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Foreword

A world population that will exceed 9 billion by 2050 will require an estimated 60 percent more 
food. This increase means we need a major boost in current primary agricultural productivity. It is 
estimated that 80% of the required increase can stem from intensification. Achieving this produc-
tion target without further large-scale conversion of land to agriculture requires higher crop inten-
sification and greater annual crop productivity. However, crop productivity varies greatly from 
place to place, depending on environment, inputs and practices. Assessing the yield gap of existing 
cropped lands will indicate the possible extent of yield increase from actual values.

The authors of this publication provide a wide-ranging and well-referenced analysis of literature 
on current methods to assess productivity and productivity gaps of crops and cropping systems. 
“Potential” and “water-limited” yield are used to define current best attainable yields under irri-
gated and rain fed conditions, respectively, whereas “theoretical” yield represents the maximum 
yield that can be achieved according to current understanding of physiological principles of crop 
productivity, providing a guide to future increases in crop yield.

The methods for benchmarking yields and identifying yield-gaps are presented through a number 
of case studies, grouped into four approaches covering a range of applications. First, where actual 
levels of yield can be compared with attainable yields, there can be an immediate benefit to increase 
farm yield. Second, analysis of actual yields against environmental drivers provides insight into 
management possibilities to increase yield. It has particular application in rain fed systems where 
frontier analysis can identify seasons and conditions that support greatest water-limited yield and 
suggest management strategies and tactics to maximise water-productivity under the range of envi-
ronmental conditions analysed. Third, crop models of various types, when used to provide inde-
pendent benchmarks for potential and water-limited yield, can be extrapolated to areas of limited 
data availability, as it is currently the case for developing countries where the largest increases in 
food demand will occur. Fourth, large scale comparisons made by combining actual yield data with 
model estimates and remotely sensed information of crops and environment can inform about 
priority assessments and policy planning at regional and national scales.

Much work is needed to meet the challenge for greater food supply in the coming decades. The 
methods described here will form a basis for that work.

Moujahed Achouri
Director, Land and Water Division
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Preface

On behalf of the Food and Agriculture Organization of the United Nations (FAO) and the Robert 
B, Daugherty Water for Food Institute at the University of Nebraska (DWFI), we are delighted 
to present this joint publication on “Yield gap analysis of field crops: Methods and case studies”. 
The publication reviews methods for yield gap analysis, clarifying definitions and techniques to 
measure and model actual, attainable and potential yield at different scales in space and time and 
uses case studies to illustrate different approaches. We see this publication as a significant contribu-
tion towards our respective efforts to advance global water and food security through improve-
ments in water and land productivity. 

Importantly, the publication provided critical input to, and benefitted from, the Expert 
Consultation on “Crop yield and water-productivity gaps: method, problems and solutions” 
that was co-hosted by FAO, DWFI and the Stockholm Environment Institute (SEI) in Rome on 
3-4 October 2013. The Consultation brought together leading professionals to discuss methods 
to measure the gaps, as well as ways to diagnose the root causes of yield and water productivity 
gaps and the actions that will be needed to close yield gaps in both small and large scale cropping 
systems, including management options and policies to provide incentives for the adoption of 
gap-closing technologies.

This joint publication and the Expert Consultation are among the first results of a far-reaching 
agreement between FAO and DWFI signed by University of Nebraska President James Milliken 
and FAO Director General Jose Graziano da Silva in July 2012. The agreement calls for a collab-
orative program with three areas of focus: sustainably increasing crop yields and water productiv-
ity using modeling, remote sensing and information systems; improving drought management and 
climate adaptation; and improving sustainable production under drought, stress and water-limited 
conditions. The work on yield gap analysis is part of the first area of focus, and builds on the activi-
ties of FAO and the DWFI to develop tools and knowledge-delivery systems to inform and guide 
policymakers in managing water and agriculture and to identify areas with the greatest potential to 
increase food supply on a sustainable basis. In particular, it builds on two major initiatives: (i) the 
work of a team at the University of Nebraska and partner institutions to build a global Yield Gap 
Atlas; and (ii) the Regional Initiative on Water Scarcity for the Near East and North Africa Region 
providing tools and methods to increase water productivity in irrigated and rainfed systems.

Pasquale Steduto
Deputy Regional Representative for 
the Near East and North Africa
FAO Representative in Egypt
Food and Agriculture Organization 
of the United Nations (FAO)
Cairo, Egypt 

Roberto Lenton
Founding Executive Director  
and Robert B. Daugherty Chair
Water for Food Institute at the 
University of Nebraska
Lincoln, Nebraska, USA
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Summary

The challenges of global agriculture have been analysed exhaustively and the need has 
been established for sustainable improvement in agricultural production aimed at food 
security in a context of increasing pressure on natural resources. 

Whereas the importance of R&D investment in agriculture is increasingly recog-
nised, better allocation of limited funding is essential to improve food production. 
In this context, the common and often large gap between actual and attainable yield 
is a critical target.

Realistic solutions are required to close yield gaps in both small and large scale crop-
ping systems worldwide; to make progress in this direction, we need (1) definitions 
and techniques to measure and model yield at different levels (actual, attainable, 
potential) and different scales in space (field, farm, region, global) and time (short, 
long term); (2) identification of the causes of gaps between yield levels; (3) manage-
ment options to reduce the gaps where feasible and (4) policies to favour adoption of 
gap-closing technologies.

The aim of this publication is to review the methods for yield gap analysis, and to 
use case studies to illustrate different approaches, hence addressing the first of these 
four requirements.   

Theoretical, potential, water-limited, and actual yield are defined. Yield gap is the 
difference between two levels of yield in this series. Depending on the objectives of the 
study, different yield gaps are relevant. The exploitable yield gap accounts for both the 
unlikely alignment of all factors required for achievement of potential or water limited 
yield and the economic, management and environmental constraints that preclude, for 
example, the use of fertiliser rates that maximise yield, when growers’ aim is often a 
compromise between maximising profit and minimising risk at the whole-farm scale, 
rather than maximising yield of individual crops. The gap between potential and water 
limited yield is an indication of yield gap that can be removed with irrigation.

Spatial and temporal scales for the determination of yield gaps are discussed. Spatially, 
yield gaps have been quantified at levels of field, region, national or mega-environment 
and globally. Remote sensing techniques describes the spatial variability of crop yield, 
even up to individual plots. Time scales can be defined in order to either remove or 
capture the dynamic components of the environment (soil, climate, biotic components 
of ecosystems) and technology. Criteria to define scales in both space and time need to 
be made explicit, and should be consistent with the objectives of the analysis. Satellite 
measurements can complement in situ measurements.

The accuracy of estimating yield gaps is determined by the weakest link, which in many 
cases is good quality, sub-national scale data on actual yields that farmers achieve. In 
addition, calculation and interpretation of yield gaps requires reliable weather data, 
additional agronomic information and transparent assumptions.

The main types of methods used in yield benchmarking and gap analysis are outlined 
using selected case studies. The diversity of benchmarking methods outlined in this 
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publication reflects the diversity of spatial and temporal scales, the questions asked, and 
the resources available to answer them. We grouped methods in four broad approaches.  

Approach 1 compares actual yield with the best yield achieved in comparable envi-
ronmental conditions, e.g. between neighbours with similar topography and soils. 
Comparisons of this type are spatially constrained by definition, and are an approxima-
tion to the gap between actual and attainable yield. With minimum input and greatest 
simplicity, this allows for limited but useful benchmarks; yield gaps can be primarily 
attributed to differences in management. This approach can be biased, however, where 
best management practices are not feasible; modelled yields provide more relevant 
benchmarks in these cases.  

Approach 2 is a variation of approach 1, i.e. it is based on comparisons of actual yield, 
but instead of a single yield benchmark, yield is expressed as a function of one or few 
environmental drivers in simple models. In common with Approach 1, these methods 
do not necessarily capture best management practices. The French and Schultz model 
is the archetype in this approach; this method plots actual yield against seasonal water 
use, fits a boundary function representing the best yield for a given water use, and 
calculates yield gaps as the departure between actual yields and the boundary func-
tion. A boundary model fitted to the data provides a scaled benchmark, thus partially 
accounting for seasonal conditions. Boundary functions can be estimated with different 
statistical methods but it is recommended that the shape and parameters of boundary 
functions are also assessed on the basis of their biophysical meaning. Variants of this 
approach use nitrogen uptake or soil properties instead of water.

Approach 3 is based on modelling which may range from simple climatic indices to 
models of intermediate (e.g. AquaCrop) or high complexity (e.g. CERES-type models). 
More complex models are valuable agronomically because they capture some genetic 
features of the specific cultivar, and the critical interaction between water and nitrogen. 
On the other hand, more complex models have requirements of parameters and inputs 
that are not always available. “Best practice” approaches to model yield in gap analysis 
are outlined. Importantly, models to estimate potential yield require parameters that 
capture the physiology of unstressed crops.

Approach 4 benchmarking involves a range of approaches combining actual data, 
remote sensing, GIS and models of varying complexity. This approach is important for 
benchmarking at and above the regional scale. At these large scales, particular atten-
tion needs to be paid to weather data used in modelling yield because significant bias 
can accrue from inappropriate data sources. Studies that have used gridded weather 
databases to simulate potential and water-limited yields for a grid are rarely validated 
against simulated yields based on actual weather station data from locations within 
the same grid. This should be standard practice, particularly where global scale yield 
gaps are used for policy decisions or investment in R&D. Alternatively, point-based 
simulations of potential and water-limited yields, complemented with an appropriate 
up-scaling method, may be more appropriate for large scale yield gap analysis. Remote 
sensing applied to yield gap analysis has improved over the last years, mainly through 
pixel-based biomass production models. Site-specific yield validation, disaggregated in 
biomass radiation-use-efficiency and harvest index, remains necessary and need to be 
carried out every 5 to 10 years.





11. Introduction

1. Introduction

Progress in crop production derives from advances in breeding and agronomy, 
including improvements in the spatial and temporal arrangement of crops in farming 
systems. The interaction between breeding and agronomy is widely acknowledged as 
a major driver of enhanced production. For instance, dwarfing genes in cereals lead 
to physiological improvement in grain/stem partitioning of dry matter with direct 
consequences for yield, but also allowed higher rates of nitrogen fertiliser with reduced 
risk of lodging in comparison with older, taller cultivars. Importantly, grass herbicides 
were critical to capture the benefits of short-stature cereals in mechanised production 
systems. The development and adoption of productivity enhancing technology can 
be stimulated or hindered by political, economic, environmental and infrastructure 
factors, as illustrated in Figure 1. Notwithstanding their importance, these factors are 
outside the scope of this publication. Likewise, we do not discuss policies to deal with 
yield gaps (Sumberg, 2012).

The challenges of global agriculture have been analysed exhaustively and the need 
has been established for sustainable improvement in agricultural production aimed 
at food security in a context of increasing pressure on natural resources (Cassman 
2012; Connor and Mínguez 2012). Of a total global land area of 13,000 Mha, arable 
land and permanent crops account for by 12%, permanent meadows and pastures for 
26%, forests for 30% whereas 32% of this land is unsuitable for agriculture (FAO 
2011). Analysis that accounts for suitability of remaining land for cropping and alter-
native land uses concludes that expansion of cropping land to 2050 is likely to be 
small. Globally, 15% of arable land is irrigated and currently accounts for 42% of all 
crop production; 7100 km3 of water are consumed annually to produce food globally 
whereas feeding the world population of around 9 billion by 2050 would require an 
additional 2100 km3 year (Sumberg 2012; Rockstrom et al. 2012).

Whereas the importance of R&D investment in agriculture is increasingly recognised, 
better allocation of limited funding is essential to improve food production (Sumberg 
2012; Connor and Mínguez 2012; Hall et al. 2013). In this context, the common and 
often large gap between actual and attainable yield is a critical target. Realistic solutions 
are required to close yield gaps in both small and large scale cropping systems world-
wide; to make progress in this direction, we need:

1.	 Definitions and techniques to measure and model yield at different levels (actual, 
attainable, potential) and different scales in space (field, farm, region, global) and 
time (short, long term).

2.	 Identification of the causes of gaps between yield levels.

3.	 Management options to reduce the gaps where feasible.

4.	 Policies to favour adoption of gap-closing technologies.

In this context, the aim of this publication is to review the methods for yield gap 
analysis, and to use case studies to illustrate different approaches. Section 2 outlines 
the evolution of yield to highlight historical changes in the meaning of this term; this 
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Figure 1
(a) Time trends in FAO’s Net Production Index (2004-2006 = 100) highlighting the sustained 
increase in productivity where infrastructure and policy favour development and adoption 
of technology. Examples of disruption in productivity caused by (b) drought in south-
eastern Australia, where rainfall between 1997 and 2009 was 73 mm below average since 
the start of the 20th century (CSIRO, 2011); (c) European policies combined with climate 
and agronomic constraints; see for example Peltonen-Sainio et al. (2009) for a discussion 
of the effect of European policies on adoption of agricultural technologies in Finland and 
Brisson et al. (2010) for an account of recent yield stagnation in France; and (d) substantive 
changes in production systems triggered by changes in political systems in eastern Europe. 
(e) Highlights the sharp increase in total productivity against the slower improvement in 
productivity per capita where rates of population growth remain high in India.  

Source: FAO (http://faostat.fao.org/default.aspx); accessed 12 June 2012.
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31. Introduction

leads to the definitions of yield used in this paper. Section 3 highlights the importance 
of explicit definitions of spatial and temporal scales in yield gap analysis, and discusses 
different data sources and their reliability. Desirable attributes of models in yield 
gap studies are discussed, including aspects of model structure, complexity, calibra-
tion, validation and input requirements. Section 4 is the core of this publication. It 
presents methods spanning a broad range of scales, complexities, input requirements 
and associated errors. Case studies include irrigated and rainfed crops in diverse crop-
ping systems, from subsistence agriculture to high-input systems in North and South 
America, Africa, Europe, Asia and Oceania. Section 5 presents a summary and recom-
mendations of methods for yield benchmarking and gap analysis.
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2. Definitions of crop yield

2.1. Evolution of yield criteria
Before agriculture, our ancestors were not unlike other animals, for which “yield” was 
the ratio between the energy derived from food and the energy invested in obtaining 
it. Once the sowing of crops was established as a common practice, the definition of 
yield shifted from an energy ratio to the ratio between the numbers of seed harvested 
and seed sown (Evans 1993). This was particularly important in low-yielding seasons, 
when early farmers had to make the hard decision of allocating seed for food or seed 
for the next sowing. An important consequence of this measure of yield was that selec-
tion favoured highly competitive plant types, i.e. abundant tillering/branching, large 
inflorescences, small grain and weak seed dormancy (Evans 1993). Only when avail-
ability of arable land came under pressure, mass of product per unit land area become 
a more important criterion. 

This shift in definition of yield had a dramatic impact on selective pressures, shifting 
from the aggressive high-yielding plant (seeds per seed sown) to the less competitive 
“communal plant” able to produce more yield per unit area (Donald 1981). Evans 
(1993) envisaged the next measure of yield whereby the time dimension is consid-
ered explicitly, yield per ha per year. This measure is particularly important in the 
comparison of systems with contrasting cropping intensity, i.e. number of crops per 
year (Egli 2008; Cassman and Pingali 1995). Cassman and Pingali (1995) highlighted 
that the green revolution in rice had as much to do with increased cropping intensity 
as with increased harvest index and yield potential of semi-dwarf varieties. Thus, 
IR-8, the first modern rice cultivar, was much faster to mature than traditional rice 
land races it replaced (often by as much as 30–45 days) which allowed double rice 
cropping on irrigated land -now the dominant land use in rice-growing regions of 
South and Southeast Asia. 

Increasing cropping intensity is widespread worldwide (Cassman and Pingali 1995; 
Farahani et al. 1998; Caviglia et al. 2004; Sadras and Roget 2004). In environments 
with favourable temperature and water availability, this involves a shift to multiple 
crops per year. This applies not only to the tropics, but also to temperate environments 
such as the Pampas of Argentina, where wheat-soybean double cropping is a dominant 
feature. In environments where rainfall or temperature prevents multiple cropping, 
such as dry environments of southern Australia, cropping intensity has been increas-
ing at the expense of pastures. Thus, the concept of yield progress based on kg per 
ha will become inappropriate in some instances. Increasing cropping intensity could 
contribute to either stabilisation or decline in yield per crop. This was illustrated by 
Egli (2008), who reported an inverse relationship between rate of progress of yield of 
soybean crops and intensity of cropping measured as % of double crops in the system 
(Figure 2). Paradoxically, the best environments supporting higher cropping intensity 
showed the lowest rate of improvement in yield of individual crops. 

Yield of individual crops, in kg per ha, is also inappropriate for comparisons of main-
stream agriculture and organic production systems, as yield of individual crops does 
not account for the additional land, time, labour, and water cost of organic nutrients 
(Connor and Mínguez 2012). Meaningful comparisons of this kind must focus on the 
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whole production system, rather than 
individual crops.

Explicitly measuring yield per unit 
area and time is therefore of increasing 
importance. Where multiple cropping 
is prevalent, yield gap analysis should 
target the system and its components; 
Section 4.1.4 presents an example of 
gap analysis in wheat-maize double 
crops in China.

2.2. Yield definitions
This publication focuses on economic 
yield of desired plant products; be they 
grain, oilseed, tubers, corms, sugar, 
fibre, forage, or energy content. Yields 
of individual crops are in a contin-
uum from crop failure to potential and 
several authors have proposed defini-
tions to account for this range (van 
Ittersum and Rabbinge 1997; Evans 
and Fischer 1999; Connor et al. 2011). 
From these sources, here we list the 
definitions of yield relevant for yield 
gap analysis (Figure 3).   

Theoretical yield is the maximum 
crop yield as determined by biophysi-
cal limits to key process including 
biomass production and partitioning. 
It can be estimated with models with 
sound physiological structure, and 
parameters reflecting the biophysi-
cal boundaries of key processes. This 
benchmark is perhaps more useful for 
breeding (Box 1); given its agronomic 
focus, this publication will not deal 
with theoretical yield.  

Potential yield (Yp) is the yield of a 
current cultivar “when grown in envi-
ronments to which it is adapted; with nutrients and water non limiting; and with pests, 
diseases, weeds, lodging, and other stresses effectively controlled” (Evans and Fischer 
1999). Potential yield depends on location as it relates to weather but is independent 
of soil, which is assumed to be physically and chemically favourable for crop growth. 
The climate factors that influence potential yield are radiation, ambient CO2 concen-
tration and temperature (Evans and Fischer 1999; van Ittersum et al. 2013); photosyn-
thesis, growth and potential yield are also responsive to fraction of diffuse radiation 
and vapour pressure deficit (Rodriguez and Sadras 2007). Potential yield is relevant to 
benchmark crops where irrigation, the amount and distribution of rainfall, or a combi-
nation of irrigation and rainfall ensure that water deficits do not constrain yield.

Figure 2
Decreasing rate of improvement of soybean yield in 
Kentucky (USA) with increasing cropping intensity, 
measured as percentage of wheat-soybean double 
cropping.   

Source: Adapted from Egli (2008).

Figure 3
Definitions of yield relevant to yield gap analysis; 
arrows illustrate some yield gaps.   

Source: Multiple sources (Bingham 1967; van Ittersum & Rabbinge 1997; 
Evans and Fischer 1999; Lobell et al. 2009; Connor et al. 2011).
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Water-limited yield (Yw) is similar to yield potential, except that yield is also limited 
by water supply, and hence influenced by soil type (water holding capacity and 
rooting depth) and field topography. This measure of yield is relevant to benchmark 
rainfed crops.

Attainable yield is the best yield achieved through skilful use of the best available tech-
nology. Some studies use attainable yield as an approximation to either potential yield 
or water-limited yield (Hall et al. 2013). 

Actual (Ya) reflects the current state of soils and climate, average skills of the farmers, 
and their average use of technology.  

Box 1 
THEORETICAL YIELD  

The biophysical boundaries of yield are important, for example, when we ask 
questions about the value of improved crop photosynthesis – What is the gap between 
current photosynthesis and the biological limit of this trait? What is the expected 
impact of enhanced photosynthesis on crop yield? (Parry et al. 2011). 

Models like APSIM, CERES, CropSyst or SUCROS (Section 3.3) could be used to 
estimate theoretical yield. However, these models are normally parameterised against 
the actual crop phenotype (Lindquist et al. 2005), and therefore do not necessarily 
capture the biophysical boundaries of important processes such as photosynthesis. 
Thus, models to calculate theoretical yield need not only plausible physiological 
and agronomic assumptions but also parameters that capture these boundaries; this 
requires a theoretical approach. 

Attempts have been made to establish an upper boundary for daily net production of 
biomass from biophysical principles (Connor et al. 2011; Loomis and Amthor 1999) 
and, separately, for the biological limit of harvest index (Foulkes et al 2009). The lack 
of independence between production and partitioning of biomass (Körner 1991) and 
trade-offs, for example between further increase in harvest index and lodging (Foulkes 
et al. 2011), are some of the many constraints to scale up from low levels of organisation 
and short time steps to seasonal growth and yield (Connor and Fereres 1999). 
Theoretical yield can therefore be derived from basic principles in two ways: modelling 
yield from the bottom up, or estimating the upper limit of key parameters such as 
radiation use efficiency, and use these theoretical parameters in crop-level models. 

Theoretical yield is constrained by genotypic (e.g. canopy architecture, harvest index) 
and environmental drivers of crop development, growth and resource partitioning 
in non-stress conditions. Recognised environmental factors include solar radiation, 
ambient CO2 concentration, temperature and photoperiod, as they modulate 
development and growth (Fischer 1985; Slafer et al. 2009). More recently, the list of 
environmental factors has been expanded to include proportion of diffuse radiation 
and vapour pressure deficit (Rodriguez 2007). For a given amount of radiation, 
photosynthesis increases with the proportion of diffuse radiation, that depends on 
atmospheric conditions and canopy traits (Spitters 1986; Sinclair and Shiraiwa 1993b; 
Roderik and Farquhar 2003). Stomatal conductance and photosynthesis decline with 
high vapour pressure deficit even in well-watered plants including irrigated rice and 
wetland species (Otieno et al. 2012; Ohsumi et al. 2008). Latitudinal gradients of both 
diffuse radiation and vapour pressure deficit have been described for the wheat-belt 
of eastern Australia, which account for part of the latitudinal gradients of crop yield 
potential (Rodriguez and Sadras, 2007).
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Yield gap is the difference between two levels of yield. Depending on the objectives 
of the study, different yield gaps are relevant (Figure 3). The exploitable yield gap 
accounts for both the unlikely alignment of all factors required for achievement of 
potential or water limited yield and the economic, management and environmental 
constraints that preclude, for example, the use of fertiliser rates that maximise yield, 
when growers’ aim is often a compromise between maximising profit and minimising 
risk at the whole-farm scale, rather than maximising yield of individual crops (Box 2). 
To account for this, a factor (< 1) is used to scale yield potential and water-limited yield.  
A factor = 0.8 has been used in extensive production systems; higher factors may apply 
for high-value horticultural crops, and smaller factors in other systems depending on 
technological and economic (e.g. grain price) drivers. 

Box 2 
MAXIMISING YIELD AND WATER PRODUCTIVITY – DOES IT MAKE SENSE?  

The notion that yield and water productivity can be “optimised” provides a sound 
working hypothesis when we ask questions about the best combination of resources 
(land, water, nutrients, radiation, labour, capital). In real production settings, 
however, the maximum output (yield, water productivity) is rarely the best strategy 
as it may require cropping practices that are economically unsound or too risky in 
economic and environmental terms. To illustrate this point, we present two examples 
of trade-offs: between the efficiency in the use of water and nitrogen, as related to 
nitrogen supply in rice and maize, and between water productivity and yield of rice, 
as related to water regime.

Nitrogen-driven trade-off between water productivity and the efficiency in the 
use of nitrogen

High water productivity requires adequate nitrogen supply. However, the relationship 
between yield and nitrogen supply conforms to the law of diminishing returns, 
and therefore nitrogen use efficiency declines with increasing nitrogen supply. The 
effect of individual inputs such as water and nitrogen on the carbon, water and 
nitrogen budgets of crops thus determines a nitrogen-driven trade-off between 
water productivity and nitrogen use efficiency (Sadras and Rodriguez 2010). This is 
illustrated for aerobic and flooded rice in the Philippines and for rainfed and irrigated 
maize in the USA (Fig. Box 2-1).

Thus, maximising water productivity in some farming systems may require nitrogen 
rates that are too costly, too risky or environmentally unsound. This is particularly 
important with high fertiliser-to-grain price ratio, in environments prone to nitrogen 
leaching, or where biophysical, social, economic or infrastructure factors constraint 
the use of fertiliser. 

Water-regime driven trade-off between rice yield and water productivity  

Bouman et al. (2006) and Farooq et al. (2009) reviewed the water productivity of rice, 
of which about 90% is produced in irrigated or rain-fed lowland fields (“paddies”). 
Water for lowland rice needs to account for land preparation requirements, seepage, 
percolation, evaporation and transpiration. Combined seepage and percolation, for 
example, range from 1-5 mm d-1 in heavy clay soils to a massive 25-30 mm d-1 in sandy 
and sandy-loam soils (Bouman et al. 2006). In a context of water scarcity, water saving 
technologies are being explored to reduce water use and improve water productivity, 
including aerobic rice and alternate wetting and drying. The principle underlying these 
techniques is the increase in water productivity associated with reduced water input. 
However, water saving techniques can also reduce grain yield.  
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Comparison of rice crops grown under aerobic and flooded conditions in tropical 
environments of the Philippines (14o N) showed a substantial increase in water 
productivity at the expense of grain yield (Fig. Box 2-2). In relation to the flooded 
regime, aerobic culture increased average water productivity from 5.7 to 7.4 kg grain 
ha-1 mm-1 and reduced yield from 6.4 to 5.7 t ha-1. In contrast, aerobic rice crops in 
temperate environments of Japan (34-35o N) outperformed their flooded counterparts 
in terms of water productivity (average 8.3 vs. 3.4 kg grain ha-1 mm-1) and showed no 
yield penalty (average 8.6 vs. 8.1 t ha-1) (Kato et al. 2009).

For a large number of crops in central-northern India and Philippines, alternate 
wetting and drying improved water productivity of rice in comparison with the 
flooded checks, but yield penalties up to 70% were recorded. Further studies in 
lowland rice areas with heavy soils and shallow (0.1-0.4 m) groundwater tables in 
China and Philippines showed that alternate wetting and drying outperformed their 
flooded counterparts in terms of water productivity (Fig. 3c) with no associated yield 
penalties (Fig. 3d). In all these cases, extremely shallow groundwater tables allowed 
for ponded water depths that were typically within the root zone during the drying 
periods (Bouman et al. 2006).

In summary, cultural practices to improve water productivity are obviously desirable, 
but need to be seen in the broader context of agronomic, economic and environmental 
trade-offs. Some trade-offs are inherent to the biophysical features of cropping 
systems, and cannot be broken. The nitrogen-driven trade-off between water and 
nitrogen productivity belongs to this category. This type of trade-off may lead to 
practices that do not necessarily maximise water productivity, but rather account 
for multiple objectives: lower rates of nitrogen fertiliser and associated low water 
productivity may be justified in terms of reduced economic and environmental risk.

Figure Box 2-1.
Nitrogen driven trade-off between water productivity and nitrogen utilisation 
efficiency in (a) flooded and (b) aerobic rice in the Philippines, and (c) rainfed 
and irrigated maize in USA. Water productivity is yield per unit irrigation + 
rainfall (a,b) or yield per unit evapotranspiration (c,d). In all cases nitrogen 
utilisation efficiency is grain yield per unit nitrogen uptake (excluding root N).

Source: (Belder et al. 2005; Kim et al. 2008)
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The trade-off between yield and water productivity associated with water saving 
techniques can be broken in some instances, as illustrated in Fig. Box 2-2. Water 
saving techniques that improve water productivity at the expense of grain yield can be 
justified in some cases, but research should be encouraged to identify the conditions 

where improved water productivity can be achieved with no yield penalties. 

Figure Box 2-2.
(a) Aerobic rice had similar or greater water productivity and (b) lower yield 
than rice grown under a flooded regime in the Philippines. (c) Alternate wetting 
and drying improved rice water productivity and (d) caused no yield penalties in 
comparison with the flooded checks in the Philippines and China. 

Source: (Bouman et al. 2005; Bouman et al. 2006).
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The gap between potential and water limited yield is an indication of yield gap that 
can be removed with irrigation. For example, modelling studies in cropping systems of 
Bolivia compared yield of rainfed quinoa, from 0.2 to 1.1 t ha-1, with yield under irriga-
tion aimed at avoiding stomatal closure during all sensitive growth stages from 1.5 to 
2.2 t ha-1, thus representing gaps around 1.2 t ha-1 (Geerts et al. 2009). Yield responses 
to irrigation for major annual and perennial crops have been recently reviewed by FAO 
(Steduto et al. 2012).

In addition to yield gaps outlined in Figure 3, other yield gaps can be defined that, 
for example, compare different cropping technologies such as nutrient management 
(Section 4.1.2) and irrigation regimes (Section 4.3.4).  
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3. Scales, data sources  
and overview of methods

Yield gaps can be quantified at different scales in space and time (Hall et al. 2013). 
Hence, the accuracy and precisiona of basic data for yield gap analysis need to be 
considered in relation to the target spatial and temporal scale. Spatially, yield gaps have 
been quantified at levels of field e.g. (French and Schultz 1984b), region e.g. (Casanova 
et al.1999), national or mega-environment e.g. (Caldiz et al. 2002) and globally e.g. 
(Licker et al. 2008). Variation of yield within fields is the focus of site-specific manage-
ment (Cassman 1999). No attempt has been made, however, to capture within-field 
variation in yield gap analysis.   

Some yield gap studies do not make explicit assumptions about time scale, some have 
explicitly used time series that are long enough to span a wide weather range but short 
enough to meet the assumption of constant technology, and some have explicitly used 
time series to characterise time-trends in yield gaps. In addition to the accuracy of 
yield data, reliable weather data, additional agronomic information and transparent 
assumptions are essential for calculation and interpretation of yield gaps, as discussed 
in the next Sections. 

3.1. Actual yield data: spatial scales and accuracy
The accuracy of estimating yield gaps is determined by the weakest link, which in 
many cases is good quality, sub-national scale data on actual yields that farmers achieve 
(Van Ittersum et al. 2013). Monfreda et al. (2008) and You et al. (2009) comprehensively 
reviewed yield data availability. There are three main levels of spatial resolution at 
which actual yield data can be available:

(i)	 First-level administrative units: district, region, province, country.

(ii) Second-level administrative units: municipality, county, sub-district.

(iii) Farmer-reported data or data collected through surveys from relatively smaller 
areas.  

Current global yield databases are mostly based on data around year 2000 reported 
in the Agro-Maps (FAO et al. 2006; FAO 2012) for the first and, sometimes second, 
levels of administrative units complemented with interpolation methods to achieve 
full spatial coverage (Monfreda et al. 2008; You et al. 2009). More accurate geospatial 
distribution of current crop yields and their spatio-temporal variability are needed and 
yields of irrigated and rainfed crops must be distinguished within administrative units 
where both forms of production exist. An example of this kind is the USDA-NASS 
database where long-term (30+ years) county-level yield data are available, separately 
for each crop species, under each water supply regime, as illustrated for maize in 
Figure 4. Importantly, a good understanding of local conditions is essential to avoid 
data misinterpretation; e.g. owing to the “millennium drought”, yield maps around 
year 2000 are a biased snapshot for production systems of Australia (Figure 1).  

a  See Glossary for definitions of this and other terms.
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Many countries where yield-gap analysis is urgently needed have no data at the second, 
or even first, spatial level (Monfreda et al. 2008; You et al. 2009). For example, You et al. 
(2009) reported that only a few Sub-Saharan Africa countries (Benin, Cameroon, D.R. 
Congo, Uganda, Zambia, Mozambique) have more than 10 crops with yields reported 
at sub-national scale, that is, at the district, region, or province level (Figure 5). For other 
countries (Angola, Republic of Congo, 
Gabon, Ivory Coast) production data 
are only available at the country level. 
Cowpea, bean, maize and cassava have 
the most complete sub-national data 
coverage, with data for over 70% of 
total sub-national units. Over all crops 
and countries in Sub-Saharan Africa, 
there is an approximately 40% coverage 
of sub-national data. Sub-national data 
(municipality, county, or sub-district) 
are not currently available for most 
Sub-Saharan Africa countries. Another 
problem is that, in many countries, 
average yields are not crop-specific, that 
is, they are only reported for aggregate 
crop categories such as ‘grain’, ‘fruit’, 
‘pulses’, and ‘vegetables’ (Monfreda et 
al. 2008). Some projects are currently 
underway to achieve greater spatial 
resolution and specificity with regard 
to crop species; such as Global Futures 
(http://globalfuturesproject.com/) and 

Figure 4
County-level average (2004-2008) yields for rainfed and irrigated maize in Nebraska and 
Kansas. Counties with negligible maize harvested area (<1500 ha) are shown in white.   

 

Source: USDA-NASS data mapped by Patricio Grassini.
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Figure 5
Sub-national (district, region, province) data coverage 
in Sub-Saharan Africa.   

Source: You et al. (2009). 
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construction of a number of household panel survey datasets are in progress at several 
international agricultural research centres.

Because national and sub-national yield averages are based, in many countries, on esti-
mates and surveys, the accuracy of reported yield should be evaluated by comparison 
against independently collected data and direct on-farm measurements and moni-
toring. For example, Wairegi et al. (2010) found the FAO-reported country-level 
average banana yield for Uganda of 5.5 t ha-1 (by year 2007) underestimated measured 
yield in control plots of a nationwide on-farm trail conducted in the same year, in 

which yield averages ranged from 9.7 to 20 
t ha-1 across major producing areas. In a 
broader analysis, Tittonell and Giller (2013) 
compared two sources of yield data for 
several crops in eastern and southern Africa. 
They concluded that, despite its wide cover-
age, FAO’s national average yield was close 
to the mid-range yield reported in the scien-
tific literature for maize, sorghum, millet 
and some grain legumes. In contrast, the 
FAO average yield for cassava and highland 
banana was closer to the lower end of the 
yield range found in the literature.  

Kim and Dale (2004) compared yield of cereals 
and sugarcane from two sources, FAOSTATS 
and national databases, for a number of coun-
tries between 1997 and 2001. The two sources 
were in close agreement for all reported crops 
in Canada and USA (difference below 1%). 
Large mismatches were found for Mexico 
(up to 33% for oats) and for rice in Japan, 
Korea and Mexico (≥  25%). Despite some 
uncertainties, the FAO database provides 
long-term time series for most crops and 
countries that are otherwise unavailable or 
difficult to obtain (Tittonell and Giller 2013; 
Kim and Dale 2004).

Grassini et al. (unpublished) found good 
agreement between county-average yield 
for soybean and corn reported by USDA-
NASS and average yields estimated from 
farmer-reported data in three Nebraska 
Natural Resources Districts located in the 
same counties, in the same years (Figure 6). 
USDA-NASS  average  yields are based on 
harvested yields, reported by  a sample of 
farmers within each county,  verified with 
independent yield samples taken by USDA 
staff when the crop reaches maturity. For the 
Natural Resources Districts in Nebraska, all 
farmers within the reporting areas send their 
crop yield reports to the local district office 
together, in many  cases,  with yield maps 

Figure 6
Comparison between average farmer-reported 
Natural Resource District (NRD) in Nebraska, USA, 
and USDA-NASS county-level average maize 
and soybean yields (upper and bottom panels, 
respectively). 

Data include three NRDs: Tri-Basin (2005-2010), 
Lower Platte (LP) North (2004-2011), and Lower Big 
Blue (2000-2011). Irrigated and rainfed crops in the 
LP North NRD are indicated with solid and open 
symbols, respectively. Note that no data on rainfed 
yields are available for the Tri-Basin and Lower Big 
Blue NRDs. Dashed lines indicate 1-to-1 line.

Source: Grassini et al. (unpublished).
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Figure 7
Box-plots of farmer-reported maize yield, applied 
irrigation, and N fertiliser during the 2004-2011 
interval in the Lower Platte North Natural Resource 
District in Nebraska (USA) for irrigated (I) and 
rainfed (R) maize.

Box plots indicate: median (horizontal lines), 25 
and 75 percentiles (box), 10 and 90 percentiles 
(bars), and 5 and 95 percentiles (solid circles). 
Average number of observations, across years, 
was 400 and 50 for irrigated and rainfed maize 
crops, respectively.

Source: Grassini et al. (unpublished).

and elevator tickets. These independent quality-control checks can help identify prob-
lems and improve the method to estimate and report actual yields.

Comparisons of databases of wheat, soybean and maize acreages and yields estimated 
by a pair of independent organisations in Argentina (Ministerio de Agricultura vs. BC, 
Bolsa de Cereales de Buenos Aires) indicated a high degree of consistency between data 
sources, as reflected in high correlation coefficients (i.e. high precision) (Sadras et al. 
2013b). However, a significant mismatch between sources was found that was inversely 
proportional to acreage. This means that for some applications, for example calcula-
tion of relative rate of progress in grain 
production, both data sources would return 
statistically equivalent results. This is not the 
case for questions requiring accuracy, such as 
estimates of actual regional production.  

Local yield gap analysis can also benefit 
from data collected through government and 
industry organisations, including growers 
marketing cooperatives. As regulatory 
pressures on environmental performance 
of agriculture increase (e.g., water quality, 
endangered species, greenhouse gas emis-
sions), the standard and requirements for 
farmer reporting is likely to increase. For 
example, the national organisation of New 
Zealand’s grape and wine sector requires 
for all members to complete their annual 
survey as a condition for accreditation for 
the Sustainable Winegrowing New Zealand 
program (Campbell 2013). This leads to 
greater availability of high quality yield, 
acreage and input data (fertilisers, irriga-
tion amount, pesticides, etc), which provides 
opportunities to quantify impact of manage-
ment practices on yield and efficiencies of 
water and nutrients as a complement to 
high-cost, multi-year, multi-site field studies 
e.g. (Grassini et al. 2011) . A pre-condition 
is that on-farm yield data must be of suffi-
cient detail and quality (i.e. include field 
location, water regime and other significant 
agronomic information) and capture a repre-
sentative population of farmers over several 
cropping seasons. Accuracy of farmer-
reported data can be assured when comple-
mented with yield maps, elevator tickets, 
etc., and/or validated against other inde-
pendent sources of yield data for the same 
region. The farmer-data reporting system of 
the Nebraska Natural Resources Districts is 
an example of a high-quality database that 
includes field-specific information on yield 
and inputs across many fields over many 
years (Figure 7). Data reported by a popula-

7 

Ap
pl

ie
d 

irr
ig

at
io

n 
w

at
er

 (m
m

)

0

100

200

300

400

500

G
ra

in
 y

ie
ld

 (M
g/

ha
)

0

3

6

9

12

15

18

R I R I R I R I R I R I R I R I

Year

N 
fe

rti
liz

er
 ra

te
 (k

g 
N/

ha
)

0

50

100

150

200

250

R I R I R I R I R I R I R I R I
2005 2006 2007 2008 2009 2010 20112004

G
ra

in
 y

ie
ld

  (
t h

a-
1 )

 



14 Yield gap analysis of field crops - Methods and case studies

tion of farmers allow analysis of variation in 
yield and input-use efficiency across farms. 
Furthermore, when these data are comple-
mented with more detailed data on crop, 
soil, inputs and management practices (e.g., 
tillage, irrigation scheduling, sowing date), 
they can help to identify region-specific sets 
of management practices that give highest 
yields and input-use efficiencies with lowest 
risk (Grassini and Cassman 2012). 

As with yield, the reliability of other impor-
tant data such as fertiliser use depends on 
source and scale. Figure 8 illustrates the 
discrepancy in nitrogen fertilisation rates in 
France among three sources. Irrespective of 
the source of data, a good understanding of 
the farming system is important to reduce 
likelihood of artefacts and misinterpretation 
of data. To illustrate this point, Figure  9 
shows the dynamics of rhizoctonia bare 
patch caused by Rhizoctonia solani Kühn 

AG-8 in wheat crops after the establishment of direct drill. Under South Australian 
conditions, impact of the disease peaks after 5–6 years from implementation of 
direct drill technology, and decreases afterwards with the development of disease-
suppressing microorganisms in the soil (Roget 1995). In this scenario, sampling for 
yield in 1983-84 would have returned larger yield gaps than after 1988. The example 
in Figure 9 applies to individual fields; at regional level, spread of adoption of direct 
drill could lead to different patterns, highlighting again the importance of scale. The 

Figure 8
Dynamics of nitrogen fertilisation in France 
according to three sources: AGRESTE (Statistical 
Service of the French Ministry of Agriculture), 
ONIGC (French National Office of Arable Crops), and 
ARVALIS (French Technical Institute for Cereal Crops).

 
Source: Brisson et al. (2010)

Figure 9
Dynamics of rizhoctonia root rot in direct-drilled wheat crops in South Australia. Wheat was 
grown in rotation with volunteer pasture (closed square), pea (closed circle), medicago (open 
circle) or in monoculture (open square). Error bars are lowest significant difference (P=0.05). 

 
 
Source: Roget (1995)
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next Section summarises approaches able to deal with this type of variation and Section 
3.3.3 expands on the importance of cropping system context for modelling aspects of 
yield gap analysis.  

3.2. Temporal scales
The approach used to define time scale for yield gap analysis depends on the objec-
tives of the study, but the assumptions must be transparent and consistent with the 
requirements for critical interpretation of results. Time scales can be defined that either 
remove or capture the dynamic components of the environment (soil, climate, biotic 
components of ecosystems) and technology. Over time for example, pathogens and 
weeds can build up gradually, temperature can increase, rainfall decline and soil nutri-
ents can be depleted; all these trends could lead to increasing yield gaps. Changes in the 
opposite direction, e.g. establishment of disease suppression microorganisms (Figure 9) 
can contribute to narrowing gaps over time. We assume that effects of other drivers of 
crop production, including shifts in markets and policy, are meditated by development 
and adoption of technology (Figure 1). 

3.2.1. Removing the dynamic compo-
nents of environment and technology
The number of years required to estimate actual yield is a compromise between a time 
series that is long enough to capture variation in weather, and short enough to avoid 
trends associated with technological and environmental change (van Ittersum et al. 
2013; Calviño and Sadras 1999). van Ittersum et al. (2013) illustrate this balance for irri-
gated maize in Nebraska and a favourable environment for rainfed wheat production 
in The Netherlands (Figure 10). In both cases, yields from the five most recent years 
were enough to obtain estimates of the average yield and the coefficient of variation 
that are similar to those obtained with yields from the last 10 years. In harsh environ-
ments for rainfed crop production, 10 years is needed for Nebraska and even more are 
needed for Australia. Less than five years in these harsh production environments leads 
to biased estimates of average yield and coefficient of variation through the influence of 
years with exceptionally high or low seasonal rainfall. Finally, note that a longer time 
interval (20 years) may bias the estimates of average yield and coefficient of variation 
due to the technological change, i.e. improved varieties and agronomy, and to a lesser 
extent changes in climate, as shown for irrigated and rainfed maize in Nebraska and 
wheat in The Netherlands.  

3.2.2. Capturing the dynamic compo-
nents of environment and technology
The second approach to deal with time series is to explicitly quantify the changes 
in yield gaps over time. Laborte et al. (2012) presented a dynamic view of yield 
gaps accounting for the differential rate of yield progress through time. It revealed 
that Philippine rice growers in the upper quantiles improved yield much faster than 
growers in the lower quantiles, hence broadening the yield gap with time (Figure 11). 
Section 4.3.2 presents further details of this study. 

Bell and Fischer (1994) compared actual and modelled wheat yield in the irrigated 
Yaqui Valley of northwestern Mexico between 1968 and 1990 (Figure 12). Actual yield 
increased linearly at a rate of 57 kg ha−1 y−1. Modelled yield accounting for weather-
based potential yield declined at 46 kg ha−1 y−1; this was putatively associated with a 
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mild warming trend over the period. The gap between actual and modelled yield thus 
declined at 103 kg ha−1 y−1. Using this dynamic perspective, the authors concluded 
that allowance for the temporal temperature change showed that the returns from 
improved crop management and breeding were superior to those suggested by the 
increase in actual yield.

Van den Berg and Singels (2012) compared actual yield records and simulated yield 
potential of sugarcane in five agroclimatic regions of South Africa. The gap between 

Figure 10
Trends in grain yields of (a) irrigated and rainfed maize in Nebraska, (b) wheat in The 
Netherlands and wheat in Wimmera (South-east Australia). Sequential average yields in 
(c) Nebraska, (d) The Netherlands and Wimmera, and associated coefficients of variation 
for (e) Nebraska, and (f) Wimmera and The Netherlands as calculated based on 1, 2, 3 ... n 
years of yield data starting from the most recent year (2011 for Nebraska and 2009 for 
The Netherlands and Wimmera) and going backwards. 

Yields are reported at standard moisture content of 0.155 and 0.145 kg water kg-1 grain 
for maize and wheat, respectively. The vertical dashed lines indicate the most recent 5, 10 
and 20 years included in the calculation of average yields and coefficients of variation.

Source: van Ittersum et al. (2012).
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potential and actual yield averaged 33% for large scale growers and 53% for small scale 
growers but periods of widening and narrowing gaps were identified in the 22–year 

Figure 11
(a) The rate of rice yield improvement between 1966 and 1979 in Central Luzon 
(Philippines) was much larger for growers in the top quantiles than for those in the lower 
quantiles As a consequence the gap between the yield of best and average farmers (b) 
almost doubled during this period In (a) the red lines represent the ordinary least squares 
estimate and the 90% confidence interval of the estimate. The gray area refers to the 
90% confidence band for the quantile regression estimates.    

 

Source: Laborte et al. (2012). 

Figure 12
Time trends in actual and modelled yield, and yield gap of wheat in the irrigated Yaqui 
Valley of northwest Mexico between 1968 and 1990. Modelled yields are estimates 
with CERES-Wheat, assuming no change in cultivar or management, thus accounting for 
weather-based potential yield. 

 

Source: Bell and Fischer (1994).
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time series of this study; biotic factors 
such as stem borers possibly contributed 
to the dynamics of these yield gaps. 

Marin and de Carvalho (2012) mapped 
the gap between actual and water-limited 
yield of sugar cane in the state of São 
Paulo (Brazil) and reported a reduction in 
the gap from 58% in 1990/91 to 42% in 
2005/06. The planted area where the yield 
gap was 20% or less increased markedly 
after the 2000s (Figure 13). Deployment 
of improved management underlying the 
narrowing of this gap was partially associ-
ated with higher gasoline-to-ethanol price 
ratio since the beginning of the 2000s 
and the availability of biofuel vehicles in 
Brazil after 2002.

In contrast to the narrowing of yield gaps whereby improved technology over-rides 
potentially negative factors such increasing insect pressure, Tittonell and Giller (2013) 
present an example of increasing yield gap between fertilised and unfertilised maize in 
association with depletion of soil nutrients over a 10-year time series in Ivory Coast.  
Continuous cropping without sufficient input of nutrients and organic matter may lead 
to significant soil degradation and increasing yield gaps with both technological (i.e. 
lack of response to improved varieties) and social (i.e. chronic poverty) consequences.  

In all the cases outlined in this Section, a dynamic perspective exposes a significant 
dimension of yield gap.   

3.3. Modelled yield
Credible assessment of the impact of technology, soils, current and future climate on 
food production depends on our ability to estimate crop yields accurately in response 
to these sources of variation. Crop simulation models, validated on their ability to 
reproduce major interactions between genotype, environment and management, can 
help estimate potential and water-limited yields. Here we outline desirable features of 
models to use in yield gap analysis, and look critically at bias in modelled yield associ-
ated with the source of weather data.

3.3.1. Desirable attributes of models in yield gap studies
Van Ittersum et al. (2013) summarised desirable attributes for models to be used in 
yield gap analysis. These include use of daily time step weather data, capacity to capture 
management practices that influence yield (e.g. sowing date, plant density, cultivar 
maturity), eco-physiological in structure, crop specificity, low requirement of cultivar-
specific parameters, proved performance through validation and peer-reviewed publi-
cations, full documentation of parameterisation, and user friendly interface. The study 
of Rötter et al. (2012) further highlights the importance of local model calibration.

Crop simulation models estimate different yield levels, depending on the assump-
tions and modelling approach. Crop models with typically daily time-step and 

Figure 13
Time trend in the area planted to sugarcane in the 
state of São Paulo, Brazil, where the yield gap was 
≤ 20%. Yield gap is the difference between actual 
and water-limited yield.

Source: Marin and Carvalho (2012).

13 

Year
1988 1992 1996 2000 2004

Ar
ea

 (k
m

2 )

0

20000

40000

60000

80000

r2 = 0.59
P = 0.003



193. Scales, data sources and overview of methods

sufficient detail of physiological prin-
ciples can be used to estimate yield 
potential. This involves the assump-
tions of non-limiting water and nitro-
gen. Estimates using actual weather, 
and consequently a certain frequency 
and intensity of water stress, could 
be considered closer to water-limited 
yield. Indeed, modelled yield often 
reproduces the upper boundary of 
measured yield under water limiting 
conditions (Angus & van Herwaarden 
2001). Models such as CERES, 
APSIM, CropSyst, ORYZA2000 and 
AquaCrop are suitable for estimating 
both yield potential and water-limited 
yield (Bouman et al. 2001; Jones et al. 
2003; Keating et al. 2003; Stöckle et al. 
2003; Steduto et al. 2009). 

There are two trade-offs to consider in selecting modelling methods. First, there is a 
trade-off between error due to structure and error due parameters represented in Figure 
14. In general, errors associated with structure are reduced when the realism, hence the 
complexity, of the models increase. The downside of increasing model complexity is a 
larger number of parameters to be quantified, with the consequent increase in error due 
to parameters. Second, there is a trade-off between the convenience and likelihood of 
model adoption and the requirements of data to parameterise and apply models. 

3.3.2. Weather data for modelling crop yield  
The models commonly used to simulate potential and water-limited yield require 
a minimum data set of daily weather variables including incident solar radiation, 
maximum and minimum temperature, precipitation, and some measure of humidity, 
i.e. relative humidity, actual vapour pressure, dew point temperature. If measured solar 
radiation is not available (which is often the case), then simulations can be based on the 
NASA agroclimatology solar radiation data, except at sites with complex topography 
(Bai et al. 2010) or atmospheric pollution (Stanhill and Cohen 2001).

More than 30 weather data sources have been used in agricultural research, but few 
have been used for simulating yields (Ramirez-Villegas and Challinor 2012). The main 
differences among sources of the weather databases used to simulate potential and 
water-limited yields are: (i) observed site-specific vs. interpolated gridded data, (ii) 
temporal resolution (daily vs. monthly), and (iii) spatial resolution (among gridded 
databases) (Table 1). Gridded weather data are uniformly distributed within each 
spatial cell. Values within cells are typically derived by interpolating weather data based 
on coordinates of the sites within the grid and in nearest-neighbour grids, taking in 
consideration distance from each other, elevation, and other variables. Gridded weather 
data have the advantage of full geospatial coverage, but they are derived, not observed 
data. Various authors have demonstrated that interpolated monthly observations may 
lead to over-estimation of simulated yields in particular in locations with high day-
to-day variability in weather (Soltani and Hoogenboom 2007; van Bussel et al. 2011); 
interpolation of monthly precipitation data in particular leads to substantial error an 
should therefore be avoided in all cases.

Figure 14
With increasing model complexity, parameter error 
increases and structure error decreases towards a limit 
of irreducible error (dotted line).

Source: Passioura (1996).
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213. Scales, data sources and overview of methods

Observed daily weather data are unavailable in many cropping regions but gridded 
global weather databases with complete terrestrial coverage are available. These are 
typically derived from global circulation computer models, interpolated weather 
station data, or remotely sensed surface data from satellites. Studies that have used 
gridded weather databases to simulate yield potential and water-limited yield are rarely 
validated against simulated yields based on actual weather station data from a location 
within the same grid.

Van Wart et al. (2013) compared three gridded weather databases (CRU, NCEP/DOE, 
and NASA POWER data) for simulation of water-limited maize yields in four loca-

Figure 15
Simulated rainfed maize water-limited yield (Yw) across four sites in the USA Corn using 
weather data from (a) NOAA weather stations (Tmax, Tmin, precipitation, and humidity) 
coupled with gridded solar radiation data from NASA-POWER database, (b) gridded NCEP 
data, (c) gridded CRU data and (d) gridded NASA plotted against simulated Yw based 
on high-quality weather data from meteorological stations of the High Plains Regional 
Climate Center (HPRCC) network.  

Insets show deviations of points from 1:1 line. RMSE and ME units are in t ha-1. Average 
water deficit (in mm, estimated as the difference between sowing-to-maturity total rainfall 
and reference evapotranspiration), as determined by simulations using control-data, was 
-42 (Cedar Rapids, IA), -135 (Lincoln, NE), -149 (Grand Island, NE) and -238 (McCook, NE). 
Table 1 shows detail of weather databases.

Source: van Wart et al. (submitted)
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tions across the US Corn Belt (Figure 15). Simulations of water-limited yields based 
on recorded daily data from well-maintained weather stations were taken as controls. 
Agreement between simulations of water-limited maize yields based on control weather 
and those based on gridded weather databases was poor with the latter having strong 
bias and large root mean square error, 32% to 46% of absolute mean yield across loca-
tions and years. Of particular note was the average upward bias of about 4.0 t ha-1 
estimated by CRU and NASA. Water deficit (estimated as the difference between 
sowing-to-maturity total rainfall and reference evapotranspiration) and solar radiation 
had a large influence on discrepancies between simulated water-limited maize yields 
estimated by global and control weather databases. In contrast, simulated water-limited 
yield using observed daily weather data from stations in the NOAA database combined 
with solar radiation from the NASA-POWER database were in better agreement with 
water-limited yields simulated with control weather data (i.e., little bias and an RMSE 
of 16% of the absolute mean). These results highlight the likely bias of simulated agri-
cultural productivity under current and future weather conditions in studies relying on 
gridded global weather databases. In contrast, point-based simulations of potential and 
water-limited yields, complemented with an appropriate up-scaling method, perhaps 
based on agro-ecological zones schemes, may be a more robust approach to achieve 
full terrestrial coverage without losing accuracy on the estimates of yield potential and 
water-limited yields (van Ittersum et al. 2013).

3.3.3. Modelling yield within the context of a cropping system
For a given region, potential and water-limited yield can be simulated for recom-
mended sowing dates, planting density and cultivar (which determines growing period 
to maturity). However, sowing dates and cultivar maturity need to reflect the dominant 
cropping system. The cropping system “context” is critically important in dictating 
feasible growth duration, particularly in tropical and sub-tropical environments where 
two or even three crops are produced each year on the same land. Farmers attempt to 
maximise output of their entire cropping system rather than the yield or profit of indi-
vidual crops. Likewise, where machinery and labour are limiting or costly, achieving 
recommended sowing dates may not be feasible for the entire farm. Hence, capturing 
the spread of sowing dates and of season length is relevant to calculate potential yield 
or water-limited yield. In all cases, the assumptions must be transparent and consistent 
with the objectives for proper interpretation of results.

In this way, Grassini et al. (2011) simulated an average yield potential of 15.4 t ha-1 for 
irrigated maize in south-central Nebraska (USA) using current average farmer manage-
ment practices. However, simulations indicated that use of longer maturity hybrids and 
higher plant populations could increase average potential yield but trade-offs limited 
their adoption by farmers, at least under current grain to input price ratios. Trade-offs 
associated with longer maturity hybrids include higher risk of frost before physiologi-
cal maturity, difficulties in harvest operations due to wet weather and snow, and grain 
drying costs. Likewise, yield and economic benefits from higher plant populations can 
be reduced, or even eliminated, as a result of higher seed costs, higher plant-to-plant 
variability if intra-row spacing is not uniform and greater incidence of lodging and 
green snap. Therefore, simulated yield potential based on current dominant manage-
ment practices may be a more meaningful benchmark for farmers dealing with the 
trade-off between maximising net return and minimising risk.
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4. Approaches to benchmark yield 
and quantify yield gaps

Analysis of gaps between yield levels allows for identification of constraints, trade-offs 
and opportunities for improvement. The exploitable yield gap has the greatest practical 
interest in the context of improving agricultural production. In this Section, we outline 
the main types of methods used in yield benchmarking and gap analysis using selected 
case studies. The methods span a broad range of scales, complexities, input require-
ments and associated errors. We grouped methods in four broad approaches. 

Approach 1 compares actual yields with maximum yields measured in high-yielding 
farmer’s fields, experimental stations, or growers contests. Comparisons of this type 
are spatially constrained by definition, and are an approximation to the gap between 
actual and attainable yield. This approach can be biased, however, where best manage-
ment practices are not feasible; in these cases modelled yields provide more relevant 
benchmarks. Approach 2 is based on comparisons of actual yield, but instead of a 
single yield benchmark, yield is expressed as a function of one or few environmental 
drivers in simple models, usually using boundary functions as reference. In common 
with Approach 1, these methods do not necessarily capture best management practices. 
Approach 3 is based on modelling which may range from simple climatic indices to 
models of intermediate (e.g. AquaCrop) or high complexity (e.g. CERES). Approach 4 
involves a range of methods combining remote sensing, actual data, GIS, and models 
of varying complexity. This approach is mostly used at and above the regional scale. 

4.1. Approach 1: high-yielding fields,  
experimental stations and growers contests
Yields in farmer’s fields can be benchmarked against various references, including the 
best performing crops in neighbouring fields, yield in experimental stations or yields in 
growers contests where similar soil, topography, weather, and biotic conditions apply.

4.1.1. Sunflower in rainfed systems of Argentina
Hall et al. (2013) benchmarked yield of rainfed sunflower at the regional to national 
level in Argentina. The 2.25 Mha sunflower-growing area was categorised, on the basis 
of expert opinions, into eight regions. Within each region, reported yields for those 
districts contributing most to total regional yield were used to estimate mean actual 
yield on a yearly basis. Mean yields from comparative yield trials were used as an esti-
mate of attainable yields for each year and region combination. These attainable yields 
approximate water-limited yields (Section 2.2). Years of suitable data varied across 
regions from 5 to 9. The actual/attainable yield gap was significant in all regions, and 
ranged between 20 and 77 % of mean actual yields, which – in turn - ranged from 1.52 
to 2.25 t ha-1 across regions. At a whole-country level, the mean actual/attainable yield 
gap was 0.75 t ha-1, equivalent to 41% of mean country yield of 1.85 t ha-1. 

For five of the eight regions, yield data for individual fields were also available. 
Mean individual field yields in these regions were significantly lower than attain-
able yield estimates derived from comparative yield trials, but the mean values for 
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the top deciles of commercial fields (an alternative estimate of attainable yield) were 
indistinguishable (three regions) or slightly greater (two regions) than the estimates 
of attainable yield derived from comparative yield trial estimates. A third estimate of 
mean regional attainable yield, the 95th percentile of ranked reporting district yields 
pooled across years and reporting districts within each region, was also calculated. 
These estimates, which importantly do not allow calculation of yearly values of the 
actual/attainable yield gaps, underestimated mean attainable yields derived from 
comparative yield trials in four out of eight regions and attainable yields derived 
from individual fields in all five regions for which this data was available. These 
contrasts between estimates of attainable yield are useful as indicators of strengths 
and weakness of the three approaches. 

An important additional message arising from the whole analysis, and which bears 
on the use of model-derived estimates of attainable yield, was the overriding impor-
tance of spatial and inter-annual variation in environmental (including management) 
conditions on yield. This was evident in the databases for reporting districts, for 
comparative yield trials, and for individual commercial fields. More effort is needed 
to understand the causes of this variability and, especially, on the effects of spatial 
scale on the values of actual/attainable yield gap estimates. 

4.1.2. Maize in sub-Saharan Africa
Sileshi et al. (2010) compared actual maize yield obtained with inorganic and 
organic nutrient inputs with control (no input) on experimental stations and farm 
fields. The comparison also involved yield gaps with inorganic and organic fertilis-
ers, i.e. in situ green manure from sunhemp (Crotalaria spp.), velvetbean (Mucuna 
spp.), sesbania (Sesbania spp.), tephrosia (Tephrosia spp.) and gliricidia (Gliricidia 
sepium) on different site conditions. For each input tested at a given site or in a 
particular season, there was a corresponding grain yield from maize grown continu-
ously without external nutrient input (control) thus constituting a pair of means 
(treatment and control). The number of countries covered, number studies, pairs 
of means extracted and robust parameter estimates of yield gaps for each treat-
ment are summarised in Table 2. This analysis did not apply the hierarchy of yields 
commonly used for gap analysis (Section 2.2); instead, an ad hoc gap was defined as 
the difference in grain yield between maize grown using a given nutrient input and 
the control under a specific study condition. 

Table 2 
Basic statistics and robust parameter estimates (Winsorized means and coefficients of variation)  
of maize grain yield (t ha-1) from various soil fertility management inputs. 

Control Fertiliser Sunhemp Velvetbean Sesbania Tephrosia Gliricidia

Number of countries 12 13 11 12 7 9 5

Number of studies 110 71 39 45 42 28 14

Pairs of means# 473 346 214 242 262 177 114

Estimated mean 1.4 3.9 3.3 2.8 2.9 2.0 3.3

95% confidence band 1.3-1.4 3.7-4.1 3.0-3.6 2.6-3.1 2.6-3.1 1.6-2.2 3.0-3.6

CV (%) 69.3 46.3 54.4 59.4 67.2 67.3 43.0

# Total number of pairs of means (treatment and control) from all published studies.  
  Most studies reported means from more than one season and site, and more than one treatment with the same control.

Source: Sileshi et al. (2010).
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Despite the genetic potential of maize to yield up to 10 t ha-1, actual yields did not 
exceed 8 t ha-1 in the majority of cases. The probability of exceeding 8 t ha-1 was 
<3% with the recommended rate of fertiliser, while in 75% of the cases yields were 
<5 t ha-1 with all inputs. Inorganic fertiliser increased yield and reduced the coeffi-
cient of variation relative to both the unfertilised control and organic nitrogen treat-
ments. Yield gains were however lower and more variable on farmers’ fields than in 
research stations. These differences may be caused by factors that are generally not 
transferable, such as environmental conditions and management practices on research 
stations where stricter attention is paid to sowing dates, spacing, weeding, fertiliser 
doses and pest control than in farmers’ fields.

Refined statistical analyses also suggested variation in yield gaps with elevation, 
mean annual precipitation and soil type, including clay content. Although yields 
with the recommended rate of inorganic fertiliser were generally higher on Nitosols 
than other soil types, yield gains over the control were the lowest (Figure 16). The 
lower gain on Nitosols could be explained by the ‘saturated soil fertility’ effect. 
Variability in yield gaps (indicated by the 95% confidence bands) was highest on 
Acrisols and Nitosols and lowest on Lixisols. The high variability on Acrisols could 
be attributed to their sensitivity to degradation (Stocking, 2003). Overall, the analy-
ses indicated that organic inputs from the legumes may have large impacts on more 
sensitive and less resilient soils.

Variation in yield gaps with elevation, mean annual precipitation and the clay content 
of the soil were also significant in some cases. For example, for maize grown with 
inorganic fertiliser, the partial predictions of yield gap had a strong quadratic rela-
tionship with elevation and soil clay content. The 95% confidence bands also indi-
cated negative values on sites with elevations below 600 m or above 1300 m, and soil 
clay content below 20% or above 40%. The 95% confidence bands also widened, 
indicating increasing risks of using inorganic fertiliser outside this range. Similarly, 
soil clay content significantly influenced yield gaps in the treatments that receive 
organic nitrogen from sunhemp, sesbania and tephrosia.

Figure 16
Variation in maize mean yield with fertiliser and yield gap on various soil types 
in sub-Saharan Africa. Vertical bars indicate 95 percent confidence bands.    

 

Source: Sileshi et al. (2010). 
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Yield gaps also varied with overall site 
productivity indicated by the control 
yield. Yield gains with inorganic fertiliser 
were as high as 8 t ha-1 where the control 
achieved <2 t ha-1, while they remained 
below 4 t ha-1 where the control achieved 
more than 2 t ha-1.  

4.1.3. Grain legumes in India
Bathia et al. (2006) analysed regional-level 
yield gaps of soybean, peanut, chickpea and 
pigeonpea in India. They compared actual 
yield in experimental stations, best farms, 
and whole-districts. An interesting aspect 
of this work is that mean, maximum and 
minimum yields were derived for each yield 
category and used for yield gap calculations 
(Figure 17). The information from each 
of these measures of yield gap is different, 
and the distinction is particularly important 
when identifying the putative causes of the 
gaps. Nutrient supply for example is a much 
more likely cause of gaps in maximum yield, 
i.e. the yield achieved in more favourable 
(wetter) seasons than in causing gaps when 
yield is small. Efforts to identify specific 
yield gaps in extreme seasons are important 
for risk management, and to allow for the 
capture of the benefits of better seasons. 

4.1.4. Wheat-maize double crop 
in the Hebei plain of China
Most benchmarking studies focus on single 
crops. Liang et al. (2011) is one of few exam-

ples targeting double crops. The study was based on a survey of 362 farms in six coun-
ties of the Hebei Plain, where wheat–maize double crop is the most important compo-
nent of the system. Survey data from a single season were used to calculate maximum, 
average and minimum yield. These yields were compared with (a) modelled yield, and 
(b) experimental yield in growers’ fields during the same season; trials were designed 
and managed by researchers using recommended practices seeking high yield. The 
authors of the study defined modelled yield as the “climate-driven potential”, which 
corresponds to the definitions of Yp or Yw depending on water supply (Section 2.2).

Best farmer yield of wheat, maize and aggregated wheat-maize was close to the experi-
mental yield, and about 78–89% of potential yield estimated with models (Figure 
18), suggesting that there is no residual exploitable gap for the best farmers. The 
gap between average and best yield was around 30% for both individual crops and 
whole-system. Based on interviews and field observations, Liang et al. (2011) identi-
fied agronomic and socio-economic issues underlying yield gaps. For example, lack of 
access to shared irrigation facilities precludes the adoption of wheat irrigation at stem 
elongation, as recommended. 

Figure 17
Comparison of average, minimum and maximum 
yield of peanuts measured in experimental stations 
and in whole-districts of India. The lines are y = x.

Source: Bathia et al. (2006). 17 
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4.2. Approach 2: boundary 
functions accounting for 
resources and constraints 
Crop yield is a function of capture and 
efficiency in the use of resources, and 
non-resource constraints modulating crop 
development, morphology, and physiology 
(Figure 19). To account for both resources 
and non-resource environmental factors, 
methods have been developed that are 
based on the notion of boundary func-
tions (Box 3). Boundary functions have 
been used to benchmark yield in rela-
tion to resources, mostly water (Section 
4.2.1) and nitrogen (Section 4.2.2), and soil 
constraints (Section 4.2.3). 

4.2.1. Yield and water 
productivity gaps
This approach was pioneered by French and 
Schultz (1984a, 1984b) for rainfed wheat 
in Australia and has been more recently 
applied to a range of rainfed and irrigated 
cropping systems worldwide. The method 
can be applied to water use during the 
whole season, or limited to crop-specific 
critical periods.

4.2.1.1. Wheat in rainfed systems 
French and Schultz (1984a, 1984b) bench-
marked wheat yield in south-eastern 
Australia, and identified management and 
environmental causes of the gap between 
actual and attainable yield. Here we outline 
the concept and update the benchmarking 
of wheat in dryland systems.  

These authors plotted grain yield against evapotranspiration (ET) of wheat crops, esti-
mated as soil water at sowing plus in-season rainfall, in diverse locations and seasons, 
and fitted a boundary line with biophysically relevant parameters (Figure 20a):

Yw = TEY * (ET-E)		

Where Yw is water-limited yield, the slope TEY can be interpreted as the maximum 
transpiration efficiency for the production of grain, and the x-intercept E can be inter-
preted as non-productive water loss, primarily soil evaporation. The characteristic 
slope in the original study was 20 kg grain ha-1 mm-1, and was supported by physi-
ological considerations. The authors recognised the x-intercept was dependent on envi-
ronmental conditions, chiefly rainfall and soil, and suggested a range between 30 and 
170 mm for crops in eastern Australia. For instance, 30 mm would be more typical of 
northern regions where water supply involves a large proportion of stored soil mois-
ture and relatively few, normally large rainfall events during the season. In southern 

Figure 18
Yield gap analysis of wheat-maize double 
cropping and its components in the Hebei plain 
of China. Yields are potential, calculated with 
models; experimental, measured in researcher-
designed trials in growers’ fields, and maximum, 
average and minimum yield from surveys.

Source: Liang et al. (2011).
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Box 3 
BOUNDARY FUNCTIONS  

Yield gaps result because one or more factors (for example water and nutrient 
availability) limit crop yield. This limiting effect in biophysical systems can sometimes 
be estimated using boundary functions, first proposed by Webb (1972). While 
evaluating fruit size in strawberry, he discovered that berry weight, when plotted 
against achene number, always lay below or near a linearly increasing boundary. He 
proposed that the boundary represented the limiting effect of achene number on 
strawberry weight, and that the measurements lying below the boundary were limited 
by other factors, for example water deficit. Since that time the boundary line has 
become a popular model for limiting responses in biological data, including several 
examples on crop yield (Casanova et al. 1999; French and Shultz 1984). 

Most methods for fitting boundary lines have been somewhat ad-hoc. In some cases 
a line is simply drawn by eye. Other methods rely on using an arbitrarily chosen 
threshold to select a subset of the data to which the boundary line is fitted using the 
least squares method (Webb, 1972). In some cases, the parameters of the boundary 
function are derived from physiological or agronomic principles (Section 4.2.1.1).

These methods have been subject to criticism because they lack an underlying statistical 
model. A second criticism is that boundary lines are often used inappropriately. For 
example in cases where the boundary line model does not make biological sense (i.e. 
when we would not expect the independent variable to limit the dependent variable) 
or where there are simply insufficient data in the neighbourhood of the boundary to 
estimate its location (i.e. when there are too few data or when other more limiting 
factors are prevalent). Milne et al. (2006a, 2006b) addressed these issues by proposing 
(i) an objective method of fitting boundaries, and (ii) methods for assessing whether 
the models are appropriate for given sets of data.  

The method of Milne et al. (2006a) assumes that the data follow a censored bivariate 
normal distribution, where the boundary line defines the censor. Maximum likelihood 
is used to estimate the distribution parameters. Unlike many other methods of fitting 
a boundary line all of the data points are used, not just an arbitrarily selected subset. 
The parameters for the censored distribution comprise those which describe the 
bivariate normal part of the model, the parameters of the boundary line (e.g. for a 
straight line boundary y = ax + b these are a and b); and a parameter which describes 
the variation around the boundary (σB). The latter is attributed to measurement 
error, and so σB, provides an indication of how certain we are of the position of the 
boundary line. Confidence intervals for the parameter estimates are calculated from 
the Fisher information matrix (Milne et al. 2006a). The equation of the boundary 
line (e.g. straight line, parabola etc) is defined in the statistical model prior to fitting 
the parameters. Visual inspection of the data and knowledge of the biological system 
help decide which form of boundary line should be used. To assess the suitability 
of the boundary line model (i.e. the censored distribution) to describe the data, the 
analyst can compare its performance with a bivariate normal distribution (Milne et 
al. 2006a). The latter model is the null hypothesis against which the evidence for the 
boundary is assessed. The model with the censor has more parameters than the one 
without. Typically goodness of fit improves with increasing number of parameters. 
To account for this association, we compare the models using Akaike’s information 
criterion (AIC) (1973) which measures performance based on a compromise between 
parsimony and goodness of fit. 
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regions where initial soil water is generally low, and crops rely on winter rainfall, 
the combination of small rainfall events and hard setting soils with poor infiltration, 
surface ponding and run-off could lead to x-intercepts about 170 mm. 

As with any empirical model, the parameters need local calibration, and extrapola-
tion beyond the range of tested applicability should be avoided. For example, the 
slope representing attainable yield per unit transpiration is expected to be larger 

The AIC is given by 

AIC=−2lnM+2p					   

where M is the maximum likelihood value and p is the number of parameters in the 
model. The smaller the AIC value the more appropriate the model.

Figure Box 3-1 shows an example of a boundary line model fitted to data relating 
evapotranspiration and yield of wheat crops in dry environments worldwide. With 
no previous assumptions, except for the linearity of the model, and using the whole 
data set, Milne et al. (2006a) method returned a slope = 24.6 kg ha-1 mm-1, with 95 
percent confidence interval (-3.412, -1.504). This compares with the 22 kg ha-1 mm-1 
rate based on a combination of empirical line fitting informed by physiological 
principles (Section 4.2.1.1). 

Figure Box 3-1.
Example of linear boundary function fitted with the method of Milne et al.(2006a, 
2006b). Data are actual wheat yield vs estimated evapotranspiration in China, 
the Mediterranean region of Europe, North America and Australia compiled by 
Sadras and Angus (2006). A boundary line of the form y y=ax+b was assumed. 
The estimated parameter values were a=0.025 with 95 percent confidence interval 
(0.020, 0.030) and b=−2.458 with 95 percent confidence interval (-3.412, -1.504). The 
variation around the boundary, σB=0.971, with confidence interval (0.791, 1.151). 
According to the AIC the boundary line model describes this data better than a 
bivariate normal model.
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under conditions that favour high 
biomass per unit transpiration 
and high harvest index, namely 
low vapour pressure deficit, high 
proportion of diffuse radiation, 
high radiation-to-temperature 
ratio, high atmospheric concen-
tration of CO2, and a high propor-
tion of water available around 
and after flowering (Abbate et al 
2004; Rodriguez and Sadras 2007; 
Sadras and Rodriguez 2007).

The main environmental sources 
of variation in the x-intercept are 
soil characteristics (French and 
Schultz 1984a,b; Ritchie 1972) 
and the seasonality and size struc-
ture of rainfall, i.e. the x-intercept 
is smaller for crops grown with 
high stored water/seasonal rain 
ratio, and with dominance of large 
rainfall events during the growing 
season (Sadras and Rodriguez 
2007a). Other factors that affect 
seasonal soil evaporation, chiefly 
by changing the partitioning of 
radiant energy between canopy 
and soil, include tillage and stubble 
management, row-spacing and 
sowing density, the rate of canopy 
expansion early in the season and 
the rate of senescence as affected 
by cultivar and management 
(Cooper et al.1987; Monzon et al. 
2006; Richards 2006).  

Four elements reinforce the 
notion that the model of French 
and Schultz is robust and agro-
nomically relevant to benchmark 
yield of rainfed wheat. First, a 
line with slope = 22 kg grain 
ha-1 mm-1 and x-intercept = 60 
mm provided a reasonable upper 
boundary for a large number of 
crops from diverse regions of 
the world (Figure 20b). Second, 
the simpler boundary function 
of French and Schultz generally 
agrees with boundary functions 
generated with more complex 
simulation models involving 
dozens of parameters and daily 

Figure 20
(a) The original model of French and Schultz (1984) assumed 
a boundary function with slope = 20 kg grain ha-1 mm-1 and 
x-intercept = 110 mm (solid line) for a particular set of crops 
comprising South Australian environments and cultivars and 
management of the 1960-70s (circles). (b) The original concept, 
with an updated slope = 22 kg grain ha-1 mm-1 and x-intercept 
= 60 mm, applied to a large (n=691) data set of crops in four 
dry environments of the world.

Source: Sadras and Angus 2006 .
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input of weather variables (O’Leary and Connor 1996; Angus and van Herwaarden 
2001; Asseng et al. 2001; Sadras and Rodriguez 2007; Hochman et al. 2009). In fact, 
the French and Schultz model is often considered a back-of-the-envelope check for 
more refined models. Third, a close alignment between actual yield-to-transpiration 
ratios corresponding to 150 years of wheat breeding in Australia, and the original 
(20 kg grain ha-1 mm-1) and current (24 kg grain ha-1 mm-1) estimates of the model’s 
slope reinforce our confidence in both the value and interpretation of this parameter 
(Sadras and Lawson 2013a). Fourth, the method of Milne et al. (2006a; 2006b) applied 
to the data set in Figure 20b returned parameters that, without a priori assumptions, is 
consistent with the parameters in the model of French and Schultz (Box 3). 

In summary, the approach of French and Schulz is solid, despite the lack of consid-
eration of seasonal dynamics of rainfall and water use. This method is attractive 
for its simplicity, and results in estimates that are not necessarily worse than those 
derived from more complex, daily-time step crop models, provided the parameters 
are adjusted to local conditions. Of the two parameters, the slope can be considered 
robust and taken as crop-specific constant in a first approach, whereas care should be 
taken to derive sensible values for the x-intercept. The approach of French and Schultz 
has been limited to Australia until 
recently, but tests in other regions 
of the world and crops suggest a 
broader generality (Sections 4.2.1.2 
to 4.2.1.4). This approach is useful to 
benchmark attainable yield against 
water use, with relatively low 
demand of inputs, namely estimates 
of initial and final soil content and 
in-season rainfall to estimate evapo-
transpiration, and measured yield. 
French and Shultz-type boundary 
functions can also be derived using 
models like CropSyst, CERES or 
APSIM, or a combination of actual 
data and modelling, e.g. actual yield 
and modelled evapotranspiration.

4.2.1.2. Millet in low-input 
systems of Africa 
Sadras et al. (2012) compiled millet 
grain yield and water-use data from 
published sources, mostly from the 
West African Sahel generally asso-
ciated with ICRISAT. Data from 
Egypt, a more favourable African 
environment, and the United States, 
to represent higher-input cropping 
systems, were included in the analy-
sis for comparison. For a collection 
of 58 crops in the Sahel, millet yield 
per unit water use averaged 3 kg 
grain ha-1 mm-1 (Figure 21a). Yield 
per unit transpiration of millet is 
the lowest among C4 crops and is 
primarily associated with low harvest 

Figure 21
(a) Frequency distribution of millet yield per unit seasonal 
evapotranspiration in Western Sahel and (b) relationship 
between grain yield and evapotranspiration for crops in 
Western Sahel; data from Egypt and USA are included for 
comparison. The solid line has a slope = 16.7 kg grain ha-1 
mm-1 and an x-intercept = 158 mm, both derived from 
Rockström et al. (1998).  

Source: Sadras et al. (2012).
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index. However, millet’s low harvest index needs to be considered in the context of a 
trade-off between grain production and valuable crop residues. For example, some 
popular landrace millet varieties in India are over 3-m tall, and are valued for the large 
amount of fodder they provide, even though grain yields are relatively low.

A boundary function with a slope of 16.7 kg grain ha-1 mm-1 captured the upper limit 
of water productivity for millet crops (Figure 21b). This boundary function applied to 
the stressful Sahel conditions, and to the more favourable environments of Egypt and 
North America. Most millet crops in the Sahel were well below this boundary function. 
Environmental, management and plant-related factors contributed to the low water 
productivity of millet in the Sahel. Low soil fertility and sparsely sown crops mean 
ground cover is typically low, i.e. peak leaf area indices are normally below 1, or below 
2 in more intensive systems. This in turn favours unproductive soil evaporation. Sandy 
soils, which are prone to crusting, favour episodic runoff and deep drainage. Indeed, a 
series of experimental and modelling studies converge to conclude that production in 
these environments is less limited by water than by soil fertility, agronomy and inputs, as 
there is often residual water in the soil at maturity, large unproductive losses of water are 
common, and nutrient stress is often more severe than water stress (Sadras et al. 2012).  

4.2.1.3. Sunflower in rainfed systems of Argentina 
Grassini et al. (2009a) explored the relationship between sunflower grain yield and 
seasonal water supply using a 4-year database of commercial crops in the Western 
Pampas (n = 169; paddock size between 21 and 130 ha). Only crops grown on deep 
soils with no obvious physical or chemical constraints to rooting were included. Data 
collected from small-plot (56 m2) fertilization studies were also included in the analy-
sis (n = 231). Water productivity for each field-year was calculated as the quotient 
between grain yield and seasonal water supply, where water supply is initial soil water 
plus seasonal rainfall.

The boundary function that delimits the maximum yield over the range of water supply 
had a slope of 9.0 kg grain ha-1 mm-1 and an x-intercept of 75 mm (Figure 22a). Salient 
features of this figure are: (i) many crops had water supplies greater than the maximum 
expected cumulative evapotranspiration (630 mm) for the region, (ii) yield varied widely 

Figure 22
(a) Relationship between sunflower grain yield and seasonal water supply in farmers’ 
fields (open symbols; n = 169) and small-plot fertilizer trials (closed symbols; n = 231) 
in the Western Pampas. Water supply is available soil water at sowing plus sowing-to-
maturity rainfall. (b) Relationship between yield and evapotranspiration for sunflower 
crops in Australia, Lebanon, Spain, Turkey, and United States. 

Source: Grassini et al. (2009a). 
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for a given water availability, (iii) on average, farmers’ yields were 50  percent below 
the boundary function, and (iv) maximum on-farm grain yields (4.9 t ha-1) approached 
those reported for modern hybrids under potential conditions. Average on-farm yield 
per unit water supply ranged from 1.1 to 8.0 kg grain ha-1 mm-1. The boundary func-
tion defined for the Western Pampas provided a reasonable upper limit for rainfed and 
irrigated sunflower crops grown in other semi-arid environments in the Mediterranean 
Basin (Lebanon, Spain, Turkey), the Great Plains of North America and Australia 
(Figure 22b). Although crops were grown under good management practices, most of 
the data points were below the boundary function. The gaps were associated with high 
soil evaporation, high evaporative demand of the atmosphere, and untimely rainfall 
during the growing cycle in relation to critical crop stages. Splitting crops in three cate-
gories depending on the range of water supply allowed for more refined identification of 
agronomic and environmental factors underlying the yield gaps (Grassini et al. 2009a).

4.2.1.4. Maize in irrigated systems of USA 
Grassini et al. (2009b) compiled data on 
maize grain yield, applied irrigation, irri-
gation system and nitrogen fertiliser rate 
during three years from commercial irri-
gated fields inside the Tri-Basin Natural 
Resources Districts of Nebraska, USA 
(n = 777; paddock mean size: 46 ha). Seasonal 
water supply was calculated as available 
soil water at sowing + sowing-to-maturity 
rainfall + applied irrigation. Modelled yield 
and water supply in 18 locations across the 
Western U.S. Corn Belt were used to derive 
(i) a boundary function (slope = 27.7 kg 
grain ha-1 mm-1, x-intercept = 100 mm) and 
(ii) a mean function (slope = 19.3 kg grain 
ha-1 mm-1, x-intercept = 100 mm). The 
boundary function defines the maximum 
yield over the range of water supply, and 
the mean function accounts for the vari-
ability in attainable yield at a given water 
supply caused by year-to-year variation in 
solar radiation, temperature, vapour pres-
sure deficit, and seasonal distribution of 
water supply. When compared to reported 
data on grain yield and water supply from 
maize crops in the Western US Corn Belt 
under good management, both the bound-
ary and mean functions proved to be robust 
benchmarks (Figure 23a). On average, 
farmers’ yields were 20 percent below the 
mean benchmark function although ≈ 4 
percent of the cases approached or even 
exceeded this benchmark (Figure 23b). 
Grain yield was not responsive to water 
supply over 900 mm; an important fraction 
of the total fields (55 percent) exceeded the 
apparent 900 mm threshold required to 
maximize yield. The apparent water excess 

Figure 23
a) Relationship between grain yield and seasonal 
water supply (available soil water at sowing plus 
sowing-to-maturity rainfall and applied irrigation) 
for maize crops grown under near-optimal 
management in the Western US Corn Belt. The 
database included a wide range of environments 
and irrigation schedules; none of the fields had 
obvious nutrient limitations, diseases, insect 
damage, weeds, or hail. (b) Farmers’ irrigated yields 
in the Tri-Basin NRD as a function of seasonal water 
supply (+). Tri-Basin county-level average rainfed 
yields are also shown for comparison (•).

Source: Grassini et al. (2011).
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was weakly related to available soil water at sowing and sowing-to-maturity rainfall but 
strongly related to applied irrigation. Water productivity of irrigated crops ranged from 
8.2 to 19.4 kg mm-1 ha-1 across field-years. Average water productivity was higher in 
irrigated than in rainfed crops (14.0 vs 8.8 kg grain ha-1 mm-1). 

Fields under centre pivot irrigation had higher water productivity (≈ 13 percent) than 
their counterparts under gravity irrigation. Yield per unit irrigation averaged 44, 62, 
and 77 kg grain ha-1 mm-1 under pivot and 28, 36, and 42 kg grain ha-1 mm-1 under 
gravity in 2005, 2006, and 2007, respectively. When these values were corrected by the 
average rainfed yield on each year (5.1, 5.2, and 7.5 tonnes ha-1), the resulting water 
productivity became relatively stable across years: 27, 37, and 32 kg grain ha-1 mm-1 
under pivot and 18, 21, and 18 kg grain ha-1 mm-1 under gravity in 2005, 2006, and 
2007, respectively. High ΔY per unit irrigation reflects not only the response to increas-
ing water supply, but also differences in the agronomic management between irrigated 
and rainfed crops (e.g. plant population, nutrient inputs). Consequently, rainfed crops 
had lower attainable yield and water productivity than irrigated crops (Figure 23b).

4.2.1.5. Yield vs water availability in a critical period of yield determination
Calviño and Sadras (1999) benchmarked soybean yield in the Pampas of Argentina, 
in a period of fast change and adoption of technology including the first generation 
of transgenic (herbicide tolerant) varieties. Their aim was to produce a reference to 
measure the impact of changing technology, including new varieties and management 
practices, and to identify causes of gaps between actual and attainable yield. They gath-
ered yield and rainfall data from 30–35 crops per year in farmers’ fields during four 
years. The period was long enough to span an important range of rainfall, and short 
enough to meet the assumption of constant technology. To reinforce this assumption, 
additional criteria were used to narrow the range of crops in the sample, e.g. fixed row 
spacing, narrow sowing date window, narrow range of maturity groups. Using the 
3-highest yielding crops each season as a measure of water-limited yield, they fitted the 
boundary model (Figure 24):

Yw = a + b (1 – e-c W)			 

where a, b and c are empirical parameters, and W is rainfall in February plus a carry-
over of January rainfall; a estimates yield when W = 0, and a + b is the maximum 
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Figure 24
Relationship between attainable soybean yield and rainfall during the period of pod and grain 
set in (a) deep and shallow soils at Tandil, (b) deep soil at Pergamino, (c) combined data for Tandil 
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Source: Calviño and Sadras (1999).
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attainable yield. Similar to the model of 
French and Schulz, this model establishes 
a boundary function in relation to water 
availability. In contrast to the model of 
French and Schulz, the parameters of this 
model cannot be explained in terms of 
biophysical processes except for the esti-
mate of attainable yield. Also unlike the 
model of French and Schulz, this model 
captures the physiological principle of a 
most critical period for yield determina-
tion (Andrade et al. 2005), i.e. instead of 
using seasonal water use, it constrains the 
driving variable to the typical window of 
pod and grain set in February.

A similar approach was used by Calviño 
et al. (2003) to benchmark maize yield 
in the Pampas. They collected yield data 
from 216 commercial crops in Tandil (37 
oS, 59 oW) from three-year time series to 
meet the criterion of constant technol-
ogy, reinforced with specific criteria to 
narrow the range of agronomic practices. A boundary function was fit that related 
the yield of the 15% highest yielding crops and rainfall from 30 d before to 20 
d after flowering, the critical period for grain yield determination in maize. The 
boundary function was tested against independent data, and was used to estimate 
the yield gap associated with shallow soils (Figure 25). The double-headed arrows 
in Figure 25 highlight that the yield gap between shallow and deep soils is smaller 
under both low and high rainfall conditions, when the storage capacity of soil is 
less relevant; the largest gap is at intermediate rainfalls when storage capacity of soil 
water buffers dry spells between rainfall events. 

4.2.2. Yield gaps and nitrogen uptake
Benchmarks based on capture of nitrogen are agronomically, economically and envi-
ronmentally relevant in a context of increasing energy and fertiliser price and concerns 
with nitrogen leaching and greenhouse emissions. 

Savin et al. (2006) used the relationship between actual wheat yield and nitrogen uptake 
to investigate putative differences in nitrogen use efficiency between Mediterranean and 
non-Mediterranean environments (Figure 26). Boundary functions revealed a lower effi-
ciency in Mediterranean environments hypothetically associated with hotter conditions 
during grain filling. The curves in Figure 26 are empirical, and similar to the approach 
based on water use (Section 4.2.1.1 to 4.2.1.4), they account for the seasonal capture of 
a major crop resource. A significant part of the gap between actual and attainable yield 
is accounted for grain nitrogen concentration (Savin et al. 2006; Ciampitti & Vyn 2012), 
which constrains the application of this approach to benchmarking. 

Hochman et al. (2013) use a nitrogen-based benchmark to estimate yield gaps in 
rainfed wheat crops in Australia. They compiled a data set of yield and nitrogen use, 
calculated as the sum of crop nitrogen uptake and nitrogen lost to the root zone, and 
derived a normalised boundary function based on a representative nitrogen response 

Figure 25
Attainable yield of maize as a function of rainfall 
in the critical period of grain yield determination 
for deep Typic Argiudolls and shallow Petrocalcic 
paleudolls (0.5-0.7m). The critical period is 20 d 
before to 30 d after anthesis. Double-headed arrows 
indicate yield gap due to soil.

Source: Calviño et al. (2003).
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curve (Figure 27). The normalisation estimates the shortfall in nitrogen input of the 
actual crop relative to the input required to reach yield potential. The analysis indi-
cated 64% of crops attained actual yields that was within 80% of the expected yield 
as simulated using the actual input of nitrogen for each crop. 

Ciampitti and Vyn (2012) fitted boundary functions to characterise the relationship 
between yield and nitrogen uptake of maize in a comparison of old (1940 to 1990) 
and new (1991 to 2011) technologies using a comprehensive, worldwide database. 
The boundary functions were fitted with linear + plateau models with three param-
eters. All three parameters differed with technology: the rate of change in yield with 
increasing nitrogen uptake increased from 74 kg grain per kg N with old technology 
to 93 kg grain per kg N with new technology, the nitrogen required to maximise 

yield was reduced from 181 kg N per ha 
to 168 kg N per ha, and maximum yield 
increased 13 to 16 t ha-1. These bound-
ary functions could be used for yield gap 
analysis, although this was not the original 
aim of this study, and shifts in parameters 
highlight the importance of proper defini-
tions of technological background.

4.2.3. Yield gaps and 
soil constraints
Casanova et al. (2002) measured yield gaps 
of irrigated rice in the Ebro Delta of 
Spain using a soil-focused approach. They 
measured yield (y) and soil texture and 
chemical properties (xi) in 50 fields. A 
boundary line was defined for each xi vari-
able according to the following steps: (a) 
each xi was categorised in 10 groups, (b) 

Figure 27
Normalised relationship between yield and 
nitrogen input for 334 wheat crops in Australia. 
The solid line is a nitrogen-response curve 
representing the upper limit of the relationship. 

Source: Hochman et al. (2013).

Figure 26
Actual wheat yield as a function of seasonal nitrogen uptake in Mediterranean (closed 
symbols) and non-Mediterranean environments (open symbols). The figure in the left shows 
a complete data set compiled from papers published in SCI journals (n = 630). The figure in 
the right shows the five highest yields in each of 50 kg/ha intervals of nitrogen uptake. 

Source: Savin et al. (2006). 
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frequency distributions of yield for each xi were tested for normality, (c) for groups 
passing the normality test the average xi and yield at 95% confidence are selected, 
and (d) a linear regression is fitted using selected xi and yield. This approach gener-
ated boundary lines with positive slope for resource-type variables, such as cation 
exchange capacity, and with negative slopes for constraint-type variables such as 
salinity. Yield was estimated as:

y = Min [f (x1), f (x2)…f (xn)]			

where f (xi) is the maximum yield for independent variable xi. This approach identi-
fied three main variables, namely topsoil cation exchange capacity, soil salinity and pH 
which collectively accounted for a yield gap of 2.9 t ha-1 relative to attainable yield in 
the region around 11 t ha-1. A residual gap of 0.8 t ha-1 corresponded to other, uniden-
tified factors. A variation of this method opened up the “black box” of yield into 
numerical yield components (panicles per m2, spikelets per panicle, fraction of filled 
panicles and individual grain mass) and accounted for crop status variables, i.e. crop 
establishment, duration and nutrient status. This approach is particularly interesting 
for local studies of soil constraints.

4.2.4. Water productivity as a function of yield
Water productivity increases non-linearly with grain yield, as shown for example in 
rainfed and irrigated wheat crops in the USA (Musick et al. 1994). The analysis in 
Figure 28 for maize in Doukkala Irrigation Scheme of Morocco illustrates how bound-
ary functions could be used to capture the upper limit of water productivity, identify 
underperforming fields and calculating water productivity gaps; this approach has not 

Figure 28
Relationship between water productivity (yield per unit evapotranspiration) and yield 
of maize in the Doukkala Irrigation Scheme, Morocco. The red line is the boundary 
function fitted by calculating the 90th percentile of water productivity for yield split in  
1000 kg/ha intervals. Both yield and water productivity were derived with methods 
combining remote sensing and modelling.

Source: Goudriaan and Bastiaanssen 2013.
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been documented, but we suggest it could be useful for gap analysis where the focus 
is water productivity.

4.3. Approach 3: modelling   
Approach 1 and 2 underestimate maximum yield where best practice is not feasible; 
for example, where policy or infrastructure limitations prevent the use of inputs such 
as fertiliser. In this section we compile a series of case studies including a compari-
son of yield benchmarking and gap analysis using on-farm yields (Approach 1) and 
modelled yield (Approach 3) with Maize in USA and Kenya, and wheat in Australia. 
Other case studies deal with rice in Southeast Asia, maize in Zimbabwe, quinoa in 
Bolivia. The use of climatic indices to estimate yield potential and FAO’s Agro-
Ecological Zones system are outlined.

4.3.1. Maize (USA, Kenya) and wheat (Australia)  
Van Ittersum et al. (2013) assessed the implications of using different methods based 
on simulated or actual yields for yield gap assessment at a local level. The following 
methods were evaluated for their ability to estimate potential yield or water-limited 
yield for irrigated and rainfed cropping systems, respectively, and their corresponding 
yield gaps, across farmer’s fields over relatively small geographic areas:

•	site-specific simulation of potential or water-limited yield using crop growth 
models; 

•	derivation of potential or water-limited yield from upper percentiles of farmer 
yield distributions; 

•	maximum yields measured in experimental stations, growers contests, or highest-
yielding farmer’s fields.

Three cropping systems of varying level of intensification were considered for the 
analysis: rainfed maize in western Kenya, irrigated maize in Nebraska (USA), and 
rainfed wheat in Victoria (Australia). Year-specific information about yield, manage-
ment, weather and soil properties were available for each farmer’s field from three years 
for Nebraska and Victoria and one year for Kenya. Detailed descriptions of cropping 
systems, structure and validation of crop models, and data inputs can be found in previ-
ously published studies (Grassini et al. 2011; Tittonell et al. 2006; Hochman et al. 2009). 

Owing to the capacity to capture major interactions among weather, soils and manage-
ment, crop modelling appeared to be the most reliable way to estimate potential yield 
and water-limited yield for each specific crop within the defined cropping system. The 
attributes for a model to be useful in this type of study have been discussed in Section 
3.3. Models allowed for probability distributions rather than single values of potential 
and water-limited yield and yield gap (Figure 29). Variability in simulated potential 
and water limited yield reflected not only differences in management practices among 
fields, but also variability in weather across years and fields. Under such conditions, 
farm managers face large uncertainty about yield-affecting conditions, and hence 
appropriate level of inputs in the season ahead (Box 2). If inputs are applied in excess of 
amounts needed for maximum profit in a year when potential or water limited yield is 
below average, closing a small yield gap will likely not meet their economic goals. On 
the other hand, if farmers invest too little inputs in a year with high potential or water-
limited yield, the yield gap will be large and they will miss the possibility of high profit.
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This was the case for rainfed maize and wheat cropping system in Kenya and 
Australia, although there are differences between these systems (Figure 29). While 
Australian farmers face greater uncertainty about water limited yield, they are also 
much better equipped to cope with this uncertainty, due to better access to informa-
tion and inputs, than Kenyan farmers who often also face labour constraints because 
of manual ploughing. As a result, yield gaps were much smaller in rainfed wheat in 
Australia compared to rainfed maize in Kenya (yield gap-to-actual yield ratio of 0.4 
and 2.2, respectively) (Figure 29). In the case of irrigated maize in Nebraska, access 
to irrigation water compensates for weather variability and associated risk, allowing 
growers to fine tune their management and achieve small gaps (yield gap-to-actual 
yield ratio of 0.1) (Figure 29).

Estimates of yield potential, water limited yield and yield gap based on maximum yields 
or an upper yield percentile are static or non-spatially explicit, unless they are linked 
with some environmental variable. A single estimate of potential or water limited yield 
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Figure 29
Simulated potential yield (Yp) or water-limited yield (Yw) based on site-specific weather, soil 
properties, and management data collected from farmer’s fields in three cropping systems: rainfed 
maize in west Kenya, irrigated maize in Nebraska (USA), and rainfed wheat in Victoria (Australia) 
(n = 54, 123, and 129 field-year cases, respectively). Each bar corresponds to an individual field-year 
case. The yellow and red portions of the bars indicate actual farmer’s yield (Ya) and yield gap (Yg), 
respectively. Horizontal lines indicate average Yp (or Yw) and Ya (solid and dashed lines, respectively) 
for the region. Means and coefficients of variations (CV) for Yp (or Yw) and Yg are shown. Fields were 
sorted from highest to lowest Yp or Yw. Note that Ya>Yw for some site-years in Victoria which reflects 
incorrect specification of model inputs , actual yields, and/or inability of crop models to portray specific 
genotype x environment x management interactions. 

Source: van Ittersum et al. (2012).
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used as a reference in gap analysis does not reflect the full range of conditions within 
an agro-ecological zone and cropping system. The yield achieved by a contest winner 
or in the highest-yielding fields in any region or season was unattainable by most 
other farmers who did not benefit from the same climatic or soil conditions. Likewise, 
measured yields in experimental stations can also be biased if soil and topography (i.e. 
deep, fertile soils on flat land or on well terraced slopes) do not represent the surround-
ing production systems. Hence, maximum yields and upper yield percentiles provide 
an estimate of the best G x E interaction across a large population of site-years, rather 
than a measure of long-term average potential or water limited yield. Although all these 
empirical methods are convenient when data are lacking to calibrate and validate a crop 
model and to run it for a range of fields and years, they gave inconsistent estimates of 
potential and water limited yield compared to those obtained from crop simulation. In 
the case where actual yield was high, which indicates favourable growing conditions 
and little stress (i.e. irrigated maize in Nebraska), there was relatively close agreement 
among yield potential, water limited yield and yield gap estimates based on maximum 
yields or upper percentiles and estimates based on crop simulation (Table 3). In 
contrast, there was very poor agreement among these estimates in cases where farmers 
did not (or could not) use best management practices and thus achieved low yields 
(i.e., Kenya rainfed maize). Likewise, estimates of potential and water limited yield 
based on maximum yield or upper percentiles can be biased by atypical years or farms 
amongst the observations, but this cannot be defined without more detailed analysis 
using simulation models. This problem played a role in the dataset for rainfed wheat 
in Victoria in which the average maximum yield and the average 95 and 99 percentiles 

Table 3 
Actual average farmer yield (Ya) and estimates of average potential yield (Yp) or water-limited 
yield (Yw), yield gaps (Yg), and Yg-to-Ya ratio (Yg:Ya) for three cropping systems based on four 
different methods: crop simulation models, upper percentiles of farmer Ya, and maximum yields. 
Values are means for one single year (rainfed maize in western Kenya) or 3 years for irrigated 
maize in Nebraska and rainfed wheat in Victoria. 

Yield (t ha-1)
Rainfed maize, 
western Kenya

Irrigated maize, 
Nebraska, USA

Rainfed wheat, 
Victoria, Australia

Actual yield (Ya) 1.7 13.2 1.9

Yp or Yw based on: Yw Yp Yw

Simulation model 5.4 14.9 2.6

Upper percentiles Ya:

95th percentile 3.6 14.4 3.5

99th percentile 3.9 14.8 4.1

Maximum Ya a 6.0 17.6 4.3

Yg based on:

Simulation model b 3.7 (Yg:Ya = 2.2) 1.6 (Yg:Ya = 0.1) 0.8 (Yg:Ya = 0.4)

Upper percentiles Ya:

95th percentile 1.9 (Yg:Ya = 1.1) 1.1 (Yg:Ya = 0.1) 1.9 (Yg:Ya = 1.0)

99th percentile 2.2 (Yg:Ya = 1.3) 1.6 (Yg:Ya = 0.1) 2.2 (Yg:Ya = 1.2)

Maximum Ya 4.3 (Yg:Ya = 2.5) 4.5 (Yg:Ya = 0.3) 2.3 (Yg:Ya = 1.2)

a Maximum yields were derived from measured yields at: nearby experimental stations (rainfed maize in western 
Kenya), National Corn Growers Association (NCGA) contest-winning irrigated fields in Nebraska (irrigated maize 
in Nebraska), and highest-yielding farmer fields (rainfed wheat in Victoria).

b For Australia, when Ya>Yw, Yg=0 was assumed.

Source: van Ittersum et al. (2013).
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of farmers yields across three years was well above the average simulated water-limited 
yield over the same period (Table 3). If the maximum yield and 95 and 99 percentiles 
of farmers yields had been taken from the entire population of field-years, aggregated 
across years, the difference between simulated Yw and the 95 and 99 percentiles would 
be substantially higher as the best year would have been used as the benchmark.

4.3.2. Rice in Southeast Asia 
Laborte et al. (2012) analysed farmers’ yields and yield gaps in the wet and dry 
seasons in four intensively cropped rice areas in Southeast Asia: Central Luzon, 
Philippines; West Java, Indonesia; Suphan Buri, Thailand; and Can Tho, Vietnam. 
Yield gaps were estimated based on potential yield derived from the crop growth 
model ORYZA2000 applying crop development rates calculated from observed 
phenological stages, actual crop establishment methods and actual average planting 
dates of farmers (Bouman 2011). 

Exploitable yield gaps (Section 2.2) were estimated based on economic (80% of poten-
tial yield) and best farmers' yields (upper 10 percentile in each year, season, and site). 
They found yield differences of 2.6–5.4 t ha−1 between average and potential yields, 
1.0–3.6 t ha−1 between average and economic yields, and 1.1–2.3 t ha−1 between average 
and best farmers’ yields. The gap between average and best yields was higher in rice-
importing countries (Indonesia and Philippines) compared with rice-exporting coun-
tries (Thailand and Vietnam). 

Many yield gap studies consider a single year or period (Section 3.2.1). In addition 
to looking at yields and yield gaps across sites, this study evaluated yield differences 
across time using four decades of farm survey data (1966 to 2008) for Central Luzon, 
Philippines. They used quantile regression to estimate annual increments in yields 
that correspond to various percentage points of the distributions of farmers’ yields. 
From 1966 to 1979, annual increases in rice yields for farmers in the upper quantiles 
were much higher than those in the lower quantiles as yield increased with adoption 
of higher-yielding modern rice varieties by some farmers. On the other hand, there 
was no significant change in yields for the lowest 10 percentile despite more than a 
decade since the introduction of modern rice varieties. Owing to the differential rate of 
adoption of new technology between leading and average farmers during this period, 
the gap between average and best yields increased with time (Figure 11). From 1982 
onwards, the lower 30 percentile had slightly higher annual increments than others, as 
farmers with low yields started to adopt modern rice varieties. However, the mean gap 
between average and best yields for surveys conducted during the 2000s did not differ 
much from that of the 1980s. 

Closing the yield gap in farmers' fields in Southeast Asia remains a challenge. Best 
farmers’ yields were already near to, or in some cases, even higher than their estimate 
of economic yield. This implies that it will not be economically attractive for best-
yielding farmers to further increase yields, unless there is a change in the prices of rice 
and/or production inputs to warrant more investment. On the other hand, the gap 
between average and best yields could still be reduced, especially in the rice importing 
countries, where the gap is larger. This study gave indications of some causal factors 
by comparing some characteristics of and production inputs used by average and best 
yielding farmers. To bridge the gap, production inputs such as fertiliser and labour 
should be used more efficiently and intensive knowledge delivery and programs that 
enhance farmers’ skills as well as institutional arrangements are vital. 
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4.3.3. Maize in Zimbabwe
Kahindae el al. (2007) used a simulation model (APSIM) to investigate alternative crop-
ping practices to close the yield gap of maize in semi-arid Zimbabwe. They estimated 
two extreme yields, i.e. maximum with good supply of water or nitrogen, and a rainfed 
control closer to standard practices with no fertiliser and no supplemental irriga-
tion. Within the boundaries of these extreme yields, a range of feasible options were 
modelled, e.g. modest amounts of inorganic nitrogen or manure in combination with 
locally developed rain water harvesting techniques. This modelling exercise showed the 
synergy between water and nitrogen, which is consistent with theoretical and empirical 
considerations (Sadras 2005; Cossani et al. 2010). 

4.3.4. Quinoa in Bolivia 
Geerts et al. (2009) used the AquaCrop model to examine the potential of closing 
quinoa yield gaps using irrigation in the Bolivian Altiplano, where yields of rainfed 
crops are low and unstable. Simulated scenarios included a rainfed control, a refer-
ence strategy avoiding stomatal closure during all sensitive growth stages and allowing 
drought stress during the tolerant growth stages and various restrictive deficit irriga-
tion strategies representing cases when water resources are limited. From the scenario 
analysis, probability curves were derived for three agro-climatic regions. The modelled 
yields of rainfed quinoa during dry years ranged from 1.1 t ha-1 in the northern region 
to 0.2 t ha-1 in the southern Altiplano and increased to 2.2-1.5 t ha-1 with the best 
irrigation treatment, corresponding to yield gaps > 1 t ha-1. Minimum water avail-
ability required to significant reductions in yield gaps were identified, in the order of 
600-700 m3 per ha for the central and southern regions.  

4.3.5. Estimating yield potential with climate indices
Previous Sections illustrated yield gap analysis based on simulation models accounting 
for environment, crop and management factors. Here we outline simpler methods to 
account for major climate drivers in the definition of yield potential (Section 2) and 
their application in benchmarking. Fischer (1985) defined a photothermal quotient 
(PTQ) relating solar radiation (Rad) and mean temperature (T) above a base tempera-
ture (Tb) during a time window comprising the most critical period for grain set:

	 PTQ = Rad / (T- Tb)	  					   

This coefficient reflects four physiological principles, namely (a) grain number is 
the main yield component (Sadras, 2007b), (b) grain number is proportional to total 
growth during a species-specific critical window around flowering (Andrade et al., 
2005), (c) growth rate during this critical window is proportional to photosynthesis 
and hence radiation, and (d) the duration of this period is inversely proportional to 
temperature. On these principles, Fischer’s (1985) photothermal quotient and derived 
indices usually capture a substantial part of the variation in grain yield of diverse annual 
grain crops (Fischer 1985; Cantagallo et al. 1997). In the study of Bell and Fischer 
(1994) outlined in Section 3.2.2, the rate of change of wheat yield in the Yaqui Valley 
of Mexico calculated with the photothermal quotient was similar to the rate calculated 
with CERES-wheat, although estimates were offset by approx. 0.8 t. Estimates of grain 
number using a photothermal coefficient, and modelled (Menendez and Satorre 2007) 
or actual (Calviño and Sadras 2002) kernel weight were used to generate location-
specific benchmarks of wheat yield in the Pampas. 

Rodriguez and Sadras (2007) used a normalised photothermal coefficient (PTQn) 
accounting for the effects of photosynthetically active radiation (PAR), mean tempera-
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ture (T), vapour pressure deficit (VPD) and fraction of diffuse radiation (FDR) to 
benchmark wheat yield in eastern Australia

	 PTQn = PAR * FDR / VPD * T				  

Doherty et al. (2008) combined actual yield, modelled seasonal evapotranspiration and 
the coefficient PTQn to produce a shire-level benchmark of attainable wheat water 

Figure 30
Median (a) actual yield (t ha-1), (b) modelled water use (mm), (c) water use efficiency, i.e. 
(a)/(b), (d) normalised photothermal coefficient (MJ m-2d-1 kPa-1 oC-1), and (e) normalised 
water use efficiency, i.e. (c)/(d). Data corresponds to the period 1975-2000. Note water 
use efficiency decreases from south to north in the eastern region (c) but this gradient is 
largely accounted for the climate variables in the normalised photothermal coefficient (e).

Source: Doherty et al. (2008).



44 Yield gap analysis of field crops - Methods and case studies

productivity (Figure 30). The rationale of this approach is that the boundary water-
limited yield, as determined with the French and Schultz model (Section 4.2.1.1), can be 
improved by accounting for physiologically relevant (a) critical period and (b) climatic 
drivers included in PTQn. This approach may be of interest to benchmark yield in 
future climates where warming and increased VPD are likely to have significant impact 
on water productivity (Potgieter et al. 2013).

4.3.6. FAO’s Agro-Ecological Zones system
GAEZ refers to the Agro-Ecological Zones system, developed by FAO and IIASA 
(International Institute for Applied Systems Analysis). This tool enables land-use 
planning based on an inventory of land resources and their biophysical limitations 
and potential for crop production. The characterization of land resources accounts for 
climate, soils and landform, which are basic for the supply of water, energy, nutrients 
and physical support to crops. GAEZ models potential yield and downscales year 2000 
statistics of main food and fiber crops to derive actual yield. The spatial resolution for 
yield gap analysis, derived from potential and actual yield, is 5 arc-minute. Further 
details can be found in: http://www.fao.org/nr/gaez/publications/en/

4.4. Approach 4: remote sensing
We emphasised the need for precision and accuracy of crop yield data for gap 
analysis, and highlighted some of the limitations from actual measurements, surveys, 
regional and national statistics and modelled yield. Indirect measurements via satel-
lites have a potential to measure fields and regions to complement and cross check 
other sources of data (Box 4). 

Lobell (2013) recently reviewed the application of remote sensing in yield gap analysis; 
thus, this Section only presents a few examples.  

Box 4 
REMOTE SENSING: APPROACHES TO ESTIMATE CROP YIELD  

Remote sensing is the technology of identifying, observing, and measuring an object 
without coming into direct contact with it. The radiometers aboard dozens of polar 
orbiting satellites measure the reflected, emitted and scattered radiance in small parts 
of the electromagnetic spectrum (visible, red-edge, near-infrared, thermal infrared, 
microwave, etc.). Spectral reflectance and spectral emittance measurements are combined 
with algorithms that convert raw data into quantitative bio-physical information at 
various scales, from small farm plots to large agro-holdings. The smallest scale is one 
pixel, and for field scale applications the pixel size often ranges from 10 m x 10 m to 
30 m x 30m. The second smallest scale is a combination of a number of pixels. A group 
of pixels can form a soil or management unit on a farm, or can be an entire field. The 
frequency at which data can be measured depends on the type of satellite; combinations 
of different satellites are used to acquire most of these data with an interval of a few days 
with a resolution of 30 m x 30 m or better, provided that cloud cover is not persistent.

Approaches

Remote sensing approaches to estimate crop yield can be based on (Lobell 2013): (1) 
biomass production and partitioning, (2) empirical models relating spectral vegetation 
index and yield, and (3) integration of remotely sensed data and crop growth models. 
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1. Biomass production and partitioning

Biomass production can be calculated as the product between absorbed 
photosynthetically active radiation (APAR) and radiation use efficiency (Monteith 
1977). APAR is the radiation (400 to 700 nm) absorbed by the crop and subsequently 
used for photosynthesis; it depends on: (i) solar radiation at the top of the atmosphere, 
(ii) cloud cover, (iii) atmospheric constituents that control the transmittance of 
radiation through the atmosphere and (iv) the size, architecture and greenness of 
canopies where chlorophyll captures photosynthetically active light. Cloud cover 
can be acquired from geostationary satellites that measure cloud brightness with 
small time intervals e.g. (Hammer et al. 2003). Remotely sensed vegetation indices 
e.g. (Asrar et al. 1992) or leaf area index (Mynemi et al. 2002) describe the extent 
of green leaves that intercept the photosynthetically active radiation. Hence, APAR 
can be derived totally from satellite measurements see also Baret and Guyot (1991). 
Various equations have been developed for the determination of radiation use 
efficiency, for example Field et al. (1995) and Hilker et al. (2008). As radiation use 
efficiency varies with crop stage, crop geometry and environmental and management 
factors, the assumption of a fixed efficiency could be an important source of error 
in estimating biomass and yield (Stockle and Kemanian 2009). The same conclusion 
applies to deterministic crop production simulation models and this is therefore a 
more general challenge in the modelling of crop yield.

Actual yield (Ya) can be computed as a function of cumulative biomass produced during 
the season (ΣB), harvest index (HI) and the water content of the crop at harvest (moi): 

	  Ya = (ƩB.HI)/(1-moi) Yact = 1-moi
                                                

Reviews on harvest index have been published by Hay (1995) and Unkovich et al. 
(2010), who emphasised the variability of this trait. Various approaches have been 
developed for the computation of harvest index (Sadras and Connor 1991; Ferreres 
and Soriano 2007; Kemanian et al. 2007; Raes et al. 2010). It is common practice to 
locally calibrate the harvest index and water content of the harvestable crop to ensure 
that fresh crop yield estimation from satellite data matches local measurements. This 
approach was applied by Zwart and Bastiaanssen (2007) in Mexico using harvest index 
values published by Lobell et al. (2003b). This method was followed also by van 
Dam and Malik (2003) in the Sirsa District of India using the official figures by the 
Indian Bureau of Statistics. Bastiaanssen and Ali (2003) used a similar approach which 
produced realistic results for wheat and sugarcane crops cultivated in the Indus Basin, 
Pakistan. On average, an accuracy of over 90% was achieved in the yield estimations. 
This can be improved further if local yield data are used in the calibration.

2. Empirical models relating spectral vegetation index and yield

Several studies used linear regression between spectral vegetation indices and crop 
yield. The yield data can be taken from crop cutting experiments or from secondary 
data sources. A single vegetation index measurement or the accumulated vegetation 
index for crop- specific developmental phases can be selected. The USDA method is 
based on the latter selection and applies essentially to cereals; it works particularly well 
for wheat (Hatfield 1983b). Applications in other crops include Daughtry et al. (1992) 
with maize and soybean and Steven et al. (1983) with sugarbeet.  

3. Integration of remotely sensed data and crop growth models

Satellite measurements can be linked with crop simulation models. By comparison of 
model and satellite-based variables, the model updates its state conditions, remaining  
 

ƩB*HI
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4.4.1. Benchmarking crop yield and yield gaps with remote sensing   
The work of Lobell and Ortiz-Monasterio (2006) and Samarasinghe (2003) are exam-
ples of the multiple and varied combinations of modelling and remote sensing that 
can be used in benchmarking crop yield. Lobell and Ortiz-Monasterio (2006) worked 
with wheat in Mexico and Samarasinghe (2003) with rice, tea, rubber and coconut in 
Sri Lanka. Both used a similar yield reference for gap calculations, i.e. highest yield in 
farmer’s fields (Lobell and Ortiz-Monasterio 2006) or 95 percentile yield (Samarasinghe 
2003). Lobell and Ortiz-Monasterio (2006) combined Landsat images with a tempera-
ture-based model of crop growth and Samarasinghe (2007) combined NOAA-AVHRR 
images with a radiation-based model of crop growth based on SEBAL ET rates and 
soil moisture values from Sri Lanka (Bastiaanssen and Chandrapala, 2003). Lobell and 
Ortiz-Monasterio (2006) further crossed-linked remote sensing data with modelled 
grain yield using CERES-wheat. 

Figure 31 shows the estimated ratio between actual and attainable yield in the Doukkala 
irrigation scheme in Morocco, where the attainable yield is defined as the 95% percen-
tile on the probability density function of actual crop yield. By considering this ratio 
in single pixels within the same agro-ecological zone, the opportunity arises to define 
the yield gap for all different crop types. The dominant crop types are wheat, maize, 
soybean and sugarbeet. The areas with a ratio lower than 0.7 are either rainfed crops, 
or partially irrigated crops. Indeed, the Doukkala irrigation scheme is located in the tail 
end of the Uom R’bia river basin system, and the scheme is in competition with water 
resources that are diverted to Casablanca.

4.4.2. Benchmarking water productivity with remote sensing
Remote sensing has also been used to estimate evapotranspiration with a number of 
methods at different scales in space and time (Hatfield 1983a; Borchardt and Trauth 
2012; Jian et al. 2012; Ma et al. 2012; Poblete-Echeverria and Ortega-Farias 2012; Yang 
et al. 2012b; Yang et al. 2012a); details of these methods are beyond the scope of this 
publication. Combined with estimates of yield based on remote sensing (Box 4), these 
estimates of evapotranspiration allow for calculation of water productivity that is fully 
derived from remote sensing.  

more in line with the actual crop growing conditions. This complex mathematical 
approach is meant to estimate the production of a representative field in a given region, 
and is suitable for research more than to management applications. Currently, it is 
not feasible to apply modelling of this complexity at the scale of individual pixels. 
Examples of this approach can be found in Maas (1991) and Vazifedoust et al. (2009). 

In summary, approach 1 requires standard computation procedures and is applicable 
across a range of physiographical conditions; assumptions on both radiation use 
efficiency and harvest index need local and crop specific calibration libraries that 
could be valid for a number of 5 to 10 years. Approach 2 generates simple solutions 
for particular crops provided satisfactory agreement can be found between spectral 
vegetation indices and crop yield, but requires repeatedly local calibrations against 
destructive crop yield measurements that constrain its application. Moreover, poor 
regression results are often found (e.g. Lyle et al 2013). Approach 3 is more suitable 
for scientific research than applications.
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Methods have also been developed that directly estimate water productivity without 
individual solutions to crop yield and evapotranspiration. Zwart et al. (2010) for 
example, reduced the inputs of the equation of water productivity to four spatial 
variables derived from routine satellite measurements: broadband surface albedo, 
normalised difference vegetation index (NDVI), extraterrestrial radiation and air 
temperature. The model of Zwart et al. (2010) was used to map wheat water produc-
tivity on a global scale. Their study was followed up by Bastiaanssen et al. (2010) for 
wheat, rice and maize at global scale level and publications are under preparation.

Gonzalez-Dugo and Mateos (2008) benchmarked water productivity of irrigated 
cotton and sugarbeet in an irrigation scheme comprising 15,000 ha in southern Spain. 
They used published boundary functions, i.e. yield vs evapotranspiration, for each 
crop and actual yield from local growers (Approach 2). To relate actual yield and actual 
evapotranspiration, reference evapotranspiration was multiplied by robust crop coef-
ficients derived from multispectral vegetation indices, derived in turn from ground- or 
satellite-based radiometric measurements.

Figure 31
31. Spatial distribution of the ratio between actual and attainable crop yield in the irrigation scheme 
Doukkala in Morocco. The attainable yield is estimated as the 98% percentile of the crop yield for 
various crop types grown in the region.  

Source: Bastiaanssen et al. (under preparation).

31 
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5. Conclusions  
and recommendations

The spatial scale selected for benchmarking should depend on the nature of the 
problem. For the improvement of yield at the farm scale, for example, benchmarking 
at the field level is required. Parallel to the spatial scale, the time scale needs consider-
ation. If the aim is to benchmark crops under current technology, the time scale needs 
to be long enough to capture as much variation in seasonal conditions as possible, and 
short enough to meet the assumption of constant technology. A dynamic perspective 
allows for benchmarking that captures time trends associated with technological prog-
ress, rates of adoption and environmental change. Both static and dynamic approaches 
to benchmarking yield of rainfed crops need to capture the large seasonal and intra-
seasonal variation of rainfall in dry environments. The diversity of benchmarking 
methods outlined in this publication reflects the diversity of spatial and temporal 
scales, the questions asked, and the resources available to answer them. We grouped 
methods in four broad approaches. These approaches are not rigid, and combinations 
of methods are common.   

Approach 1 compares actual yield with the best yield achieved in comparable envi-
ronmental conditions, e.g. between neighbours with similar topography and soils 
(Section 4.1). Comparisons of this type are spatially constrained by definition, and 
are an approximation to the gap between actual and attainable yield. With minimum 
input and greatest simplicity, this allows for limited but useful benchmarks; yield 
gaps can be primarily attributed to differences in management. This approach can be 
biased, however, where best management practices are not feasible as illustrated for 
maize in Kenya; modelled yields provide more relevant benchmarks in these cases 
(Section 4.1.3). On the other hand, current models are unsuitable to answer some 
questions of local relevance. For example, generic crop models are unable to capture 
the biophysical interactions between green manure and chemically and physically 
contrasting soils; the question of maize yield gaps and risks associated with these 
drivers in sub-Saharan Africa is thus answered with a combination of actual yield 
data and various models (Section 4.1.2).  

Approach 2 is a variation of approach 1, i.e. it is based on comparisons of actual yield, 
but instead of a single yield benchmark, attainable yield is expressed as a function of 
one or few environmental drivers such as actual evapotranspiration. In common with 
Approach 1, these methods do not necessarily capture best management practices. The 
French and Schultz model is the archetype in this approach, and other variants include 
nitrogen uptake or soil properties instead of water. A boundary model fitted to the 
data provides a scaled benchmark, thus partially accounting for seasonal conditions. 
Parameters for boundary functions can be estimated with quantile regression, which 
requires some arbitrary assumption on the fraction of data to be used. Inclusion of 
remote sensing-based populations of crop yields is the way forward. A combination 
of empirical curve fitting and physiologically informed parameterisation has also been 
used. We recommend (i) using the method of Milne et al. as a statistically robust, objec-
tive approach to derive boundary functions (Box 3) and (ii) checking the shape and 
parameters of boundary functions for physiological and agronomic meaning. Where 
statistical and biophysical criteria conflict, we are inclined to favour biophysical criteria. 
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Approach 3 is based on modelling which may range from simple climatic indices such 
as Fischer’s photothermal coefficient to intermediate models such as AquaCrop and 
the more complex CERES-type models. More complex models are valuable agronomi-
cally because they capture some genetic features of the specific cultivar, and the critical 
interaction between water and nitrogen. “Best practice” to model yield in gap analysis 
has been outlined (Section 3.3). Importantly, models to estimate potential yield require 
parameters that capture the physiology of unstressed crops. Particular attention needs 
to be paid to weather data used in modelling yield because significant bias can accrue 
from inappropriate data sources; this is illustrated for gridded global weather databases 
in Section 3.3.2. Studies that have used gridded weather databases to simulate potential 
and water-limited yields for a grid are rarely validated against simulated yields based 
on actual weather station data from locations within the same grid. This should be 
standard practice, particularly where global scale yield gaps are used for policy deci-
sions or investment in R&D. Alternatively, point-based simulations of potential and 
water-limited yields, complemented with an appropriate up-scaling method, may be 
more appropriate for large scale yield gap analysis.

Approach 4 benchmarking involves a range of approaches combining remote sensing, 
actual data, and models of varying complexity (Section 4.4). These models can be 
applied to any pixl of 10 m x 10m or 30m x 30 m or assimilate basic remote sensing 
vegetation data into complex mechanistic crop growth simulation models. This 
approach is important for benchmarking at and above the regional scale. Remote 
sensing applied to yield gap analysis has improved over the last years, but significant 
constraints remain unsolved including the radiation use efficiency and harvest index, 
which require a local calibration. The vantage point of remote sensing is the production 
of actual yield data that facilitates the identification of local yield gaps. 

Irrespective of the approach used to estimate yield and calculating yield gaps, a critical 
assessment of data reliability (yield, weather, agronomy) and sound understanding of 
the actual biophysical and agronomic background of the targeted system are essential 
to reduce the likelihood of misinterpretation of data. Variation of yield within fields 
remains a challenge for yield gap analysis.
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Glossary

Precision: the extent to which a measurement procedure gives the same results each 
time it is repeated under identical conditions.

Accuracy: the closeness of a measurement to the true value.

Boundary function: upper and/or lower limit to the value of the response variable at 
any given value of the independent variable imposed by some biological mechanism 
so that values larger/smaller than the upper/lower boundary, respectively, are not 
possible (ignoring measurement error). Boundary functions are also called “enve-
lope” functions.

Benchmark: a point of reference that serves as a basis for evaluation or comparison.

Decile: one of nine actual or notional values of a variable dividing its distribution into 
ten groups with equal frequencies. For example, the 9th decile is the value below 
which 90% of the population lie.

Percentile: one of 99 actual or notional values of a variable dividing its distribution 
into 100 groups with equal frequencies. For example, the 90th percentile is the value 
below which 90% of the population lie.
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To feed a world population that will exceed 9 billion by 2050 

requires an estimated 60% increase over current primary 

agricultural productivity. Closing the common and often large 

gap between actual and attainable crop yield is critical to 

achieve this goal.

To close yield gaps in both small and large scale cropping 

systems worldwide we need (1) definitions and techniques to 

measure and model yield at different levels (actual, attainable, 

potential) and different scales in space (field, farm, region, 

global) and time (short and long term); (2) identification of the 

causes of gaps between yield levels; (3) management options to 

reduce the gaps where feasible and (4) policies to favour 

adoption of sustainable gap-closing solutions.

The aim of this publication is to critically review the methods 

for yield gap analysis, hence addressing primarily the first of 

these four requirements, reporting a wide-ranging and 

well-referenced analysis of literature on current methods to 

assess productivity of crops and cropping systems.

This work builds on the activities of FAO and the Dougherty 

Water for Food Institute (DWFI) to develop tools and 

knowledge delivery systems to inform and guide policymakers 

in managing water and agriculture. Two major initiatives are at 

the foundation of this publication: the Global Yield Gap Atlas 

(led by DWFI) and the Regional Initiative on Water Scarcity for 

Near East and North Africa (led by FAO).
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