
Efficient test case generation

Reliable Software and Architecture Project

Søren Trudsø and Kenneth Egholm

Department of Computer Science, University of Aarhus
Aabogade 34, 8200 Århus N, Denmark

Group #04

March, 19. 2010

Abstract

We intend to show that using automatic test generation tools
make it possible to achieve the same test case quality in less

time – compared to a traditional approach.
In this paper we are comparing two very different ways of

generating test-cases; Equivalence class partitioning
combined with boundary value analysis against using PEX –
an automatic white box test generation tool from Microsoft
research. Lastly we try to give a recommendation of best

practice.

Index

1 Motivation ... 1

2 Hypothesis .. 1

3 Method ... 2

3.1 Metrics used in evaluation 2

3.1.1 What are we comparing .. 2

3.1.2 Relative quality .. 2

3.1.3 Defects detected ... 2

3.1.4 Time spent on test case generation 2

3.1.5 Code coverage .. 2

3.1.6 Maintainability of test code .. 3

3.2 Production code and test case generation 5

4 Analysis ... 6

4.1 The specification .. 6

4.1.1 Specification abbreviation ... 6

4.1.2 The core algorithm of the production code: 7

4.2 How we conduct the experiments 8

4.2.1 The tools ... 8

4.2.2 Test bed ... 9

4.2.3 Fault detection by test suites ... 10

4.3 Test case generation ... 10

4.3.1 Outline on Black box test case generation 10

4.3.2 Black box test generation .. 11

4.3.4 Outline on white box testing .. 14

4.3.5 Automatic white box test generation with PEX 14

4.3.6 What did we learn from the PEX output 16

4.4 Coverage results ... 16

4.4.1 EC coverage result .. 16

4.4.2 PEX coverage result .. 17

5 Results .. 18

5.1 Maintainability of test case suites 18

5.1.1 Maintainability compliance .. 18

5.1.2 Analyzability .. 19

5.1.3 Changeability .. 19

5.2 Experiment results ... 20

5.2.1 Basis ... 20

5.2.2 Defects detected ... 21

5.2.3 Time spent on test case generation 21

5.2.4 Code coverage .. 21

5.2.5 Algorithmic defect - Mileage above limit 21

5.2.6 Coding defect: Missing branch - # alarms 21

5.2.7 Control logic defect - Particle filter 22

5.2.8 Algorithmic defect – Throw exception 22

5.2.9 Spec added – Mileage over 100 22

6 Conclusion .. 23

6.1 Maintainability .. 23

6.2 Defects detected .. 23

6.3 Time spent on test case generation 23

6.4 Code coverage .. 23

6.5 Best practice .. 24

6.6 Perspective on PEX ... 24

6.6.1 PEX cannot test for correctness 24

6.6.2 Legacy code .. 24

6.7 Hypothesis holds? ... 25

7 Related work ... 26

8 Appendix 1: Abstract on PEX 27

8.1 Outline how PEX works 27

9 Appendix 2: Source code 28

9.1 UUT ... 28

9.2 BB test case suite .. 29

9.3 PEX test suite .. 32

10 Appendix 3: Test suite result tables 34

10.1 Basis .. 34

10.2 Algorithmic defect - Mileage above limit 34

10.3 Coding defect: Missing branch - # alarms 35

10.4 Control logic defect - Particle filter 36

10.5 Spec. added – Mileage over 100 37

11 References .. 39

RSA project 2010 Group 04 Page 1

1 Motivation
Testing has become a very important part of the software
development process. It is often a natural part of the process and
many companies does not accept production code that has not
been covered by test cases. As important as writing test cases is it
is still natural to ask the question: “can we get to the needed
quality of test cases by less effort”?

The motivation of this paper is to evaluate whether it is possible to
use a test case generation tool to reduce the time spent on test
case generation without compromising the quality of the test
cases. At the same time we think testing is a very interesting
aspect of the job as software developers, so we jumped at the
chance to explore further ways of performing this art.

2 Hypothesis
It is our hypothesis that it is possible – by using an automatic test
generation tool – to reduce the time that is spent creating test
cases without compromising the quality of the test cases.

RSA project 2010 Group 04 Page 2

3 Method

3.1 Metrics used in evaluation

It is always a daunting task to discuss measuring of quality. In
order to do so, we need to establish some definitions as well as
some metrics. We have found inspiration for doing this in [Pfaller
2008].

3.1.1 What are we comparing

The object of measurement is in this case the test suites that have
been generated from the two different approaches.

3.1.2 Relative quality

As this is a comparison of two approaches to test case generation
against a very small specification and therefore also a very small
unit of production code it should be noted that the quality we
measure here is by nature only relative. Against other kind of
production code or other specifications results may be different.

3.1.3 Defects detected

The ability to detect defects in the production code is of course the
most important property of a test suite.

3.1.4 Time spent on test case generation

This metric is concerned with the time that is spent with the test
case creation. In the case of the traditional approach this includes
the equivalence class partitioning, boundary value analysis and
the writing of the concrete test cases.

In case of the automatic test case generation tool we decided not
to measure time to learn using the tool as mastering the EQ+BV
analysis also has a learning curve.

The time metric is not directly related to the quality of the test
cases but it is needed to evaluate the two methods against each
other.

3.1.5 Code coverage

Code coverage in itself is not very important although it is a useful
metric to evaluate the efficiency of the approach [PEX tutorial].

We measure the code-coverage of the two approaches as well as
the test suite efficiency. The test suite efficiency is a metric that we
have invented ourselves in an attempt to compare the efficiency of
two techniques. Efficiency in this case is to have full code
coverage in as few test cases as possible.

RSA project 2010 Group 04 Page 3

Test suite efficiency (code coverage)

In addition to measure the code coverage, we have decided to
measure the efficiency of the test suite in relation to code
coverage. The calculation simply tries to give a measure of how
many test cases the suite needs to give a (theoretically) code
coverage of 100%.

We will calculate the efficiency like this:

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠 ∗
100

𝑐𝑜𝑑𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

Example: a test suite with 25 test cases and realized code
coverage of 95% will have an efficiency count of approximately
26.3. Lower is of course better.

This way of measuring efficiency is only meaningful when
comparing test suites with a code coverage that is relatively close
to each other.

3.1.6 Maintainability of test code

This is a general discussion of maintainability of test code.
Maintainability of a software product is defined as its capability to
be modified [ISO SW Quality].

This is in particular an important property of test case suites as it is
a costly task to modify existing test cases as production code
changes. So in order to compare two test case generation
techniques against each other it makes good sense to try to
assess the maintainability of the resulting test case suites.

In order to make this an objective and measurable metric, we
subdivide it into the following categories.

 Maintainability compliance – Naming of test cases

 Analyzability – How easy is it to identify what sections should
be modified;

 Changeability – How much effort is needed to maintain the test
suite

Each test suite will be given a grade between 1-5. Highest score is
best.

RSA project 2010 Group 04 Page 4

Maintainability compliance

Defining maintainability compliance

It is very important to name test cases by naming
conventions/standards. If a certain naming convention is used it is
possible to tell a lot about what the test case is testing and what
the expected outcome of the test case is. [Osherove 2009] “7.3.1
Naming unit tests” and [Meszaros 2007]. These naming
conventions suggest that the name of test cases should consist of
three parts:

 The name of the method being tested

 The state and input with which it’s being tested

 The expected behavior
i.e.:

public void AnalyzeFile_FileWith3LinesAndProvider_ReadsUsingProvider()

Analyzability

How well are the test cases structured so we can identify which
section needs to be modified?

Test cases should follow a strict pattern of three parts:

 Arrange

 Act

 Assert

(AAA [Oshorove 2009] or Four Phases Test [Meszaros 2007])
i.e.:
public void IsValidFileName_validFile_ReturnsTrue()
{
//arrange
LogAnalyzer analyzer = new LogAnalyzer();
//act
bool result = analyzer.IsValidLogFileName("whatever.slf");
//assert
Assert.IsTrue(result, "filename should be valid!");
}

Also other principles apply,

 Isolated Test/Keep tests Independent

 Simple test code (Evident Tests/Communicate Intent)

 Who verifies our output from UUT Evident data/Test as
documentation [Meszaros 2007] Chapter 3.

 Verify One Condition per Test

[FRSE 2010] and [Meszaros 2007] Chapter 5.

Changeability

The changeability property of a test suite is concerned with the
ability of the test suite to have a specified change implemented.

RSA project 2010 Group 04 Page 5

The changeability of the test suites will be evaluated from the
following sub metrics:

 Behavioral changes of the production code

 Refactoring changes of the production code

 Interface changes of the production code

3.2 Production code and test case generation

We are testing the hypothesis by finding a suitable specification
which we intend to implement.

This implementation is then subjected to the two different methods
of test generation:

 Equivalence partitioning, boundary value analysis and test
generation

 Test generation by an automatic test generation tool for
explorative testing and regression testing.

The time spent on both methods is measured.

We will conduct experiments with defect seeding and measure
code coverage and other metrics for each experiment.

RSA project 2010 Group 04 Page 6

4 Analysis

4.1 The specification

The problem domain (the specification) that we have decided to
use is the Danish law “Registreringsafgiftsloven” [LAW].

This law has sufficient complex algorithm to support our purpose.
We simplify the specification somewhat, as we confine the
problem domain to treat only “normal vehicles”.

This means that we do not calculate special vehicles such as
motorcycles, trucks or electric powered vehicles.

The following chapter is our reduced specification from the law:

4.1.1 Specification abbreviation

These are the input variables for the algorithm:

 The price (without VAT) of the car from the dealer

 BaseAmount DKK 79.000

 Rate below BaseAmount: 105%

 Rate above BaseAmount: 180%

 Diesel/Gaz – Has an impact on calculation of the reduction

 Reduction/addition to the tax:

 Diesel Particle filter -3500

 Seat belt alarms (Max 3) -200

km/liter(mileage) more than km/liter less than km/liter

Gaz 16 km/liter -4000 +1000

Diesel 18 km/liter -4000 +1000

RSA project 2010 Group 04 Page 7

4.1.2 The core algorithm of the production code:

The body of the method under test, before running the test suite
generated by EQ+BV:
var priceWithVAT = priceBeforeTaxWithoutVAT * (1 + VAT);
double registrationTax = 0;
if (priceWithVAT <= BASE_AMOUNT) {
 registrationTax += priceWithVAT * TAXRATE_BELOW_BASE_AMOUNT;
}
else {
 registrationTax += BASE_AMOUNT * TAXRATE_BELOW_BASE_AMOUNT;
 registrationTax += (priceWithVAT - BASE_AMOUNT) *
TAXRATE_ABOVE_BASE_AMOUNT;
}

var mileageLimit = fuel == Fuel.Diesel ? MILEAGE_LIMIT_DIESEL :
MILEAGE_LIMIT_GAZ;
var mileAgeAboveLimit = mileage - mileageLimit;
if (mileAgeAboveLimit > 0) {
 registrationTax += mileAgeAboveLimit * OVER_MILEAGE_RATE;
}
else {
 registrationTax -= mileAgeAboveLimit * UNDER_MILEAGE_RATE;
}

if (countOfAlarms > 0) {
 int alarmsUsedInCalculation = countOfAlarms;
 if (alarmsUsedInCalculation > MAX_COUNT_OF_ALARMS) {
 alarmsUsedInCalculation = MAX_COUNT_OF_ALARMS;
 }
 registrationTax += alarmsUsedInCalculation *
COUNT_OF_ALARMS_RATE;
}

if (fuel == Fuel.Diesel && particleFilter) {
 registrationTax += PARTICLE_FILTER_RATE;
}

return registrationTax + priceWithVAT;

c# source code

RSA project 2010 Group 04 Page 8

4.2 How we conduct the experiments

4.2.1 The tools

 Visual Studio 2010 Ultimate RC (VS2010)

 MSTest - Testing framework

 PEX 0.23 (PEX)

 Is a Microsoft® Visual Studio® add-in that provides a
runtime code analysis tool for .NET Framework code.

 NCover - Used for measuring coverage

VS2010

Visual Studio 2010 was used to implement the production code in
the .net framework and C#. Writing the test suites and for "hosting"
PEX. It was of course also used for running the test suites.

PEX

PEX was used for creating parameterized unit test (PUT).
Parameterized unit tests (PUTs) is a new methodology extending
the current industry practice of closed unit tests (i.e. test methods
without input parameters). Test methods are generalized by
allowing parameters. This serves two purposes. First,
parameterized test methods are specifications of the behavior of
the methods under test: “they do not only provide exemplary
arguments to the methods under test, but ranges of such
arguments." [Tillmann 2005]

[PexMethod]
public string Capitalize(string value)
{
string result = StringExtensions.Capitalize(value);
return result;
// TODO: add assertions to method …
}

The PUT was created in a separate MSTest Project by PEX, as
well as a table listing all the actual test cases generated with
inputs and outputs:

RSA project 2010 Group 04 Page 9

And the generated test cases are saved in the MSTest project for
running by the usual test runner without performing PEX
Exploration:

’
[PEX tutorial]

NCover

NCover, which is a command line tool for measuring code
coverage, was used to measure code coverage during all test
runs.

In this paper we only discuss “block coverage”, as this is the
coverage that is supported by the code coverage analysis tool that
is built in VS2010.
Block coverage maps roughly to “statement coverage” in
[Burnstein 2003]. We are aware that statement coverage is a very
weak metric for code coverage. [PEX tutorial]

4.2.2 Test bed

The solution contains several projects:

 RegistationTax - the production code

 Test/PEX projects - MSTest

Every experiment constitutes these steps:
1. Defect seed the code
2. Build the projects
3. Run PEX on relevant test projects to generate new test suite
4. Build the projects
5. Run test suites for all test projects using test runner and

measure failures, defects and coverage

RSA project 2010 Group 04 Page 10

4.2.3 Fault detection by test suites

Run the test suites and see which will find the most defects.
We have three variants of test suites:

 EQ+BV, is constant throughout all experiments

 PEX Regression, PEX regression test suite, was run against
production code and kept constant in the experiments

 PEX Automatic, is recreated in every experiment

Defect seeding

We will conduct experiments with existing specification and then
with added specification. We have found inspiration in the
classification of the defects in [Burnstein 2003].

Existing Specs

Algorithmic and processing defect

 We have implemented a spec wrongly.

 We have made a coding error that results in an exception
being thrown

Control logic defect, we've forgotten a specification

 Missing branch

 Missing condition from branch

The expected outcome is that our regression suites (EQ+BV and
PEX Regression) will catch the introduced defects with regards to
the current specification, but PEX Automatic will not.

New Specification

Add specification with "algorithmic and processing defect"

 We've added a specification that throws an exception to
simulate defects in the added code

The expected outcome is that our PEX Automatic suite is able to
detect the error, but our regression suites will not.

4.3 Test case generation

4.3.1 Outline on Black box test case generation

Black box testing is a common and very powerful test design
approach. It involves treating the UUT as a black box – which of
course means that the designer of the test cases does not need to
have access to the implementation of the UUT. Instead the test
cases are being constructed from the specification of the UUT.
The best thing would of course be exhaustive testing, but even for
quite simple UUT it is not possible to test using all the
combinations of all possible inputs.

RSA project 2010 Group 04 Page 11

This dilemma is what we try to solve: we want a test suite that has
a very high probability of revealing defects with as few test cases
as possible. The reason that it is an advantage to have as few as
possible test cases is that we should also consider that we need to
maintain this test code in the rest of the life cycle of the software.

An advantage to Black box test case generation is that it is
possible to perform it as soon as the specification is present; that
is before the production code is written. As the test cases are
created without knowledge to the implementation of the UUT, it is
not possible to guarantee that all paths of the code in the UUT are
covered. Often though a trained test engineer that follows a
systematic approach as well as using his own experience to
generate the test cases is likely to get a very high coverage as
well as test cases with a high probability of detecting defects. The
smart tester [Burnstein 2003] 4.1.

The process of generating test cases can be done by using
several techniques all with their own strengths and weaknesses.
Examples of these techniques are: equivalence class testing,
decision table testing, state transition testing, boundary value
testing.

4.3.2 Black box test generation

For our black-box part of the test case generation we decided to
perform a thorough equivalence class analysis combined with
boundary value analysis. These analyses were then used to
create a set of test-cases.

List of conditions:
C1: The price (without VAT) of the car from the dealer
C2: Diesel/Gaz
C3: Mileage (km/liter)
C4: Diesel Particle filter
C5: Seat belt alarms

RSA project 2010 Group 04 Page 12

Condition Rule/ Heuristic Invalid EC’s Valid EC’s

C1 Range [i1] price <= 0 [v2] 0 < price < 79.000
[v3] price > 79.000
[v4]bv price = 79.000

C2 Set [i5] other than [set] [v6] Gaz [v7] Diesel

C3-1
GAZ

Range [i8] mileage <= 0 [v9] 0 < mileage < 16
[v10] mileage > 16
[v11]bv mileage = 16

C3-2
DIESEL

Range [v12] 0 < mileage < 18
[v13] mileage > 18
[v14]bv 18

C4-1
GAZ

Boolean [i15] Yes [v16] No

C4-2
DIESEL

Boolean [v17] Yes [v18] No

C5 Range [i19] alarms < 0
 [i20] alarms > 3
[i21]bv alarms = 4

[v22] 0 < alarms <= 3
[v23]bv alarms = 0
[v24]bv alarms = 3

RSA project 2010 Group 04 Page 13

The expected results have been calculated using a test oracle
[Burnstein 2003]. The test oracle was a spreadsheet which has
been manually tested with examples of calculation given from the
website that describes the law [LAW].

Test
Case ID

EC combination Test case Expected result

TC1 [v2] [v6] [v9] [v16] [v22] C1=25.000, C2=Gaz,
C3=12, C4=No, C5=2

67.662,50

TC2 [v3] [v6] [v10] [v16] [v23] C1=120.000, C2=Gaz,
C3=18, C4=No, C5=0

352.750,00

TC3 [v4] [v6] [v11] [v16] [v24] C1=79.000, C2=Gaz,
C3=16, C4=No, C5=3

216.650,00

TC4 [v2] [v7] [v12] [v15] [v22] C1=25.000,
C2=Diesel, C3=14,
C4=Yes, C5=2

64.162,50

TC5 [v3] [v7] [v13] [v17] [v22] C1=120.000,
C2=Diesel, C3=22,
C4=Yes, C5=2

340.850,00

TC6 [v4] [v7] [v14] [v17] [v22] C1=79.000,
C2=Diesel, C3=18,
C4=Yes, C5=2

213.350,00

TC7 [v4] [v7] [v14] [v18] [v22] C1=79.000,
C2=Diesel, C3=18,
C4=No, C5=2

216.850,00

TC8 [i1] [v6] [v9] [v16] [v22] C1=-25.000, C2=Gaz,
C3=12, C4=No, C5=2

Rejected

TC9 [v2] [i5] [v9] [v16] [v20] C1=25.000,
C2=Petrol, C3=12,
C4=No, C5=2

Rejected

TC10 [v2] [v6] [i8] [v16] [v22] C1=25.000, C2=Gaz,
C3=-12, C4=No, C5=2

Rejected

TC11 [v3] [v6] [v11] [i15] [v22]

C1=120.000, C2=Gaz,
C3=16, C4=Yes, C5=2

360.350,00

TC12 [v2] [v6] [v9] [v16] [i19] C1=25.000, C2=Gaz,
C3=12, C4=No, C5=-2

Rejected

TC13 [v2] [v6] [v9] [v16] [i20] C1=25.000, C2=Gaz,
C3=12, C4=No, C5=5

67.462,50

TC14 [v2] [v6] [v9] [v16] [i21] C1=25.000, C2=Gaz,
C3=12, C4=No, C5=4

67.462,50

TC9 is cancelled, as it is not possible to pass this illegal argument
to the UUT.

RSA project 2010 Group 04 Page 14

4.3.4 Outline on white box testing

White box testing is based on the structure of the code.
Statements and branches are analyzed and test cases are
developed that exercise these. It’s not feasible to exercise all
statements and branches of a system, so WB is mainly for smaller
parts of the system. Furthermore there has been established
different adequacy criteria’s for determining when the UUT has
been covered. In WB program-based adequacy criteria’s are used:
statement coverage, decision coverage, condition coverage,
decision/statement coverage, multiple-condition coverage and
path coverage.

What this implies is that the code is needed to perform the
analysis, so compared to BB it’s a technique that is used after the
UUT has been developed. And furthermore if the UUT changes
the analysis will be invalidated. [Burnstein 2003], [Christensen
WB]

4.3.5 Automatic white box test generation with PEX

The form of automatic white box testing performed by PEX is
dynamic symbolic execution; it runs the code, and tries different
branches of the code. (See Appendix 1: Abstract on PEX)

PEX in VS2010

When PEX is installed in Visual Studio there will be additional
menus for running PEX. So when you right click inside a method
you have the Ability to Run PEX:

When PEX is running it will explore the code by running the code
multiple times and generate test cases, the test cases uses a
special unit test called a Parameterized Unit test (PUT), to invoke
the UUT. The PUT is generated by PEX, but its encouraged to
provide additional PUT’s and asserts that should hold for all input
[PEX Digger].

RSA project 2010 Group 04 Page 15

Parameterized Unit test:

[PexMethod]
public double CalculateTaxPUT(
 [PexAssumeUnderTest]RegistrationTaxCalculator target,
 double priceBeforeTaxWithoutVAT,
 Fuel fuel,
 double mileage,
 bool particleFilter,
 int countOfAlarms
)
{
 double result = target.CalculateTax
 (priceBeforeTaxWithoutVAT, fuel, mileage,
particleFilter, countOfAlarms);
}

Unit test written against the above PUT:

[TestMethod]
[PexGeneratedBy(typeof(RegistrationTaxCalculatorTestPUT))]
[ExpectedException(typeof(ArgumentException))]
public void CalculateTaxPUTThrowsArgumentExceptionx153()
{
 double d;
 RegistrationTaxCalculator s0 = new RegistrationTaxCalculator();
 d = this.CalculateTaxPUT(s0, 0, Fuel.Gaz, 0, false, 0);
}

All tests are shown in a table, and the test case can be seen as a
unit test.

The tests can be exported to a separate test project, for re-run, or
for adding additional tests and asserts.

RSA project 2010 Group 04 Page 16

4.3.6 What did we learn from the PEX output

How can we use the output from PEX to learn about our
implementation? This is not the focus of our hypothesis, but still it
shows some of the strengths of PEX.

After implementing our production code, we ran PEX on it:

What stands out clearly is that we have a negative value
somewhere; it’s not stated in the specification that we cannot have
a negative registration tax, but maybe that is a specification
defect? [Burnstein 2003]

Furthermore this table is something we can take with us to the
stakeholders and they should be able to relate to it, and tell us if
these test cases are valid.

Also what this showed us, was that our EQ+BV analysis was
wrong, we had forgotten about the particle filter that only counted
on a diesel car. This made us revisit the EQ+BV analysis and
repartition, and adjust the test cases.

4.4 Coverage results

As outlined in the chapter “How we conduct the experiments” we
only perform block coverage using VSTS Coverage tool.

4.4.1 EC coverage result

The EC test suite resulted as expected in a very high coverage.
The block coverage is 96.97%.
It can be argued that the coverage should be 100% but the reason
that it is not is that the developer that implemented the
specification (UUT) has added a condition that was not part of the
specification. The condition (“priceBeforeTaxWithoutVAT >
10000000000”) can be seen in the code coverage result diagram
below. The discovery of this extra condition would result in one of
two outcomes. The first is that the developer that implemented the
specification (UUT) removes this condition. The other is that the
specification gets updated to also contain this requirement; which
in turn would mean that the test case engineer should create a test

RSA project 2010 Group 04 Page 17

case that exercises this requirement. We chose the latter
approach in our project so we now have 100% code coverage.

This shows the code coverage result and the part of the code that
is not covered.

This way of getting an overview and graphical representation of
the code coverage is very handy and immediately makes the test
case engineer aware of untested code.

4.4.2 PEX coverage result

PEX reaches a coverage of 100%.

RSA project 2010 Group 04 Page 18

5 Results
We evaluate our experiments in accordance with the metrics
defined.

5.1 Maintainability of test case suites

As outlined in the chapter “Maintainability of test code” we
evaluate our generated test suites with regards to maintainability:

5.1.1 Maintainability compliance

EQ+BV
Grade: 4.5

The test cases do not completely adhere to the conventions
defined by [Meszaros 2007] and [Osherove 2009] 7.3.1 Naming
unit tests. This is because we decided that referring back to the
test case table (with the test case number) was a better approach.
An example of a test case name is:

CalculateTax_TC01_returnsNumber()

This tells the reader that the method that is being tested is called
“CalculateTax”; that we test it under conditions described in the
test case table (TC01) and that it is expected to return a number.

PEX
Grade: 1

When looking at an example of the test cases generated by PEX,
it is obvious that it does not follow this naming convention.
The test case is named with the PUT under test and suffixed with
a number:

public void CalculateTaxx202()

This makes it impossible to infer what the test case is trying to
accomplish. Only the first part is correct – the name of the PUT
(which is the same name as the “method under test”).

RSA project 2010 Group 04 Page 19

5.1.2 Analyzability

EQ+BV
Grade: 5

The structure is fine; we do not clearly state what parts of the code
belong to which action in AAA, but we could have done so.
The test cases are isolated, they are simple, variable names are
clear, we used an external test oracle to verify output and we only
verify a single condition pr. Test.

PEX
Grade: 3

Structure: OK, like our manual test cases it does not state which
parts belong to which action.
Principles: The tests are isolated, they are simple, variable names
are terrible, clearly generated, but we can see them in the table
view of PEX, where they provide a meaningful header.

Output table from PEX

There’s no Evident data, if there was a simple way to deduct the
result from the input variable we could have provided that as part
of the PUT, no verification of the result besides using the
production code as test oracle (useful for regression testing) and
we have a single condition pr. Test.

5.1.3 Changeability

Evaluation of how the approaches handle changes of different kind
in the production code. We mark the test suite as invalid or valid
for the different changes:

 Test suites

Change EQ+BV PEX regression PEX*

Behavioral Invalid Invalid Valid

Refactoring Valid Valid Valid

Interface Invalid Invalid Valid

Grade 1 1 5

* We accept the fact that PEX will use the production code as test
oracle.

RSA project 2010 Group 04 Page 20

EQ+BV and PEX regression

Both EQ+BV and PEX regression share common characteristics.
It’s a little hard to say that the test suites are invalidated, but they
will require refactoring on behavioral and interface changes, we
might even have to start over with EQ+BV.
On behavioral changes we need to alter the expected outputs and
maybe the inputs to our test cases.
On interface changes, we need to adapt or rewrite the test cases
to fit the new interface.
About adapting, we still have the principle of simple test code so
we cannot go about making the adaptation to obscure.
During refactoring (behavior and interface stable) they provide a
safety net.

PEX

We accept the fact that PEX will use production code as test
oracle.
The test suite generated by PEX is just regenerated in every case.
It’s worth noting that PEX has the ability to find paths created
intentionally or unintentionally during refactoring.

5.2 Experiment results

The table below is an overview of the experiments that we have
performed. The following chapters describe the different
experiments in greater detail.

Table 1 – The result table of the performed experiments

5.2.1 Basis

The basis in our experiment is the point where the production code
is implemented but is untested.

RSA project 2010 Group 04 Page 21

5.2.2 Defects detected

The basis actually contained three defects that all was related to
boundary value issues. Our EQ+BV test suite did detect these
defects, but the test suite created by PEX did not. This is of course
due to the fact that PEX has no knowledge what so ever of the
specification.

5.2.3 Time spent on test case generation

This is one metric where we see a large difference between the
two approaches. The EQ+BV approach took approximately four
hours to complete whereas the PEX approach took less than one
minute. This includes creating a parameterized unit test and the
creation of a test suite by running “Run Pex Explorations”.

5.2.4 Code coverage

In both cases the coverage is 100%.

5.2.5 Algorithmic defect - Mileage above limit

Simulates the misinterpretation of a specification – This is a coding
defect of sub type “Algorithmic and Processing Defects” [Burnstein
2003].

Changed the line from

registrationTax -= mileAgeAboveLimit * UNDER_MILEAGE_RATE;

To

registrationTax += mileAgeAboveLimit * UNDER_MILEAGE_RATE;

Defect detection
This defect was detected by both the ”EQ+BV” and ”PEX
regression” test suites but not by the ”PEX” test suite.

5.2.6 Coding defect: Missing branch - # alarms

Simulates the absence of a condition from the specification. This is
a Coding defect of sub type “Control, Logic and Sequence
Defects” [Burnstein 2003]

Removed the lines

if (alarmsUsedInCalculation > MAX_COUNT_OF_ALARMS) {
 alarmsUsedInCalculation = MAX_COUNT_OF_ALARMS;
}

RSA project 2010 Group 04 Page 22

Defect detection
This defect was detected by both the EQ+BV and PEX regression
test suites but not by the PEX test suite.

5.2.7 Control logic defect - Particle filter

Simulates the misinterpretation of a specification. This is a Coding
defect of sub type “Control, Logic and Sequence Defects”
[Burnstein 2003]

Replaced the line

if (fuel == Fuel.Diesel && particleFilter)

with the line

if (particleFilter)

Defect detection
This defect was detected by the EQ+BV test suite but it was not
detected by any of the test suites generated by PEX.

5.2.8 Algorithmic defect – Throw exception

Simulates that the production code throws an unexpected
exception. This is a crude way of simulating a coding defect like an
algorithmic defect (perhaps a division by zero).

Added a line that throws an Exception

if (mileAgeAboveLimit > 0) {
 throw new Exception("Defect seeding");

Defect detection
This defect was detected by all three test suites.

5.2.9 Spec added – Mileage over 100

This defect is introduced as a coding defect. We have added this
defect to the chain of experiments as we regard it to be quite
possible that a developer puts guards/pre validation checks in the
code that is not part of the specification.

These lines were added to the production code

if (mileage > 100) {
 throw new Exception();
}

Defect detection
This defect was only detected by the PEX test suite.

RSA project 2010 Group 04 Page 23

6 Conclusion

6.1 Maintainability

We have graded our test suites with regards to maintainability. The
EQ+BV test suite are still the best when it comes to maintainability
compliance and analyzability.
With regards to changeability it’s our opinion that PEX comes out
stronger. The PEX regression suite is not less changeable than
EQ+BV, but PEX’s ability to discover new paths favors in its way.

6.2 Defects detected

Overall the EQ+BV test suite and the PEX Regression test suite
did comparably well; in a single experiment however neither of the
two PEX test suites found the defect whereas the EQ+BV test
suite did.
Also PEX made us realize that we needed to repartition our
EQ+BV.
Is also possibly found a specification defect where it returned a
negative value, not something PEX flagged as a defect, but
something that a human would immediately react to.

6.3 Time spent on test case generation

In this aspect PEX is far superior over the EQ+BV approach. Even
though it will take a bit longer for PEX to run on a larger code base
so will the time needed to perform the EQ+BV analysis. Thus we
conclude that the larger the codebase the greater the advantage
of PEX. Also in the light of PEX’s ability to adopt changes in the
production code, it has a huge advantage on agile projects, where
it’s likely that specification will evolve over time.

6.4 Code coverage

Code coverage was high for both approaches. It seemed like EQ
had better multiple condition coverage, since PEX failed on a
single experiment relating to Control logic defect. This fact also
shows how weak block coverage is.
PEX was able to get a block coverage of a 100% when introducing
a new specification and finding the defect, which neither
regression suites did.

RSA project 2010 Group 04 Page 24

6.5 Best practice

Tabular format:
The tabular format that PEX generates is good for processing by a
business analyst. If can also assist developers in finding obvious
specification/ coding defects.

PEX is good for finding invalid test cases that leads to exceptions,
and also to make sure that you have covered the entire UUT. It
cannot find invalid test cases based on specifications.
The test case engineer can instead focus the effort on creating
“valid” test cases. A “valid” test case is a test case that exercises
the UUT without searching for exceptions. These “valid” test cases
should of course test the UUT for correctness which PEX cannot
do.

Summary of how PEX could be utilized as a tool:
1. Implement code
2. Run PEX during development
3. Adjust code
4. Repeat 2-3
5. Write valid and obvious invalid test cases based on

specifications.
6. Let PEX generate a table for processing by Analyst
7. Keep PEX as regression suite.
8. Refactor the code

6.6 Perspective on PEX

6.6.1 PEX cannot test for correctness

As it is probably obvious to everyone we still think it is appropriate
to point out that PEX is not meant to test for correctness. It can
only use the production code as a test oracle.

6.6.2 Legacy code

Another use case where PEX has the potential to save us a lot of
time is where a codebase of legacy code needs to be refactored.
In this case PEX can be used to create a test suite that captures
the current behavior of the system. This test suite can be used as
a regression test suite so that the behavior of the system can be
preserved throughout the refactoring.
We found a very interesting article about exactly this in [MSDN
Sachdeva 2009]

RSA project 2010 Group 04 Page 25

6.7 Hypothesis holds?

Yes, we think that we have proven our hypothesis to be true. It is
possible to utilize a tool like PEX to assist in creating test cases
and thereby reduce the total time spent on creating test cases.

RSA project 2010 Group 04 Page 26

7 Related work
We acknowledge that we have set out to do much the same as the
paper: “On the effectiveness of manual and automatic unit test
generation” [Effectiveness 2008]. However our motivations is more
concerned with evaluating a new tool (PEX) and thereby examine
the possibility to reduce time spent on testing.
It is our opinion that this domain should be further explored and
this is our contribution to this.

RSA project 2010 Group 04 Page 27

8 Appendix 1: Abstract on PEX

8.1 Outline how PEX works

The way that PEX works is by dynamic symbolic execution. It will
track variables as symbolic expressions, the statement:

var y = 3;
y = y*3;

Will result in a symbolic value s, that initially will contain 3 and then
later y is updated to container y*3. Every time a conditional is
encountered containing symbolic values a path constraint is setup
containing the symbolic expression, i.e..

if(y > 3)

then the path constraint will be s*3 > 3

In that way a constraint resolver can be used to calculate the intial
values to let the program take the different paths. PEX also uses
concrete execution to let the values guide the path, and then uses
the path constraints to resolve values for hitting other paths.
[Symbolic Daniel et. al]

In that way the symbolic execution is used to create test case by
alternating the Path criteria.

RSA project 2010 Group 04 Page 28

9 Appendix 2: Source code

9.1 UUT
 public class RegistrationTaxCalculator {
 public double CalculateTax(double priceBeforeTaxWithoutVAT, Fuel fuel,
double mileage, bool particleFilter, int countOfAlarms) {
 const int BASE_AMOUNT = 79000;
 const double VAT = 0.25;
 const double MILEAGE_LIMIT_GAZ = 16;
 const double MILEAGE_LIMIT_DIESEL = 18;
 const int OVER_MILEAGE_RATE = -4000;
 const int UNDER_MILEAGE_RATE = 1000;
 const int COUNT_OF_ALARMS_RATE = -200;
 const int MAX_COUNT_OF_ALARMS = 3;
 const int PARTICLE_FILTER_RATE = -3500;
 const double TAXRATE_BELOW_BASE_AMOUNT = 1.05;
 const double TAXRATE_ABOVE_BASE_AMOUNT = 1.8;

 if (mileage < 0) {
 throw new ArgumentException("must be positive", "mileage");
 }

 if (priceBeforeTaxWithoutVAT > 10000000000 ||
priceBeforeTaxWithoutVAT < 0) {
 throw new ArgumentException("must be less than 10000000000 and
greater than 0", "priceBeforeTaxWithoutVAT");
 }

 if (countOfAlarms < 0) {
 throw new ArgumentException("must be positive or zero",
"countOfAlarms");
 }

 var priceWithVAT = priceBeforeTaxWithoutVAT * (1 + VAT);
 var registrationTax = Math.Min(priceWithVAT, BASE_AMOUNT) *
TAXRATE_BELOW_BASE_AMOUNT;
 if (priceWithVAT > BASE_AMOUNT) {
 registrationTax += (priceWithVAT - BASE_AMOUNT) *
TAXRATE_ABOVE_BASE_AMOUNT;
 }

 var mileageLimit = fuel == Fuel.Diesel ? MILEAGE_LIMIT_DIESEL :
MILEAGE_LIMIT_GAZ;
 var mileAgeAboveLimit = mileage - mileageLimit;
 var mileageRate = mileAgeAboveLimit > 0 ? OVER_MILEAGE_RATE :
UNDER_MILEAGE_RATE;
 registrationTax += Math.Abs(mileAgeAboveLimit) * mileageRate;

 if (countOfAlarms > 0) {
 int alarmsUsedInCalculation = countOfAlarms;
 if (alarmsUsedInCalculation > MAX_COUNT_OF_ALARMS) {
 alarmsUsedInCalculation = MAX_COUNT_OF_ALARMS;
 }
 registrationTax += alarmsUsedInCalculation *
COUNT_OF_ALARMS_RATE;
 }

 if (fuel == Fuel.Diesel && particleFilter) {
 registrationTax += PARTICLE_FILTER_RATE;
 }

 return registrationTax + priceWithVAT;
 }
 }
}

RSA project 2010 Group 04 Page 29

9.2 BB test case suite
 [TestClass()]
 public class RegistrationTaxCalculatorTest {
 private RegistrationTaxCalculator uut;

 [TestInitialize()]
 public void MyTestInitialize() {
 uut = new RegistrationTaxCalculator();
 }

 [TestMethod()]
 public void CalculateTax_TC01_returnsNumber() {
 double priceBeforeTaxWithoutVAT = 25000;
 double mileage = 12;
 bool particleFilter = false;
 int countOfAlarms = 2;
 double actual = uut.CalculateTax(priceBeforeTaxWithoutVAT, Fuel.Gaz,
mileage, particleFilter, countOfAlarms);
 Assert.AreEqual(67662.50, actual);
 }

 [TestMethod()]
 public void CalculateTax_TC02_returnsNumber() {
 double priceBeforeTaxWithoutVAT = 120000;
 double mileage = 18;
 bool particleFilter = false;
 int countOfAlarms = 0;
 double actual = uut.CalculateTax(priceBeforeTaxWithoutVAT, Fuel.Gaz,
mileage, particleFilter, countOfAlarms);
 Assert.AreEqual(352750, actual);
 }

 [TestMethod()]
 public void CalculateTax_TC03_returnsNumber() {
 double priceBeforeTaxWithoutVAT = 79000;
 double mileage = 16;
 bool particleFilter = false;
 int countOfAlarms = 3;
 double actual = uut.CalculateTax(priceBeforeTaxWithoutVAT, Fuel.Gaz,
mileage, particleFilter, countOfAlarms);
 Assert.AreEqual(216650, actual);
 }

 [TestMethod()]
 public void CalculateTax_TC04_returnsNumber() {
 double priceBeforeTaxWithoutVAT = 25000;
 double mileage = 14;
 bool particleFilter = true;
 int countOfAlarms = 2;
 double actual = uut.CalculateTax(priceBeforeTaxWithoutVAT,
Fuel.Diesel, mileage, particleFilter, countOfAlarms);
 Assert.AreEqual(64162.50, actual);
 }

 [TestMethod()]
 public void CalculateTax_TC05_returnsNumber() {
 double priceBeforeTaxWithoutVAT = 120000;
 double mileage = 22;
 bool particleFilter = true;
 int countOfAlarms = 2;
 double actual = uut.CalculateTax(priceBeforeTaxWithoutVAT,
Fuel.Diesel, mileage, particleFilter, countOfAlarms);
 Assert.AreEqual(340850, actual);
 }

 [TestMethod()]
 public void CalculateTax_TC06_returnsNumber() {
 double priceBeforeTaxWithoutVAT = 79000;
 double mileage = 18;
 bool particleFilter = true;
 int countOfAlarms = 2;

RSA project 2010 Group 04 Page 30

 double actual = uut.CalculateTax(priceBeforeTaxWithoutVAT,
Fuel.Diesel, mileage, particleFilter, countOfAlarms);
 Assert.AreEqual(213350, actual);
 }

 [TestMethod()]
 public void CalculateTax_TC07_returnsNumber() {
 double priceBeforeTaxWithoutVAT = 79000;
 double mileage = 18;
 bool particleFilter = false;
 int countOfAlarms = 2;
 double actual = uut.CalculateTax(priceBeforeTaxWithoutVAT,
Fuel.Diesel, mileage, particleFilter, countOfAlarms);
 Assert.AreEqual(216850, actual);
 }

 [TestMethod()]
 [ExpectedException(typeof(ArgumentException))]
 public void CalculateTax_TC08_rejected() {
 double priceBeforeTaxWithoutVAT = -25000;
 double mileage = 12;
 bool particleFilter = false;
 int countOfAlarms = 2;
 uut.CalculateTax(priceBeforeTaxWithoutVAT, Fuel.Gaz, mileage,
particleFilter, countOfAlarms);
 }

 [TestMethod()]
 [ExpectedException(typeof(ArgumentException))]
 public void CalculateTax_TC08_1_rejected() {
 double priceBeforeTaxWithoutVAT = 10000000001;
 double mileage = 12;
 bool particleFilter = false;
 int countOfAlarms = 2;
 uut.CalculateTax(priceBeforeTaxWithoutVAT, Fuel.Gaz, mileage,
particleFilter, countOfAlarms);
 }

 [TestMethod()]
 [ExpectedException(typeof(ArgumentException))]
 public void CalculateTax_TC10_rejected() {
 double priceBeforeTaxWithoutVAT = 25000;
 double mileage = -12;
 bool particleFilter = false;
 int countOfAlarms = 2;
 uut.CalculateTax(priceBeforeTaxWithoutVAT, Fuel.Gaz, mileage,
particleFilter, countOfAlarms);
 }

 [TestMethod()]
 public void CalculateTax_TC11_returnsNumber() {
 double priceBeforeTaxWithoutVAT = 120000;
 double mileage = 16;
 bool particleFilter = true;
 int countOfAlarms = 2;
 double actual = uut.CalculateTax(priceBeforeTaxWithoutVAT, Fuel.Gaz,
mileage, particleFilter, countOfAlarms);
 Assert.AreEqual(360350, actual);
 }

 [TestMethod()]
 [ExpectedException(typeof(ArgumentException))]
 public void CalculateTax_TC12_rejected() {
 double priceBeforeTaxWithoutVAT = 25000;
 double mileage = 12;
 bool particleFilter = false;
 int countOfAlarms = -2;
 uut.CalculateTax(priceBeforeTaxWithoutVAT, Fuel.Gaz, mileage,
particleFilter, countOfAlarms);
 }

 [TestMethod()]
 public void CalculateTax_TC12_returnsNumber() {
 double priceBeforeTaxWithoutVAT = 25000;

RSA project 2010 Group 04 Page 31

 double mileage = 12;
 bool particleFilter = false;
 int countOfAlarms = 5;
 double actual = uut.CalculateTax(priceBeforeTaxWithoutVAT, Fuel.Gaz,
mileage, particleFilter, countOfAlarms);
 Assert.AreEqual(67462.50, actual);
 }

 [TestMethod()]
 public void CalculateTax_TC13_returnsNumber() {
 double priceBeforeTaxWithoutVAT = 25000;
 double mileage = 12;
 bool particleFilter = false;
 int countOfAlarms = 4;
 double actual = uut.CalculateTax(priceBeforeTaxWithoutVAT, Fuel.Gaz,
mileage, particleFilter, countOfAlarms);
 Assert.AreEqual(67462.50, actual);
 }
 }
}

RSA project 2010 Group 04 Page 32

9.3 PEX test suite

This is the PUT
/// <summary>This class contains parameterized unit tests for
RegistrationTaxCalculator</summary>
[PexClass(typeof(RegistrationTaxCalculator))]
[PexAllowedExceptionFromTypeUnderTest(typeof(InvalidOperationException))]
[PexAllowedExceptionFromTypeUnderTest(typeof(ArgumentException),
AcceptExceptionSubtypes = true)]
[TestClass]
public partial class RegistrationTaxCalculatorTestRegression
{
 /// <summary>Test stub for CalculateTax(Double, Fuel, Double, Boolean,
Int32)</summary>
 [PexMethod]
 public double CalculateTaxRegression(
 [PexAssumeUnderTest]RegistrationTaxCalculator target,
 double priceBeforeTaxWithoutVAT,
 Fuel fuel,
 double mileage,
 bool particleFilter,
 int countOfAlarms
)
 {
 double result = target.CalculateTax
 (priceBeforeTaxWithoutVAT, fuel, mileage,
particleFilter, countOfAlarms);
 return result;
 // TODO: add assertions to method
RegistrationTaxCalculatorTestRegression.CalculateTaxRegression(RegistrationTaxCa
lculator, Double, Fuel, Double, Boolean, Int32)
 }
}

The test cases generated by PEX:

 public partial class RegistrationTaxCalculatorTestRegression {
[TestMethod]
[PexGeneratedBy(typeof(RegistrationTaxCalculatorTestRegression))]
[ExpectedException(typeof(ArgumentException))]
public void CalculateTaxRegressionThrowsArgumentExceptionx153()
{
 double d;
 RegistrationTaxCalculator s0 = new RegistrationTaxCalculator();
 d = this.CalculateTaxRegression(s0, 0, Fuel.Gaz, 0, false, 0);
}
[TestMethod]
[PexGeneratedBy(typeof(RegistrationTaxCalculatorTestRegression))]
[ExpectedException(typeof(ArgumentException))]
public void CalculateTaxRegressionThrowsArgumentExceptionx241()
{
 double d;
 RegistrationTaxCalculator s0 = new RegistrationTaxCalculator();
 d = this.CalculateTaxRegression(s0, 0, Fuel.Gaz, 1, false, 0);
}
[TestMethod]
[PexGeneratedBy(typeof(RegistrationTaxCalculatorTestRegression))]
public void CalculateTaxRegressionx357()
{
 double d;
 RegistrationTaxCalculator s0 = new RegistrationTaxCalculator();
 d = this.CalculateTaxRegression(s0, 1, Fuel.Gaz, 1, false, 0);
 Assert.AreEqual<double>(15002.5625, d);
 Assert.IsNotNull((object)s0);
}
[TestMethod]
[PexGeneratedBy(typeof(RegistrationTaxCalculatorTestRegression))]
public void CalculateTaxRegressionx913()
{
 double d;
 RegistrationTaxCalculator s0 = new RegistrationTaxCalculator();

RSA project 2010 Group 04 Page 33

 d = this.CalculateTaxRegression(s0, 1, Fuel.Gaz, 17, false, 0);
 Assert.AreEqual<double>(-3997.4375, d);
 Assert.IsNotNull((object)s0);
}
[TestMethod]
[PexGeneratedBy(typeof(RegistrationTaxCalculatorTestRegression))]
public void CalculateTaxRegressionx508()
{
 double d;
 RegistrationTaxCalculator s0 = new RegistrationTaxCalculator();
 d = this.CalculateTaxRegression(s0, 63200.8, Fuel.Gaz, 1, false, 0);
 Assert.AreEqual<double>(176952.8, d);
 Assert.IsNotNull((object)s0);
}
[TestMethod]
[PexGeneratedBy(typeof(RegistrationTaxCalculatorTestRegression))]
public void CalculateTaxRegressionx217()
{
 double d;
 RegistrationTaxCalculator s0 = new RegistrationTaxCalculator();
 d = this.CalculateTaxRegression(s0, 1, Fuel.Diesel, 1, false, 0);
 Assert.AreEqual<double>(17002.5625, d);
 Assert.IsNotNull((object)s0);
}
[TestMethod]
[PexGeneratedBy(typeof(RegistrationTaxCalculatorTestRegression))]
public void CalculateTaxRegressionx348()
{
 double d;
 RegistrationTaxCalculator s0 = new RegistrationTaxCalculator();
 d = this.CalculateTaxRegression(s0, 1, Fuel.Diesel, 1, true, 0);
 Assert.AreEqual<double>(13502.5625, d);
 Assert.IsNotNull((object)s0);
}
[TestMethod]
[PexGeneratedBy(typeof(RegistrationTaxCalculatorTestRegression))]
[ExpectedException(typeof(ArgumentException))]
public void CalculateTaxRegressionThrowsArgumentExceptionx887()
{
 double d;
 RegistrationTaxCalculator s0 = new RegistrationTaxCalculator();
 d = this.CalculateTaxRegression(s0, 1, Fuel.Gaz, 1, false, int.MinValue);
}
[TestMethod]
[PexGeneratedBy(typeof(RegistrationTaxCalculatorTestRegression))]
public void CalculateTaxRegressionx144()
{
 double d;
 RegistrationTaxCalculator s0 = new RegistrationTaxCalculator();
 d = this.CalculateTaxRegression(s0, 1, Fuel.Gaz, 1, false, 1);
 Assert.AreEqual<double>(14802.5625, d);
 Assert.IsNotNull((object)s0);
}
[TestMethod]
[PexGeneratedBy(typeof(RegistrationTaxCalculatorTestRegression))]
public void CalculateTaxRegressionx190()
{
 double d;
 RegistrationTaxCalculator s0 = new RegistrationTaxCalculator();
 d = this.CalculateTaxRegression(s0, 1, Fuel.Gaz, 1, false, 5);
 Assert.AreEqual<double>(14402.5625, d);
 Assert.IsNotNull((object)s0);
}
 }
}

RSA project 2010 Group 04 Page 34

10 Appendix 3: Test suite result tables
This appendix lists all the test result tables for each of the test
suites ordered by defects.

10.1 Basis

Table 2 - "EQ+BV" - Basis

Table 3 - "PEX" - Basis

10.2 Algorithmic defect - Mileage above limit

Table 4 – ”EQ+BV” - Algorithmic defect - Mileage above limit

RSA project 2010 Group 04 Page 35

Table 5 - "PEX Regression" - Algorithmic defect - Mileage above limit

Table 6 - "PEX" - Algorithmic defect - Mileage above limit

10.3 Coding defect: Missing branch - # alarms

Table 7 - "EQ+BV" - Coding defect: Missing branch - # alarms

Table 8 - "PEX Regression" - Coding defect: Missing branch - # alarms

RSA project 2010 Group 04 Page 36

Table 9 - "PEX" - Coding defect: Missing branch - # alarms

10.4 Control logic defect - Particle filter

Table 10 - "EQ+BV" - Control logic defect - Particle filter

Table 11 - "PEX Regression" - Control logic defect - Particle filter

RSA project 2010 Group 04 Page 37

Table 12 - "PEX" - Control logic defect - Particle filter

10.5 Spec. added – Mileage over 100

Table 13 - "EQ+BV" - Spec. added – Mileage over 100

Table 14 - "PEX Regression" - Spec. added – Mileage over 100

RSA project 2010 Group 04 Page 38

Table 15 - "PEX" - Spec. added – Mileage over 100

RSA project 2010 Group 04 Page 39

11 References

[Pfaller 2008] Multi-Dimensional Measures for Test Case
Quality - Christian Pfaller et. Al - 2008

[LAW]

The “Registreringsafgiftsloven”:
http://www.skm.dk/tal_statistik/satser_og_belo
eb/228.html
is a law that is used to determine how much
money it costs to register a vehicle in
Denmark.

[Calculator] The test oracle used to calculate the expected
result for the test cases and to verify the
correctness of the test case results.

[Burnstein] Practical Software Testing - Ilene Burnstein,
Springer-Verlag - 2003

[RSA] RSA Compilation AU Computer Science
Department, 2009

[ISO SW Quality] Software engineering – Product quality – Part
1: Quality model

[Effectiveness] On the effectiveness of manual and automatic
unit test generation - Alberto Bacchelli et. Al.

[Osherove] The art of unittesting - Roy Osherove – 2009

[Meszaros] xUnit Test Patterns – Gerard Meszaros – 2007

[Tilmann 2005] http://research.microsoft.com/pubs/77417/p24
1-tillmann.pdf
or
http://portal.acm.org/citation.cfm?doid=108170
6.1081745

[PEX tutorial] http://research.microsoft.com/en-
us/projects/pex/pextutorial.pdf

[FRSE 2010] [Reliable and Flexible Software Explained –
Henrik Bærbak Christensen – 2010]

[Daniel et. al] Daniel, B., Gvero, T., & Marinov, D. (n.d.). On
Test Repair using Symbolic Execution
http://mir.cs.illinois.edu/reassert/pubs/symreas
sert.pdf.

http://www.skm.dk/tal_statistik/satser_og_beloeb/228.html
http://www.skm.dk/tal_statistik/satser_og_beloeb/228.html
http://research.microsoft.com/en-us/projects/pex/pextutorial.pdf
http://research.microsoft.com/en-us/projects/pex/pextutorial.pdf

RSA project 2010 Group 04 Page 40

[Christensen WB] http://www.cs.au.dk/rsa/notes/whitebox.ppt

[PEX Digger] http://research.microsoft.com/en-
us/projects/pex/digger.pdf

[MSDN
Sachdeva 2009]

http://msdn.microsoft.com/en-
us/magazine/ee819140.aspx

http://www.cs.au.dk/rsa/notes/whitebox.ppt
http://research.microsoft.com/en-us/projects/pex/digger.pdf
http://research.microsoft.com/en-us/projects/pex/digger.pdf
http://msdn.microsoft.com/en-us/magazine/ee819140.aspx
http://msdn.microsoft.com/en-us/magazine/ee819140.aspx

