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As teachers we introduce Venn diagrams to provide students with a useful tool for 
thinking about sets, logic, counting, probability, and more.  Typically we draw Venn 
diagrams to visualize the intersections among two or three sets.  Why do we stop at 
three?  Can we find no interesting problems whose analyses require the consideration of 
four or more sets?  Why wouldn’t we like the class to consider, for example, the students 
who are athletes, artists, student government leaders, and/or academic team members, 
using a Venn diagram to illustrate the intersections among these four sets? 
 
We typically create Venn diagrams using congruent circles as shown in Figure 1. When 
we try to arrange four congruent circles to represent the intersections among four sets, we 
quickly realize this task is not as straightforward as it is for fewer sets.  (If you haven’t 
already tried to do this, please do so before continuing!)  Is there a clever way to arrange 
the circles, or is such a diagram simply impossible?   
 

Figure 1.  Venn diagrams illustrating the intersections among 2 and 3 sets.. 
 
After spending some time arranging and rearranging four congruent circles in an attempt 
to represent all the intersections among four sets, and failing to do so, we may begin to 
suspect that such a Venn diagram simply does not exist.  But surely we ought to be able 
to produce some sort of diagram that allows us to visualize all the relationships among 
four sets?  If we relax the congruency requirement, could we produce such a diagram? 
 
If four congruent circles cannot be arranged to form a satisfactory Venn diagram, then 
perhaps we could create the desired diagram using four non-congruent circles.  (Try it!)  
Unfortunately this exercise soon proves frustrating as well.  (If you think you’ve 
produced all the possible intersections with four circles, congruent or otherwise, please 
count again!  The Venn diagram should show 16 regions, including the one outside the 



circles.)  Are we missing something, or is a Venn diagram using circles for four (or more) 
sets simply impossible? 
 
 

Figure 2.  Can we use four congruent circles to represent all possible intersections 
among four sets? 
 
Below we show that a Venn diagram using circles to represent the intersections among n 
≥ 4 sets can’t exist.  We can, however, produce Venn diagrams for four or more sets 
using other shapes. 
 
How many regions can we create with n circles? How many regions must a Venn 
diagram have in order to display all the possible intersections among n sets?  We answer 
the second question first. 
 
Suppose we have a collection of objects (or students), each of which may or may not 
belong to any one of the n sets (or clubs) A1, A2, …, An.  With each object x we associate 
an n-tuple (x1, x2, … , xn), where xi ∈ {Y, N} for 1 ≤ i ≤ n, and xi = Y indicates the object 
is in set An and xi = N means it is not.  Each distinct n-tuple requires a distinct region in a 
Venn diagram and vice versa.  This means the number of regions in a diagram that 
displays all the possible relationships among n sets must equal the number of distinct n-
tuples with entries Y or N.  How many such n-tuples are there?  Since each xi 
independently takes one of two possible values, there must be 2n of them.  This means a 
Venn diagram that displays the intersections among n sets must have exactly 2n regions.  
In particular a Venn diagram for 4 sets must have 16 regions.  Figure 3 illustrates the 
eight 3-tuples that correspond to the 23 = 8 regions in a Venn diagram for 3 sets. 
 



 
Figure 3.  Two choices for each xi independently yields 2 × 2 × 2 = 23 3-tuples (x1, x2, x3). 
 
How many regions can we create by arranging n circles?  To maximize the number of 
regions, we make sure no more than two circles intersect at a given point.  Let rn denote 
this maximum number. 
 
Now suppose we have n – 1 circles drawn already with a total of rn – 1 regions.  How 
many more regions can the addition of one more circle yield?  To maximize the number 
of regions, we draw the nth circle so that it intersects the existing n – 1 circles in two 
distinct points each (nonintersecting and tangent circles produce no new regions).  When 
the nth circle intersects an existing circle, it creates two new regions:  it begins one new 
region when it enters the existing circle, and starts another upon leaving the circle.  (Try 
this for a small number of circles to visualize the formation of regions.)  See Figure 4 for 
an illustration of this process. 
 



Figure 4.  Adding a circle creates a new region each time the new circle both enters and 
exists an existing circle. 
 
The above analysis demonstrates that rn = rn – 1 + 2(n – 1).  To obtain the maximum 
number rn of regions that can be created with n circles, we begin with n – 1 circles 
arranged to form as many regions as possible, that is rn – 1regions.  Then we add the nth 
circle so that it intersects the existing n – 1 circles in two places each.  Every time the 
new circle enters or exists an existing circle, it creates a new region.  Since this amounts 
to 2 new regions for each of the n – 1 existing circles, the total number of new regions 
added by the nth circle is 2(n – 1).  Combining these new regions together with the rn – 1 
existing regions yields the result. 
 
Since the recurrence rn = rn – 1 + 2(n – 1) holds for n ≥ 2 and r1 = 2, we can obtain rn for n 
as large as we have the patience to compute (see Figure 5). 
 



 
Figure 5.  Computing the maximum number rn of regions formed by n circles using the 
recurrence relation. 
 
Is there an explicit formula for rn?  For large values of n, it would be nice to have a 
formula for rn that depends only on n, so that we don’t have to rely on the recurrence.  
The substitutions and computations shown in Figure 6 demonstrate that rn  = n2 – n + 2. 
 

 
Figure 6.  An explicit formula for the maximum number rn of regions formed by n circles. 
 
We see that n2 – n + 2 = 2n for n = 1, 2, and 3, but n2 – n + 2 < 2n for n ≥ 4. We need 2n 
regions in a Venn diagram for n sets, but can create at most n2 – n + 2 regions from the 
intersection of n circles.  This means we can construct Venn diagrams using circles only 
for three or fewer sets. 
 
Suppose we need a Venn diagram for 4 sets.  We know we cannot use circles, congruent 
or otherwise.  Figure 7 provides one possibility, but it is aesthetically unsatisfying.  The 
shapes are not congruent, nor are they convex, and the diagram does not have the 
rotational symmetry shared by the Venn diagrams in Figure 1.  Are these qualities too 
much to ask for?  Can we produce a Venn diagram using congruent shapes?  Can we ask 
that they be convex, or that the diagram be symmetric?  Figure 4 guarantees that a Venn 
diagram for 4 sets is possible, but can we create one with more appealing qualities?  



More generally, do Venn diagrams exist for all n?  What kinds of visually desirable 
characteristics can we hope to achieve? 
 

 
Figure 7.  A Venn diagram for 4 sets using non-congruent shapes. 
 
When we search the mathematical literature for answers to these questions, we discover 
that Venn diagrams have inspired a lot of mathematical research.  Among the results we 
find partial answers to our questions, together with several loose ends that remain to be 
tied by future mathematicians.  (Will our students be among them?)  The online article 
[7] contains a survey of the current state of mathematical research concerning Venn 
diagrams.  It includes several illustrations, and lots of open problems.   
 
Venn himself showed that Venn diagrams exist for all n.  He did so by adding more 
shapes to Figure 7 in a systematic (though increasingly complex) way.  His diagrams 
used neither congruent, nor convex shapes, and had no rotational symmetry.  These 
aesthetic considerations did not trouble him, however, since he felt their value depended 
not on their appearance, but rather on their purpose [9].   
 
Since mathematical problems can be solved in a variety of ways, why not seek the nicest 
solution?  A simple diagram is easier to use than a complex one.  What could be simpler 
than a diagram with congruent, convex shapes arranged symmetrically?  Figure 8 
provides such a diagram for 5 sets. 
 



 
Figure 8.  A simple, symmetric Venn diagram for 5 sets using convex, congruent ellipses. 
 
The search for ideal Venn diagrams eventually forces one to think carefully about which 
arrangements of n shapes should qualify as “simple” and “symmetric”.  A Venn diagram 
in which no more than two shapes intersect at a given point is called simple.  Figures 1, 7 
and 8 display simple Venn diagrams.  Figures 9 and 10 are non-simple Venn diagrams for 
3 sets.  To say a Venn diagram for n sets is symmetric means it is has n-fold rotational 
symmetry.  Figure 8 has 5-fold rotational symmetry, while Figure 9 has 3-fold rotational 
symmetry.  The Venn diagrams in Figure 1 are simple and symmetric. 
 

 



Figure 9.  A non-simple, symmetric Venn diagram for 3 sets using congruent, non-convex 
pentagons. 
 
If we allow intersections along curves, then we obtain diagrams such as the one in Figure 
10 (which was copied from [7]).  The shapes composing this diagram are congruent and 
convex, but the diagram is neither symmetric nor simple. 
 

 
Figure 10.  A non-simple, non-symmetric Venn diagram for 3 sets using congruent, 
convex shapes. 
 
The ideal Venn diagram would be simple, symmetric, and consist of congruent, convex 
shapes, as is the case for 1, 2, 3, and 5 sets (see Figures 1 and 8).  Figures 9 and 10 
suggest we can have several desirable properties simultaneously for larger n.  Having all 
of them at once, however, is unfortunately too much to ask for.  Below we describe the 
current state of the search for ideal Venn diagrams. 
 
Symmetric Venn diagrams for n sets exist only for prime n.  A nice explanation for why 
this is true appears in [6].  (For the original articles see [2] and [5].)  Simple symmetric 
Venn diagrams have been constructed only for n = 1, 2, 3, 5 and 7.  The problem of 
finding simple symmetric Venn diagrams for prime n ≥ 11 is open. 
 
Venn diagrams using convex shapes can be produced for any n, but they will not 
necessarily be congruent, unless we allow Venn diagrams to use shapes that intersect 
along curves, such as those in Figure 10, (see [1]).  Diagrams using congruent (though 
not necessarily convex) shapes that intersect at only finitely many points (i.e., not along 



curves) have been constructed only for n ≤ 8 (see [3] and [4]).  The problem of 
construction for n ≥ 9 is open.  Figure 11 displays one such diagram for 4 sets created by 
Venn himself (see [8]).  It is simple, but not symmetric.  The problem of constructing 
Venn diagrams for n sets using congruent shapes for non-prime n ≥ 6 is also open.  
 

 
Figure 11.  A simple, non-symmetric Venn diagram for 4 sets using congruent, convex 
ellipses. 
 
Perhaps the real reason we don’t consider Venn diagrams for four or more sets is that the 
diagrams (even ideal ones) become increasing difficult to manage (not to mention draw).  
The number 2n of regions becomes very large quite quickly.  The question of producing 
ideal Venn diagrams, does, however, lead to lots of interesting and beautiful 
mathematics, much of which remains to be created by future generations of researchers.  
The open problems described here represent only a small fraction of those that appear as 
part of the excellent online survey article [7], to which the reader is (enthusiastically!) 
referred. 
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