter sets 7,8 and 9 shown in Table 5.1. The POMDP is solved using the algorithm 

shown in Figure 5.5 and the results are reported in Table 5.2. Similar to the results for 

illustration 2, the FOMDP profit is also reported to highlight the extent of partial 

observability in each case. Similar to the re-entrant flow case, the policy space is 

complicated leading to difficulties with compact policy representations even for the fully 

observable problem. For the parameter sets 7, 8 and 9 shown in Table 5.1, the 

characteristics of the optimal FOMDP policy are as follows:  

 

1. When the time counter t1=2, only machine  can be renewed and 1 inspected. The 

optimal policy pertaining to all parameter sets (7,8 and 9) is to never renew the 

machine and always inspect the job 1.  

2. When t1=3, the optimal policy is never to renew machine  and always inspect job 1 

3. When t1=4, the optimal policy is to not renew machine A but to inspect job 2 only 

when 1 is non-defective. This is expected since only the top layer can be repaired 

upon inspection. However since all 1s are tested at t1=2, this situation never arises in 

the fully observable case.  

4. When t1=6, only machine  is renewed when machine is in deterioration level 2 and 

the incoming job is non-defective, for parameter sets 7 and 9. For parameter set 8, 

machine  is also renewed when in deterioration level 2. This difference can be 

attributed to lower renewal cost in case of parameter set 8.  
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The high dimensionality associated with the (near) optimal policy for the partially 

observed hybrid flow problem prevents a compact representation. Some conjectures on 

the POMDP policy together with those on the partially observed reentrant flow problem 

are presented in the following section. Alternative policies are also discussed in order to 

establish the goodness of the POMDP solution.  

5.5 Discussion on results and policy discussion 

5.5.1 Performance Comparison 

In order to understand the advantages of a rigorous approach to solving this class 

of problems, the following is used as a basis of comparison:  

 

(i)  FOMDP solution – The performace of the MDP, assuming that the system state is 

fully observed, establishes a non-achievable upper bound to the POMDP solution and 

the gap between the performances show the extent to which the partial observability 

affects the system. It also helps  understand the policy structure and the relevant 

region of the state space in certain cases. The optimal discounted infinite horizon 

reward for starting in s=1 for all illustrations and parameter sets is reported in Table 

5.2. For the single machine problem, the changing inspection cost has no effect on the 

solution since the state is fully observed and inspection is never carried out. (State 

s=1 in all illustrations, represents the starting state with the best machine regime(s) 

and no jobs in the system).   

(ii) Q
MDP

 approximation – A lower bound on the close-to-optimal solution of the POMDP 

is established by using a simple function approximation scheme (Hauskretch 2000). 

The optimal Q-function associated with the fully observable MDP is shown in (5.4), 

where V
MDP

 is the optimal value function.  The Q-function associated with the 

partially observed problem for each belief state and action is then approximated as 

shown in (5.5). The resulting performance is contained in Table 5.2. Note that the 

optimal policy corresponding to the FOMDP does not contain the inspection decision 

for gauging machine regime when states are fully observed. That is the reason why, at 
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times, the performance of this approximation is worse than that of periodic policy as 

discussed next. 

'

)(),|'(),(),(
s

MDPMDP sVasspasrasQ                                                                   (5.4) 

N

s

MDP sbasQabQ
1

)(),(),(


                                                                                        (5.5)  

 

Table 5.1: Parameter values for (a) the re-entrant flow problem (b) the hybrid flow 

problem (-do- implies ditto) 

 

(a) 

 

(b)  
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(iii) Periodic maintenance and (or) inspection policies – As mentioned in section 5.2, the 

periodic policies are easy to implement and form the industrial standard for 

maintenance and job inspection decisions. For single machine problem, a periodic 

maintenance policy is optimal when inspection costs are prohibitively high (shown as 

the unobservable case in section 5.2). As seen in Table 5.2, the performance of the 

POMDP for the single machine problem drops with increasing cost of inspection. For 

parameter set 3, the periodic policy gives a performance similar to that of the 

POMDP. 

5.5.2 Empirical findings and conjecture 

In addition to the rigorous results, the following empirical observations are 

reported for the illustrations that were studied: 

(i)   In the relevant belief space, the close-to-optimal value function for the partially 

observed re-entrant flow problem and for the single machine could be represented 

as a linear function of the belief states.  

(ii)   In the relevant belief space, the close-to-optimal decision rule for single machine, 

reentrant flow and hybrid flow could be represented as a decision tree of size 

substantially smaller than the dimension of the belief space.  

The value function in this case can be claimed as only close-to-optimal because 

there are no guarantees for optimality of solutions yielded by PERSEUS in solving large 

size POMDPs. Relevant belief space refers to the set of belief points that are visited by 

following the close-to-optimal policy. Figure 5.7 is a plot between the actual value 

function v/s that obtained by a linear regression for the re-entrant flow case and 

parameter set 4. The value function is plotted for the belief states that are visited when 

POMDP close-to-optimal policy is followed. The band around 45° line represents a good 

fit. It is seen that the points mostly lie within that band.  

 

5.5.3 Value function approximation  

It is well-known that for a general infinite horizon POMDP, the optimal value 

function can be closely approximated as a piecewise linear and convex function (Sondik 
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1978) as shown in (2.10). From the finding in (i) above, it turns out that in the relevant 

region of the belief space, the value function can be approximated as a single linear 

function shown in (5.6) where ws are the weights for each system state. 

s.t. 
||

1

~

)()(
S

s

s sbwbV                                                                                                         (5.6)  

 

 

 

Figure 5.7: Value function v/s linear approximation plot  

 

 

 

Therefore, the close to optimal value function can be represented as a set of 

weights {w1,w2..w|S|}. In order to determine these weights, value iterations can be carried 

out on |S| different belief points where |S| is the dimension of the belief state. In Figure 

5.8, an algorithm to solve the POMDP in such a scenario is presented. The results from 

algorithm II are also reported in Table 5.2. It is seen that the performance for the single 

machine and re-entrant flow cases are comparable with that of algorithm I.    
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  Step 0.    Arbitrarily initialize W
0
, where W is the vector of wi, for i=1,2,…|S|. 

Set N = |S| and B = IN, where IN is the identity matrix of size N 

  Step 1.  Given bbWbV 0)( , run value iteration (equation 4) for belief set B, 

until 01.0|| 1 ii VV . Denote resulting V as *

BV  

  Step 2.     Determine *11 )( B

TT VBBBW  

  Step 3.     Use W
1
 to sample B̂  with 10,000 belief points such that rank( B̂ ) ≥ N.  

  Step 4.     Run one value iteration step on B̂  to obtain
BbarV .  

  Step 5.     If 01.0|| *

ˆ BB
VV , then stop, else set B= B̂ , W

0
=W

1
 and go to Step 

1. 
 

Figure 5.8:  Algorithm II to solve POMDP with linear value function approximation. 

 

 

5.5.4 Decision-tree analysis  

A decision tree serves as a good tool to represent a policy. A simple decision tree 

for the optimal policy for the single machine problem is shown in Figure 5.9. The solid 

circles represent a condition on belief state and the branches show the different actions 

associated with it. The size of the decision-tree is determined by the number of levels at 

which such conditions are posed. For the example in Figure 5.9, the decision tree is three 

levels deep. The size of the decision-tree is governed by two factors:  

 

(i)  The number of actual states s visited while following the close-to-optimal policy. 

Let us say Sv S is the set of actual states visited and Sv′= S /Sv . The size of the 

decision-tree depends on the size of Sv. When the close-to-optimal policy is 

implemented, the belief dimensions corresponding to Sv′ contribute less and less 

to decision- making.  
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Figure 5.9: Decision tree for the single machine problem. Values of 1,2 and 3 for a 

represent the decisions to „do nothing‟ , „inspect the job‟ and „service the equipment‟ 

respectively. 

 

 

 

(ii)  The level of similarity between actual states s – due to the similarity, a cluster of 

states would correspond to the same (near)optimal action. In the region of belief 

states, the states belonging to these clusters would form hyper-planes and lead to a 

decision-tree of much lower dimension. The sizes of the decision-trees are also 

reported in Table 5.2 and are substantially smaller than the size of Sv. This 

indicates the formation of clusters of states that behave in a similar manner.   

 

5.6 Conclusions 

Judging by the research efforts in the area of partially observed degradation of 

manufacturing equipment and costly inspection, the extension of the concepts to multiple 

operations is important. In this work this problem is addressed for a re-entrant and a 

hybrid flow topology. The significance of rigorous treatment of this class of problems is 

illustrated by comparing the results with those of heuristic methods. The POMDP 

formulations result in significant improvements in performance over those of best 

heuristics. However, the POMDP problem grows fast with increasing problem sizes. 

Therefore, characterization of the (near) optimal policies is an important direction for 

future work in this area. 

b(3)<0.9 

b(3)<0.76 

b(1)<0.1 
a=1 

a=2 

a=3 
a=2 
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CHAPTER 6 

MILP BASED VALUE BACKUPS IN POMDPS WITH VERY LARGE 

OR CONTINUOUS ACTION SPACES 

 

6.1    Introduction 

In the last chapter we saw that POMDPs serve as powerful tools to model 

stochastic systems with partial state information. Since the exact solution methods for 

POMDPs are limited to problems with very small sizes of state, action and observation 

spaces, approximate solution methods have gained popularity. Notable among these are 

the point based methods which consider a fixed or evolving set of prototype belief points 

instead of considering the entire belief simplex. A particular point based method, 

PERSEUS (Spaan and Vlassis, 2005) was used in chapter owing to the fact that it 

favorably makes use of the piecewise linear and convex (PWLC) structure of the value 

function to speed up convergence. In this chapter, we consider POMDPs with very large 

or continuous action space. In the current form of PERSEUS and many other point based 

methods, presence of continuous actions or very large action space makes it practically 

impossible to compute the value backup exactly. We use a mathematical program to 

circumvent this difficulty. In an alternative formulation, we develop value iteration 

update equations around post decision belief state as opposed to the traditionally used 

notion of (pre-decision) belief state. Depending on the size of the observation space, 

latter approach reduces the computational load of the mathematical program based value 

backup calculation.  The requirements on the structure of the reward function and the 

dependence of probabilities of state transition and observation on action are provided. 

Two illustrations, one each for pre-decision and post-decision belief states are included to 

analyze the efficacy of the method. Comparison with enumeration and action sampling 

methods is provided in terms of solution quality and solution time.  
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6.2    Related work 

 

Adopting the POMDP notation from Chapters 2 and 5, the value backup for a 

belief point b for (infinite horizon POMDP with discount factor γ) is given by (6.1), 

where ||,..2,1 n

i

n Vi  is the set of gradient vectors that characterizes the value function 

at n
th
 iteration. We use infinite horizon POMDP with discounting in all illustrations. 

Equivalent models can be derived for finite horizon POMDPs with little difficulty.   
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As with fully observable Markov decision processes (FO-MDP or simply MDP), 

the presence of large and continuous action spaces poses a challenge in terms of 

computation of maximization over the entire action space (6.1). Additionally, in case of 

the exact solution methods for POMDPs, the size of action space, i.e. |A| also affects the 

number of potential gradient vectors which may comprise the value function at the next 

iteration. The two aspects are summarized below:  

(i) In each value iteration step and in the policy evaluation step of policy iteration 

algorithm, the maximization is performed over the entire action space for all or a 

subset of prototype belief points. Therefore, for every iteration, the computation time 

is proportional to |A| when enumeration of all actions is used.  

(ii) For exact solution methods reported by Monahan (1982); Hauskretch (2000), in order 

to obtain the value function estimate during n
th

 iteration, a set of all possible gradient 
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vectors is generated. Linear Programming (LP) is then used to determine the useful 

among these vectors. The term useful denotes the gradient vector that maximizes the 

value of at least one point in the belief simplex as compared with all other gradient 

vectors. The size of all possible gradient vectors at the n
th
 iteration is |Vn||A||O|, where 

|Vn| is the number of gradient vectors that characterize Vn. 

 

It is not surprising then that, to the best of our knowledge, no current solution 

method claims to compute the max operation exactly for very large or continuous action 

spaces. A subset of literature that considers POMDPs with very large or continuous 

action spaces is reviewed below. 

 

Policy search methods can handle continuous action spaces. An example is 

Pegasus (Ng and Jordan, 2000), which estimates the value of a policy by simulating 

trajectories from the POMDP using a fixed random seed, and adapts its policy in order to 

maximize this value. Pegasus can handle continuous action spaces at the cost of a sample 

complexity that is polynomial in the size of the state space. Baxter and Bartlett (2001) 

propose a policy gradient method that searches in the space of randomized policies, and 

which can also handle continuous actions. The main disadvantages of policy search 

methods are the need to choose a particular policy class and the fact that they are prone to 

local optima. Thrun (2000) and Spaan and Vlassis, (2005) consider sampling techniques 

to keep the active size of the action space relatively small for continuous or very large 

action spaces. The method is problem dependent and may lead to loss of solution quality 

in certain applications.  

In the Monte Carlo POMDP (MC-POMDP) method of Thrun (2000), real-time 

dynamic programming is applied on a POMDP with a continuous state and action space. 

In that work, beliefs are represented by sets of samples drawn from the state space, while 

Q(b,a) values are approximated by nearest-neighbor interpolation from a (growing) set of 

prototype values and are updated by online exploration and the use of sampling-based 

Bellman backups. In contrast with PERSEUS, the MC-POMDP method does not exploit 

the piecewise linearity and convexity of the value function. 
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6.3    Mathematical programming based value updates 

 

6.3.1 Formulation of the mathematical program 

The biggest motivation for using a mathematical program to compute the value 

backup for a belief point b is the fact that the value function for infinite horizon POMDP 

can be approximated well by a PWLC function (Sondik 1978). The value backup 

equation is shown in (6.1). Assuming that the state and observation spaces are finite and 

with a little abuse of notation, the reward function ra(s) =r(s,a), state transition 

probability function ta(s,s′) = T(a,s,s′) and observation probability function 

opa(s′,o)=OP(s′,o) are dependent on action a as shown in (6.5) through (6.7). Here 

subscript a suggests dependence on action a; s,s′ and o represent the indices of current 

state, next state and observation respectively.  
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The equivalent mathematical program for (6.1) can be written as shown in (6.8) 

through (6.13). )'()',( ssi i

nn  is used for ease of notation.  
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                                     (a)                                                                   (b) 

Figure 6.1: (a) Value function calculation at a query point (b) Feasible region for the 

MILP model for value update 

 

 

Figure 6.1(a) represents (6.9) for a query point b
Q
 for a two state problem. The 

system can be in one of two states (s1 and s2) at any time. The x-axis represents the 

probability of being in state s2, y-axis shows the value function estimate during n
th

 

iteration. This is represented by means of gradient vectors i

n . For a query point 

Qoa bb , , (6.8) takes the maximum of points ip  i=1,2,..|Vn|. In order to accomplish this, 

a set of constraints (6.14) is used to define the feasible region shown by the shaded region 

in Figure 6.1(b). 



 118 

oisbsiov
Ss

oa

n ,)'()',()(
'

,                                                                                 (6.14) 
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o

ov )( is maximized in the objective function. This would make the 

problem unbounded. In order to set v(o) equal to 
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, )'()',(max , additional sets 

of constraints (6.15) and (6.16) are introduced by using a set of binary variables y(i,o). M 

is chosen such that constraint (6.14) is not violated.  
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This requires that (6.17) be satisfied. In a general case, this is achieved by 

setting )}',(max{max
'

siM n
si

. Therefore, constraint sets (6.14) through (6.16) exactly 

model the equations (6.9), when requirement (6.17) is met.  
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Substituting the value of oab ,  from (6.10) and canceling the 

term )(),'()',(
'

sbosopsst a

Ss Ss

a , the resultant mathematical program is shown in Figure 

6.2. Admittedly, the reward and probability functions in the form of f1,f2 and f3 have not 

been defined. These functions are better understood by illustrative examples presented in 

section 6.5. 
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Figure 6.2:  The MILP for determination of the maximizing action for value update  

 

 

6.3.2    Computational efficiency of the mixed integer formulation 

The value backups are computed many times for different belief states in each 

iteration. The operation is then repeated for multiple iterations. It is therefore imperative 

that the mathematical program associated with the value backup be computationally 

efficient and yield near-optimal solutions for each solve. In order to ensure the above two 

properties, restrictions on the structure of the mathematical program need to be imposed. 

This limits the applicability of the proposed approach to a certain extent. In general, a 

linear, quadratic or convex program provides ease of computation. This requires that the 

stage-wise reward, equations and constraints be a linear, quadratic or convex function of 

the action. Due to the presence of integer variables, a linear formulation is most suitable. 

We present model requirements for the mathematical program to be linear. Similar 

analysis may be carried out for quadratic or convex programs.  
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We first list the requirements on reward and probability functions for the model to 

be linear and then provide ways to work around some of the requirements. It must be 

noted that linearity of the mathematical program is required to assure (near) optimality of 

the value backups and to keep the computational load to reasonable limits.  

It is easy to see that linearity of the model is determined by the structure of 

functions f1,f2 and f3. Due to equations M1.5 through M1.7, the following restrictions are 

placed:  

(i) f1 is a linear function of action a 

(ii) f2 f3 is a linear function of a 

Condition (ii) essentially implies that at least one of the functions (f2 and f3) may 

not depend on a. This is imposed by constraints M1.2 and M1.3.  

Additionally, when functions f1,f2 or f3 involve use of binary variables to represent 

logical constraints, the linearity of the model may be affected. Finally, when the system 

state has multiple dimensions, it may be necessary to include the entire state description 

as opposed to the state indices s and s′ in order to determine stage-wise reward and 

probabilities. This aspect is covered in illustration 2.  

Whereas condition (i) is true of many real world systems, at the first glance, 

condition (ii) appears to be overly restrictive to warrant successful application of the 

method. However, a closer look reveals that many real world systems may be modeled 

while satisfying condition (ii). It is generally seen that state transition probabilities 

depend strongly on action choice, i.e. f2 is a function of a. Observation probabilities (if at 

all) depend on discrete actions like whether a sensor measurement is taken. Alternatively, 

the discrete decisions that affect observation probabilities may include which or how 

many sensors are used for measurement/taking the observation. These discrete decisions 

can be made a part of state description leading to observation probabilities depending 

only on state s′ and observation o, but independent of action a. 
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6.3.3 Implementation and policy determination 

POMDP solution algorithm 

The mathematical program shown in Figure 6.2 is a general model to determine 

value backup for a belief point b when the parameterized form of value function is used. 

PERSEUS, described in Chapter 2 and used for solving the POMDPs in Chapter 5 is one 

such algorithm. It directly uses the parametric form of the value function by maintaining 

a finite set of gradient vectors αn. Gradient updates are obtained together with value 

updates around a prototype belief set, B, as outlined in section 2.3 of Chapter 2. The 

updated vector }{

1

b

n  is admitted in Vn+1 only if it improves the value at point b as 

compared with Vn. Otherwise, }{b

n  is admitted. When value backups are obtained using 

MILP, the gradient can be easily calculated using the maximizing action a
*{b}

. It is also 

possible to obtain the gradient vector directly from the MILP solve (but this is not 

considered here).    

Policy determination 

Having obtained the estimate of optimal value function that satisfies a desired 

convergence criterion ε, the ε-optimal policy can be obtained using one of the following 

methods 

(i) Maximizing action associated with each gradient vector – During a value backup for 

belief point b, a gradient vector }{

1

b

n  is obtained which has a maximizing action a
*{b}

 

(6.18) associated with it. The corresponding maximizing vectors can be cached with 

each gradient vector. The ε-optimal policy π
ε
(b) for belief point b is then given by 

(6.19) 
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However, it may be expensive to hold the entire action descriptions, for each gradient 

vector, when the dimension of actions is large.  

(ii) One step look ahead controller – The ε-optimal policy π
εLA

(b) for a belief point b can 

also be obtained in real time by running the value backup operation at each time. This 

is shown in (6.20), together with (6.2) , (6.3) and (6.4). 

})(),|()()({maxarg)( ,

Oo

oa

Ss

a
Aa

LA bVabopsbsrb                                    (6.20) 

Generally speaking, the first approach is computationally more favorable but may 

have high memory requirements if the dimension of the actions is large. It can be shown 

that policy LA  is at least as good as  in an average sense.  

 

6.3.4 Problem size v/s computational complexity 

As seen from the model in Figure 6.2, the size of the model (number of variables 

and constraints) is directly proportional to |S|
2
, |O| and |Vn|. Dependence of |A| is implicit. 

Since f1, f2 and f3 are transition functions, in the absence of logical variables they pose 

little computational challenge. The size of the model is greatly affected by the number of 

integer variables i.e., y(i,o) in this case. This number clearly depends on |Vn| and |O|. 

While |O| comes directly from the model, the size of Vn is governed by a combination of 

factors. The most important factor is the dimensionality of belief simplex. In terms of 

PERSEUS, a higher dimensional simplex would require higher number of belief points 

comprising the prototype belief set and |Vn| ≤ |B|. However, in practice |Vn| <<|B| (Spaan 

and Vlassis, 2005). Another determinant of |Vn| is the structure of optimal policy. E.g., 

when the decision region is convex, it is possible to approximate the function 

corresponding to each decision region by very few gradient vectors. In this case, |Vn| 

would depend on |A|. In general however, it is difficult to predict the size of Vn from the 

model. When |Vn| is very large, we propose some heuristics to pick from the existing 

(potentially large) set of gradient vectors, the set which has the most potential for 

representing the entire value function. The idea is to construct an active set of gradient 
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vectors Vn_active to feed into the MILP during each iteration. The size of the active set 

cannot exceed a pre-defined limit δ, which is chosen to keep the computation time for 

each backup within prescribed limits.    

(i) Top pick approach – In this approach, the gradient vectors belonging to Vn are 

arranged in decreasing order of the total number of belief points that they maximize. 

When |Vn|>δ, the top fraction εδ are made a part of the action set Vn_active. In order to 

avoid local optima, the remaining fraction (1-ε)δ is chosen randomly from Vn. The 

parameter ε represents the classic trade-off between exploration and exploitation 

during optimization. Starting with a value close to 0.5, ε may be increased gradually 

with the iteration count n. 

(ii) Nearest neighbor approach – This approach is based on the fact that certain gradient 

vectors may only marginally improve the value at a belief point over some other 

vector. For each belief state, it is possible to obtain the gradient that maximizes the 

value at the point and also the gradient that gives the next best value. From the set of 

maximizing gradient and the next best gradient for each belief point, it is possible to 

obtain a set of gradient vectors whose maximum size |B|/2.  

The gradient sampling technique is similar in spirit with action sampling methods. 

While the size of action space grows exponentially with the dimension of action, |Vn| 

generally grows exponentially with |S|. Efficiency of either methods (enumeration or 

MILP based value backups) would be determined by the particular application.  

While the above approaches to limit the size of Vn appear rather brute force, there 

is a more elegant way to resolve the problem of large sized observation spaces. This is 

addressed in the following section.    

6.4    Value iteration around post decision belief state 

6.4.1   The basic idea 

For a general MDP (fully observable), the notion of post decision state applies to 

problems where the effect of actions and uncertainty on state variable can be separately 
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represented. Since POMDP is equivalent to a continuous state FO-MDP, this concept can 

be utilized here, given the aforementioned requirement is met. E.g., at time t, let the 

belief state be denoted by bt. When action at is taken, the state transitions to an 

intermediate state a

tb
~

 while uncertainty is not yet realized. Finally, uncertainty in the 

form of observation o is realized and the system can be in any of |O| next states where |O| 

is the size of uncertainty, i.e., the number of possible next beliefs. This is schematically 

shown in Figure 6.3. Circles represent the more popular pre-decision belief state bt, bt+1 

etc. and squares represent the intermediate state a

tb
~

 that captures the effect of action 

only. This is referred to post decision belief state.  
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Figure 6.3: A schematic of pre-decision state to post-decision state and again to pre-

decision state 
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In the context of POMDPs, solution using this approach is possible when the 

observation probabilities do not depend on action a. As pointed out in section 6.3.2, the 

actions that affect observation probabilities may be made part of the state. The transition 

from regular belief state bt to a

tb
~

 then is simply given by tabt. 

It is to be noted that although the effect of action on underlying states s S may be 

prone to uncertainty, the belief state transition (tabt) is always deterministic. Having 

obtained the post decision belief state, |O| (pre-decision) belief states may be obtained at 

the next time step. The transition is governed by the observation probabilities 

p(o|bt)=p(o| a

tb
~

) for all o O. This two step transition is shown in Figure 6.3.  Intuitively, 

starting with a post decision state 
a
, |O| possible next states ob oa, are obtained. For 

each of the states ob oa, , a maximizing action a′ 
*{o}

 would determine the next post 

decision belief state b
a′,o

.  Consequently, the value iteration update takes the form shown 

in (6.22) through (6.26). V
a
 represents value function around post-decision belief state 

a
. 

For notational ease, the dependence of action a′ and next post-decision belief state 
a′
 on 

o is suppressed in future illustrations. The details on the derivation of value iteration 

equation around post-decision state can be found in (Powell 2007) for a general MDP.  

In (6.22), it is to be noted that the expectation over observations is outside the 

max operator. This removes the dependence of the size of the MILP on |O|. However, it 

still remains to be shown that the structure of V
a
 is PWLC. To this end we first show that  

o

aopreaa bVabopbV )(),
~

|()
~

(        (6.21) 

and then use Lemma 1 to show that a positive weighted sum of convex functions is 

convex. Since 0)
~

|( abop , the result holds.  
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Lemma 1:  

For two convex functions f and 'f and scalar 0  

i)  f is convex 

ii) 'ff  is convex 

In the following sections, we derive the value and gradient update equations 

around post-decision belief state and then present pros and cons of using this method over 

regular value iteration around pre-decision state.  

6.4.2  Derivation of backup equations and formulation of math program   

The equations for value and gradient backups around post decision belief states 

are deriveed on similar lines as shown in (Spaan and Vlassis, 2005). As seen in the 

previous section, the value iteration step for the post decision state variable is given by 

(6.22) through (6.26).  
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Substituting (6.23) through (6.26) in (6.22) 
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|( abop a is independent of 'a , it is taken out of max and cancelled with the 

numerator. This implies that 
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(6.34) and (6.35) give the value backup and gradient vector backup for the post decision 

belief state variable respectively.  

 On lines similar to section 6.2.1, the mathematical program for (6.32) for a given 

observation and belief state 
a
 is shown in Figure 6.4. Evidently, the binary variables y(i) 

for i=1,2,. |Vn| and variable v do not depend on observation o. However the model has to 

be solved multiple times to obtain the backup. The number of times the model is to be 

solved is given by o_size≤|O|, where o_size is the number of observations for which 

p(o|
a
)>0.  
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Figure 6.4: The MILP for determination of the maximizing action for value update for a 

post-decision belief state 

 

Policy determination 

Similar to the pre-decision state case of section 6.3.2, there are two possibilities to 

determine the optimal action for a belief state b, i.e., (i) Storing the maximizing action(s) 

associated with each gradient vector and (ii) One step look-ahead controller. However, 

there are multiple actions associated with a gradient backup (a′
*{o}

 o ). Therefore the 
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action associated with each observation needs to be cached. This results in higher 

memory requirement for storing the ε-optimal policy for the post-decision state, as 

compared to that for the pre-decision state. For the look-ahead design on the other hand, 

the MILP needs to be solved for the belief state pertaining to the current observation 

only. This is computationally less expensive than the look-ahead design for solution 

around pre-decision belief state.  

6.4.3   Comparison with value updates around pre-decision belief states 

While using MILP based value updates the two methods can be compared along 

following avenues:  

i)  Complexity of MILP problem – While using the post formulation several smaller 

MILPs are solved for one value backup as opposed to solving one large MILP for 

pre-formulation. The former almost always works better if the input/output operations 

between the MILP solver (e.g. CPLEX) and regular solution platform (e.g. 

MATLAB) are not as time consuming as the optimization itself. 

ii)  Policy determination in real time – As discussed in the previous section and section 

6.3.3, the formulation around pre-decision state allows for storing optimal action with 

each gradient vector that characterizes the ε-optimal value function. For formulation 

around post-decision belief state optimal action needs to be stored for each gradient 

vector and each observation. This increases the memory requirement for the latter. 

This may not be feasible in the post formulation when the observation space is very 

high. However, the look-ahead design for policy determination is faster for the post-

formulation due to lower complexity of the associated MILP. Consequently, policy 

determination in real time in post-formulation can be prohibitively slower.    

iii)  Handling very large or continuous observation spaces – While pre-formulation is 

limited to small observation spaces, the MILP technique for value updates based on 

post-formulation is on par with enumeration based methods. When observation space 

is very large or continuous, Hoey and Poupart (2005) consider creating sets of 
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observations for which b leads to the same future belief state oab , . This effectively 

makes the observation space discrete. Such manipulation of observation probabilities 

is better achieved outside the confines of a mathematical program.  

Aside from (ii) above, it is easy to see that the two formulations are similar in 

terms of computational complexity when enumeration of action space is used for value 

backups. This consideration excludes the fact that post formulation allows for parallel 

processing of max operation. Having derived the necessary models and equations, the 

following section is devoted to two illustrative examples. The examples are aimed at 

demonstration of technique and analysis of solution times and solution quality as a 

function of problem size.      

6.5 Illustrative examples 

The first example in this section contains continuous actions and the POMDP is 

formulated around pre-decision belief state. For simplicity, the observation probabilities 

are assumed independent of action in both illustrations. 

6.5.1 POMDP with continuous actions  

In order to illustrate the concept of using mathematical programming for value 

backups, a simple problem with two states is considered first. A hypothetical equipment 

can be in one of two states (s1 and s2) at any time. The system probabilistically transitions 

between the two states.  

Rewards R1 and R2 are received when system is in state s1 and s2 respectively and 

R1>R2. This implies that s1 is more desirable state than state s2. There are two possible 

actions a1 and a2 which affect the probabilities of state transition as shown below. 

a1 (0,1) and a2  (0,1) are continuous and bounded. While a higher value of a1 helps the 

system remain in state 1, a higher value of a2 ensures it‟s returning to state s1 from state 

s2. These actions can be thought of as routine preventive and corrective actions to make 

sure the equipment is in state s1, e.g. cleaning, lubrication etc. The tasks are scaled to 

obtain the bounds of 0 and 1.     
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The (state dependent) unit costs of taking action a1 and a2 in state s1 are C11 and 

C12 respectively. Similarly, the unit costs of taking action a1 and a2 in state s2 are C21 and 

C22 respectively with C12>C11 and C22>C21 .This ensures that the cost of keeping the 

system in state s1 is lower than bringing it back to s1, when it has transitioned to s2. 

Accurate state observation is made with probability 0< <1. The resulting observation and 

reward matrices are as shown below:  

2221212

2121111

1

1

aCaCR

aCaCR
ROP a

 

Finally, there are system and budget constraints of the form shown in (6.36) and 

(6.37) respectively. While the former specify system requirements, e.g., a certain mix of 

cleaning fluids from the two actions, the latter represent limits on total expenditure. Since 

cost of actions is state dependent, the probabilities of being in state s1 and s2, i.e., b(s1)=b1 

and b(s2)=b2, are also a part of the constraints.  

The feasible region of the MILP, in the absence of constraints (6.36, 6.37), is 

given by the shaded region with hashed line in Figure 6.5. Therefore, in the absence of 

constraints (6.36, 6.37), the solution of the above problem would lie on the extreme 

points, i.e., optimal values of both a1 and a2 are either 0 or 1. In such a scenario, the 

action space is practically discrete and substantially smaller.  
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32222122121121111
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The parameter values considered for this study are shown in Table 6.1. 
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Figure 6.5:   Feasible region for the continuous two-action problem 
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Table 6.1: Parameter values for the system with two-continuous actions 

Parameter  R1 R2 C11 C12 C21 C22 A1 

Value 0.9 2 0 0.1 0.15 0.3 0.05 0.5088 

 

Parameter A2 A3 B11 B12 B21 B22 B3 A2 

Value 1.325 -1 3.1185 9.355 3.0736 1.025 -1 1.325 
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The MILP model for the value backups for above example is shown by model 

M2. This pertains to value iteration around pre-decision state variable.  

Optimal policy and value function 

The converged value function and policy for both approaches are shown in Figure 

6.6. When the probability of being in state s=1 is sufficiently high, action a1 is executed 

whose value depends on the constraints and the objective value. The policy for the two 

action problem is rather simple and intuitive. When the probability of being in state s=1 

falls below a certain threshold (different for both approaches), action a2 is performed so 

that it satisfies the constraints listed in (6.36) and (6.37). As seen in Figure 6.6, the value 

function for the enumeration based solution is lower. The performance and solution times 

of MILP and enumeration based methods (as a function of number of PERSEUS 

iterations) are shown in Figures 6.7(a) and 6.7(d) respectively. The enumeration based 

method convergences in an order of magnitude less time than the MILP based method. 

However, the performance of the enumeration based method is lower than that of the 

MILP solution. This is attributed to the discretization of the action space. The action 

corresponding to each gradient vector is also shown in Figure 6.6. As seen, the actions 

pertaining to the best solution obtained by enumeration of the value function is limited by 

the size of the action space grid. For the same reason, the MILP based method appears to 

be converging faster in terms of number of iterations as seen in Figure 6.7(d).  

Scalability 

To study how the solution time scales with the problem size and understand 

whether the value gap depends on the problem size, two additional experiments are 

performed: (i) a system with three possible states and three actions, (ii) a system with 

four states and four actions. Similar to the two-action system above, the states are discrete 

and all actions are continuous and range from 0 to 1. The probability transition matrix is a 

linear function of actions and the constraints follow the same linear structure as (6.36) 

and (6.37). The parameter values are shown in Table 6.1 and the results are reported in 

Table 6.2. It is observed that the performance gap widens as the problem size grows. The 
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phenomenon is seen in Figures 6.7(d) through 6.7(f) as well. Additionally, unlike the case 

with the two-action system, the convergence times are of the same order of magnitude for 

three-action system and the convergence time is an order of magnitude higher for the 

enumeration based technique as the problem size grows to four actions. As the problem 

size grows, the number of actions grows exponentially in the case of the enumeration 

based method. Also due to coarse-grid sampling of the action space, the technique tends 

to maintain many more gradient vectors to closely approximate the value function. The 

two factors, i.e. |A| and |Vn|, contribute to the rapid increase in solution times as the 

problem size increases.  For the MILP based method, the number of actions as well as the 

number of gradient vectors increase moderately with problem size. The solution times 

therefore grow marginally as the problem size grows. This can be concluded from the 

fact that the plots corresponding to MILP based method are almost identical.   

The shape of the solution time v/s number of iterations plot, reveals information 

about the dependence of solution time per iteration on |Vn| where n is the iteration 

counter. A discussion on this dependence is deferred until the network flow example 

presented in the next section.  
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Figure 6.6. Value function and policy comparison for two action system 
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Table 6.2.  Results for the problems with continuous actions 

Problem  |S| |A| |O|           performance                    |Vn| 

convergence 
time 

        MILP enum  MILP Enum  MILP Enum  

           

2 actions 2 121 2 13.28 ±1.2 13.08 ±1.5 6 7 16.02 0.62 

           

3 actions 3 1331 3 16.71 ±2.1 14.67 ±3.2 15 11 46.76 29.45 

           

4 actions 4 14641 4 15.02  ±1.9 10.27 ±3.6 16 159 108.22 1180.25 

                    

 

 

6.5.2  POMDP with discrete but large action space – A network flow problem   

The general structure of a network consists of nodes and edges. The nodes shown 

as circles in Figure 6.8, facilitate the accumulation, production or consumption of 

materials or information while the edges facilitate flow of these quantities from one node 

to the other. The edges are shown as arrows originating from the source node and 

pointing to destination or recipient node. Many studies (Berry 2005; Rico-Ramirez et al, 

2007) have been conducted for network design, i.e, determining the connectivity of the 

nodes. In other words, network design determines the existence of edges through which it 

is possible to transport material, information or both. The nodes of certain networks are 

amenable to contamination or corruption, e.g., computer networks can get infected with 

virus/bugs, food and water networks are prone to chemical or biological contamination 

and electrical networks are amenable to outages. Aside from origination, the 

contamination or infection spreads as the material or data flows from one node to the 

other. Therefore, it is imperative to track down the infected node and redirect the network 

flows. To this end, sensor network design studies have been performed to determine 

optimal locations to install measurement sensors. However, in the face of budget 

constraints all the nodes and edges cannot be inspected.  
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Figure 6.7. The comparison of convergence times and performance for the problem with 

continuous actions. Number of iterations v/s solution time for the problem with (a) two 

continuous actions, (b) three continuous actions, (c) four continuous actions. Average 

profit as a function of number of iterations for the problem with (d) two continuous 

actions, (e) three continuous actions, (f) four continuous actions. 
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Whereas network design and sensor allocation are one time decisions requiring 

substantial investments, network flow decisions are dynamic decisions which must be 

taken at each time so as to minimize the expected spread of the contaminant. The network 

flow decisions differ from network design decisions in that the latter determine which 

two nodes can have flow/connectivity between them by the presence of an edge, while 

the flow decisions determine whether or not to use an existing edge for flow. Especially 

in computer, electrical and water networks the alteration in network flows is speedy and 

comes at very low cost.   

Figure 6.8 shows an instance of aforementioned network flow problem with five 

nodes (ε1, ε2, ε3, ε4, ε5). The network is fully connected in that all nodes are connected to 

each other except node ε1. ε1 serves as the source node which has no incoming streams. 

Measurement sensors are installed at nodes ε2 and ε3. This can be interpreted as saying 

that all outgoing streams emanating from nodes ε2 and ε3 are tested. The measurement is 

prone to type I errors (Lee and Unnikrishnan, 1998), such that the presence of a 

contaminant is detected with probability 0.9. If a node is connected to an upstream node, 

a reward of CP units weighted by the population density at that node is received. 

However, if the node is infected, no reward is received. There are two ways in which a 

node can get infected: (i) origination of infection at that node and (ii) propagation of 

contaminant from an upstream node. Contamination is originated at a node with 

predetermined probabilities pi for i=2,3,4,5. At each time, at most one node may be 

infected by origination of contaminant at that node. Alternatively, if an upstream node is 

infected, the recipient node would get infected at the next time period. It is assumed that 

the source node ε1 is never contaminated.      

A node once contaminated, remains so unless a clean-up is performed. The clean-

up has an associated cost Cr which is assumed to be independent of the node being 

cleaned. Finally, there is a cost Cflow(i,j) associated with flow of material/information in 

the network. The cost depends on the source node i and recipient node j. The objective is 

to determine the optimal flow configuration and clean-up strategy at each time, so as to 

maximize average (infinite horizon discounted) profit. The knowledge of the nodes being 

contaminated is not complete.  
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We begin with a POMDP formulation of the network flow problem described 

above, and analyze the problem size. This is followed by the MILP formulation of the 

value backup operation.   

   

 

ε2

ε3 ε4

ε5

ε1
node with measurement sensor

connectivity

flow

corrupted nodeε2

ε3 ε4

ε5

ε1
node with measurement sensor

connectivity

flow

corrupted node

 

Figure 6.8: A five-node network flow problem 

 

 

A network security example is presented in Figure 6.8, where the circles represent 

the nodes of the network and the arrows represent the flow of material, information etc. 

The shaded circles represent ones with measurement sensors and hashed circles indicate 

corrupted nodes. The light dashed lines show network connectivity and solid lines show a 

flow configuration.  

Formulation as POMDP  

While the state and action spaces are easily represented, the transition function is 

complicated for this problem. The POMDP model is shown below:  

State  

Nitis ,..,3,2}1,0{),(   

|S| = 2
(N-1)

                                                                                                                      (6.38) 
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The size of state space is given by (6.38) where N is the number of nodes in the network 

Action  

Nitia

NjNitjia

repair

flow

,...,3,2}1.0{),(

,..,3,2;,..,2,1}1,0{),,(
   

The term aflow(i,i) for i=2,3,..,N is the node activation term. aflow(i,i)=1 implies that node i 

is connected indicating that it has a positive inflow from some other node in the network. 

aflow(1,1) is always 1. 

|A| = 2
N(N-1)

+2
(N-1)

                                                            (6.39) 

The expression for the size of the action space in (6.39) suggests a very large action space 

for even small values of N. However, many actions are not feasible. E.g.  

(i) A node with no inflow cannot have any outflow or accumulation 

(ii) A node with positive inflow must have either accumulation or outflow 

(iii) A node can be either upstream or downstream of another node but not both.  

(iv) Each node must have at most one supply node.  

The above constraints reduce the size of the action space considerably.  

State transition function  

Given the state and action at the current time, the state at the next time may be 

determined by the following relations: 

(i) Contamination by origination – A node i is contaminated by origination 

depending on the contamination probability pi. This is shown in (6.40), where  

p(t+1) is the realization of probability of origination of contamination and 

δ(.)=1 if the condition within the parenthesis is met.  

               5,..,3,2))1(()1,( iforptptis i                                            (6.40) 
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(ii) Contamination by propagation –  If a source node k is contaminated, recipient 

node i will contaminated at the next time period (6.41).  

               5,..,3,2;5,..,3,2),,(),()1,( kifortikatkstis flow                       (6.41) 

(iii) Carried over contamination – If node i is contaminated and not repaired at the 

current time, it will be contaminated at the next time period (6.42).  

               5,..,3,2}0),,(),(max{)1,( ifortiatistis repair                            (6.42) 

 

The state transition matrix for contamination by origination is a static matrix 

independent of current state and action. This constant matrix is designated as map1. The 

transition matrices that account for points (ii) and (iii) above need to be determined for 

each state action pair. The matrix that combines the effects of factors (ii) and (iii) is 

designated by map2. Therefore, the post decision belief state is given  by (6.43). 

)',()',()()'(
}{

21 ssmapssmapsbsb
a

Ss

a
                                                               (6.43)                         

Observation space and observation probability matrix 

itio }1,0{),(  

||2|| MO                                     (6.44) 

The size of observation space is given by (6.44) where M is the set of nodes with 

measurement sensors. It is assumed that all measurement sensors can sense the 

presence of a contaminant 90% of the time. The observation probability matrix 

reflects this fact. E.g. if the measurement sensors are installed at nodes η2 and η3, the 

possible observations are: 

}1,1{};1,0{};0,1{;}0,0{)},3(),,2({ toto                                                  
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When nodes ε2 and ε3 are both contaminated, i.e., s(2,t)=s(3,t)=1, the observation 

probabilities are given by: 

2

2

9.0})1,1{)},3(),,2(({

9.0)9.01(})1,0{)},3(),,2(({

)9.01(9.0})0,1{)},3(),,2(({

)9.01(})0,0{)},3(),,2(({

totop

totop

totop

totop

  

The observation probabilities for the other states may be calculated in a similar 

manner.  

Profit/reward Function 

 The profit function at time t comprises of the following terms  

(i) Reward for active non-contaminated nodes – This is given by the first term in 

(6.45) 

(ii) Cost of flow and repair actions – This is given by the second and third terms 

in (6.45).  

i

repairrepair

j i

flowflowflow

i

iPt

tiaiC

tjiajiCtistiiawCasr

),()(

),,(),(),(),,(),(

                           (6.45) 

The value backups using enumeration are straightforward once the transition matrices 

are developed for each action. The MILP for value backups, however, is more 

involved. This is discussed below:  

MILP based value backups 

The MILP formulation must account for the following  

(i) The constraints to exclude infeasible actions  

(ii) The equations to develop state transition matrix map2 as a function of actions.   
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Whereas the constraints to exclude infeasible actions (described earlier in this 

section) are relatively easily developed, the second set of constraints and equations to 

generate map2 is a more difficult task. The MILP backup for a post-decision belief 

state 
a
 is developed by using its predecessor pre-decision belief state, for each of the 

possible observations ob oa, . For a given o, let oabb ,  and let 
a′
 denote the next 

post-decision belief state. The following sequence of events is followed:  

(i) At the beginning of time t, the repair decision is implemented. The system 

transitions from state s to an intermediate state s1.  

(ii) The node connectivity is determined and the appropriate reward generated. 

(iii) Then the flow decisions are taken and the state of the system at the next time 

is s2. This is because it is assumed that a contaminated node corrupts a 

downstream at the next time.  

(iv) Finally, the contamination probabilities are realized and the cycle is repeated. 

The MILP model for this process is shown in Figure 6.9. M3.1 through M3.3 

determine the value function for 
a′
, M3.4 and M3.5 model the input-output 

constraints described before and M3.6, M3.7, .. are the constraints that ensure that 

there is no cyclical flow between any two, three,..N nodes. The equations are only 

shown for two and three node combinations. This is similar to saying that a node 

cannot supply and receive material from another node at the same time.  

A variable z(l,i) is introduced to denote the status of connectivity of node i in state 

s1(l,i) where l=1,2,..|S|. z(l,i) is determined by M3.8 and M3.9. The effects of repair and 

flow actions on state transitions are determined by M3.10 through M3.12. Having found a 

state s2(l,i) corresponding to each state s(l,i) in the state space, the key is to develop a 

map for the transition in order to determine the belief state b
a′
. This is determined by 

obtaining the index of s2 within the state space with the help of variables 

iill 0),1,(.  when s2(l,i) is equal to index l1 of the state space. This implies that 

state designated by l transitions to l1. Correspondingly, map2(l,l1) is set to 1. This is   
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Figure 6.9: MILP model for the value backup for network flow POMDP 
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Figure 6.10. Illustration for mapping state l to l1 

  
  
 
 
 
 
 
 

Table 6.3.  Parameter values for the network flow problems 

Parameter 
Description 

symbol Value i=1 i=2 i=3 i=4 i=5 i=6 

Origination 
Probability for six-
nodes problem 

pi  0 0.04 0.025 0.015 0.01 0.01 

For five-nodes 
problem 

pi  0 0.04 0.025 0.015 0.02  

For five-nodes 
problem 

pi  0 0.04 0.025 0.035   

Weighting factor wi  - 6 4 7 6 8 

Repair cost per 
node 

Crepair 30       

Reward for each 
active node 

CP 1       

 

 

l= 4 
l1= 7 

arepair 

 

 

aflow(3,2) 

[0 0 0 1] 

 

 

= 1 
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0.5        1        0.5      0.2      0.1      0

flowC  

Figure 6.11   Cost parameter for the network flow problem with four, five and six nodes 

 

 

achieved by equations M3.13 through M3.16 and the concept is further illustrated by 

Figure 6.10. Once map2 is determined, b
a′
 is calculated using M3.17.  

The network flow problem described above is solved for four, five and six nodes. 

In all three cases, nodes ε2 and ε3 have measurement sensors and the parameter values are 

shown in Table 6.3 and Figure 6.11. The solution for the three problem instances is 

shown in Table 6.4. The performances are comparable for the two methods. This is 

because the exact same problems are being solved in this case as opposed to using a 

smaller action space in the previous example. The solution times on the other hand follow 

a similar trend as the previous example in that it increases very rapidly with size for the 

enumeration based solution methods. Since |Vn| is similar for the two solution approaches 

(in all three cases), the difference in solution times is almost entirely attributed to 

exponentially increasing action space due to combinatorial reasons while using 

enumeration. The behavior of the solution times is better understood by Figures 6.12 

(a),(b) and (c). It is observed that both for MILP and enumeration based methods, the 

number of iteration v/s solution time has three distinct regions: 

(i) For the first few iterations, the cumulative solution time is linear with a very 

small slope. 
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(ii) After this, the solution time grows exponentially with iteration count.  

(iii) Finally, it becomes linear again with a large slope.   

This is because the value function is initialized with a single gradient vector and the value 

function is set to the lowest possible reward. Due to this reason, a single update improves 

the value function for the entire sampled belief set. Consequently, only a single gradient 

vector comprises the value function for the first few iterations leading to same solution 

time per iteration. Beyond this point, the size of the value function, i.e., the number of 

gradient vectors during each iteration increase as the shape of the value function begins to 

take form. This causes the solution time to increase per iteration, as more gradient vectors 

are added. Finally, the value function converges and no new gradient vectors are added. 

At this point, the solution time again becomes constant for each iteration. The time per 

iteration is much higher as compared to that for the initial iterations.  

Finally, the convergence of value function is depicted in Figure 6.13 (a) and (b) 

for the four and five node problems respectively. The average performance is plotted as a 

function of solution time. For the four node network flow problem, the value function 

converges faster for the enumeration based method. But the phenomenon is reversed for 

the five node problem. As seen from Table 6.4, the performance of the MILP based 

method only gets better with increase problem size.  
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Figure 6.12: Comparison between solution times of the MILP based backups and the 

enumeration based backups for the network flow problem with (a) four nodes, (b) five 

nodes and (c) six nodes. 
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Figure 6.13: Comparison of convergence and performance of the MILP and enumeration 

approaches for the network flow problem with (a) four nodes, (b) five nodes. 
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Table 6.4: Problem size and results for the network flow problems. 

Problem  |S| |A| |O| 

    
performance          

    
performance                    |Vn| 

Convergence 
time 

        MILP enum  MILP enum  MILP enum  

 
Network 
flow          

4 nodes 8 2336 4 
179.54± 

13.56 
181.22 ± 

12.51 22 39 174 97 

           

5 nodes 16 15296 4 
225.91± 

21.45 
223.96 ± 

25.76 42 43 1168 3132 

           

6 nodes 32 63744 4 
292.51± 

10.72 
  292.67± 

9.94 73 67 5641 63279 

                    

 

 

6.6 Conclusions 

In this chapter, MILP models are developed to obtain value backups for POMDPs 

with very large or continuous action spaces. The traditional way of doing this is by using 

either a homogeneous or heterogeneous grid or sampling methods. By using MILP based 

methods, we can ensure exact calculation of the max operator for each value backup, 

thereby preserving the solution quality. The algorithm in its current form, can solve 

POMDPs with discrete state spaces and when the observation probabilities are 

independent of continuous actions. Certain restrictions are also applied on the state 

transition and reward functions to maintain the linearity of the value backup operation.   

The MILP is amenable to large computation times when the size of the 

observation space is large. For this reason, an alternative MILP model is developed for 

solution of POMDP around post decision belief state. This removes the dependence of 

MILP solution time on the size of the observation space. Two examples are presented to 

illustrate the solution method, one each for value updates around pre and post-decision 

belief states. It is observed that the MILP based method produces higher quality result, 
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when the entire action space is not considered for enumeration based method. The 

solution gap increases with problem size.  

Additionally, the solution time scales linearly with problem size for the MILP 

based method, while it grows exponentially in case of enumeration based methods. This 

is attributed to the exponential increase in the size of action space due to combinatorial 

reasons. Consequently, the MILP quickly surpasses the enumeration based methods in 

terms of lower solution times and better solution quality as the problem size is increased. 

This makes the MILP based solution very well suited for POMDPs with high 

dimensional actions and continuous actions. 
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CHAPTER 7 

CONTRIBUTIONS AND FUTURE WORK 

 

7.1  Conclusions and Contributions 

Optimal resource management is an integral part of any manufacturing 

environment. This body of work is a step forward in devising better resource 

management policies in conjunction with production, inspection or distribution strategies. 

This is performed for three different types of resource degradation models spanning many 

process industries. From an academic standpoint, this thesis seeks to make contributions 

in the following areas:     

Introduction of a new class of problems  

In Chapters 3 and 4, a new class of problems, the inventory control of perishable 

resources is considered. The study is aimed at resources that get consumed, break or exit 

the system, with time scales comparable to that of production. Aside from small and 

specialized manufacturing equipment, the technique can be extended to human resource 

management in the form of hiring and training decisions. 

 

The inventory of perishable resources is directly affected by two important 

factors: (i) the procurement policy which adds to the inventory (ii) the production 

process, whereby the resources age and break, resulting in depletion of inventory. It is 

obvious then, that the production decisions directly affect the resource management 

decisions. The availability of resources, on the other hand, place constraints of production 

quantities. These inter-dependent decisions are considered as a part of a combined 

optimization problem presented in Chapter 3. It is shown by numerical examples that the 

performance is significantly better when the resource management decisions are 

considered together with production planning as opposed to independent of it. The 

performance gap depends on the level to which the resource breaking rate is affected by 
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usage, average resource life and variability in the total number of resources used per time 

period.   

When the system is plagued by high level of uncertainty, the problem is 

reformulated as an MDP and solved using approximate dynamic programming (ADP) in 

Chapter 4. For the deterministic problem and for the parameter set considered, the 

solution obtained by the ADP algorithm is 94.5% of the optimal solution. For the 

stochastic demand and resource life models, the ADP algorithm proves to be a more 

flexible and widely applicable choice. This is because the ADP algorithm is capable of 

taking a more comprehensive view of the uncertainty, thereby taking improved and more 

informed decisions as compared to the rolling horizon methodology.  

Practical extension to an existing problem  

Randomly deteriorating machines with limited observability, have been 

traditionally solved as partially observable Markov decision processes. In Chapter 5, this 

work is extended by considering multiple machines and multiple types of jobs being 

operated on the machine. The study is motivated, in part, by the recent advancements in 

efficient solution of medium to large size POMDPs.  

Costly inspections dissuade the decision-maker to test all the processed jobs 

generating a possibility of propagation and accumulation of defective items. Therefore, 

information on defective items needs to be maintained at all times. This results in a 

significantly larger state space and consequently, the overall POMDP. An approximate 

solution method called PERSEUS (Spaan and Vlassis, 2005) is used for the solution of 

POMDPs. Structure of the optimal policy and that of the value function is studied. While 

the treatment of the above problem as a POMDP is shown to offer promise in terms of 

better performance over heuristic rules, the characterization of either the optimal policy 

or value function or both is required, so that solutions to problems of practical scale can 

be obtained. This point is discussed further in section 7.2. 

Algorithmic Development  

While point based algorithms for solution of POMDPs prove efficient with 

discrete or small action spaces, literature on large action spaces is limited to action-
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sampling based algorithms. Whereas, this might be a successful strategy for some 

problems, it is difficult to devise sampling schemes for many applications. In Chapter 6, 

we introduce the notion of obtaining Bellman updates or value backups using a mixed 

integer mathematical programming (MILP) model. The MILP based backups are made 

possible by the piecewise linear and convex value function and certain requirements on 

reward and probability functions. The latter essentially ensure a linear model.  

Recognizing that a large size observation space significantly increases the 

solution time of MILP, we present an alternative formulation of POMDP around post-

decision belief state. In the latter case, dependence of MILP on the size of observation 

space is removed.  

The algorithmic strategy is tested on two example problems, one with continuous 

actions and the other with discrete but very large action space. It is seen that the MILP 

based approach quickly surpasses the enumeration based methods in terms of lower 

solution times and/or better solution quality as the problem size is increased. This makes 

the MILP based solution very well suited for POMDPs with high dimensional actions and 

continuous actions. 

7.2 Future Work 

There are several avenues along which the current work can be improved or 

extended. Some of these are noted below:  

Macroeconomic objectives  

The combined decision-making in all the problems is performed with the 

objective of maximizing a measure of profit. In manufacturing environments, typical 

objectives aside from maximizing profit are maximizing cycle time, maximizing 

throughput or minimizing tardiness. These objectives would require other considerations, 

thereby making the problem richer and more practical.  
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Characterization of optimal policy 

For inventory control problems as well as maintenance problems for a single 

randomly deteriorating system, the existence of parametric form of optimal policy has 

been proven (given that certain conditions are met). It has been shown that for the 

inventory control problem and fully observable maintenance problem, the optimal policy 

has a control limit structure. For the partially observable machine maintenance problem, 

the optimal policy is marginally monotone in the belief space. These findings simplify the 

search for optimal policy parameters for large size problems, without having to solve the 

actual optimization problem using rigorous methods.  

For the extensions presented in this work, it may be possible to find simplified 

instances or subclasses of problems for which characterization of optimal policy using a 

parametric form can be performed. Additionally, the structure of the value function for 

the (single) machine maintenance problem is shown to be marginally monotone (when 

certain conditions are met). A good strategy will be to add features to the single machine 

problem so that the form of the value function is preserved. Problems developed using 

this bottom-up approach would enable use of faster algorithms that take advantage of the 

known structure of the value function.  

Improvements in MILP based updates for POMDPs 

Since an MILP is solved for each value backup, it is required that the model be 

computationally sound. In Chapter 6, the MILP formulation involves the big-M type 

constraints which potentially slow down the computation. A stronger formulation may 

result in significant improvements in MILP solution time. 

Continuous state spaces 

Presence of continuous actions in a POMDP is often coupled with continuous 

states. The algorithm developed in Chapter 6 can only work with discrete states. In point 

based algorithms, continuous states are handled using Gaussian mixtures (Spaan, 2006) 

in the spirit similar to particle filters. Further research is required to determine if the 

MILP based backups may be extended to POMDPs with continuous states 
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APPENDIX A 

THEOREM 1 

 

The theorem below is stated without proof. The proof can be found in (Monahan, 1982) 

or (Ivy, 2005) 

 

If  for 1)(0 jb  and  j=1,2..N-1 

(i) ),( abQ  is a non-decreasing or non-increasing function of ajb )(  

(ii) )',(),( abQabQ  is a non-decreasing or non-increasing function of )( jb  for 

'aa  

Where „<‟ denotes a partial ordering of actions,  

Then the optimal policy is marginally monotone in the belief state Nssb ,...,2,1),(  
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APPENDIX B:  

DEMONSTRATION FOR MONOTONE VALUE FUNCTION 

 

To prove:  

Given,  1)(0 jb  for j=1,2..N-1 

Q(b,a) is a non-decreasing or non-increasing function of b(j) : 

  

1,..,2,1,0)(
)(

),(
Nja

jb

abQ
 

 

1,...2,10)(
)(

)(
),(max)( Njfor

jb

bV
abQbV

Aa
 

 

Proof:  

 

Recall that the value function V(b) is the optimal infinite horizon discounted reward. We 

will prove this using mathematical induction. Let k denote the stage of the MDP 

 

1. For k=1, show that  a
jb

abQ k

0)(
)(

),(
 

2. For an arbitrary m>1 and k=m, assume  a
jb

abQ k

0)(
)(

),(
 

3. For k=m+1, show that  a
jb

abQ k

0)(
)(

),(
 

 

Also recall some system properties: 
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where  o1 is the observation that no defect has occurred and o2 is the observation that 

defect has occurred  
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Using the chain rule for differentiation 
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Rearranging terms,  
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Also, from chain rule, 
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APPENDIX C  

DEMONSTRATION FOR MONOTONE POLICY 

 

To prove: Given, 1)(0 jb  for j=1,2..N-1 
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