# Engineering Drawing 

# Traditional Drawing Tools 

## DRAWING TOOLS



## DRAWING TOOLS



1. T-Square
2. Triangles

## DRAWING TOOLS



HB for thick line
2 H for thin line

3. Adhesive Tape
4. Pencils

## DRAWING TOOLS


5. Sandpaper

6. Compass

## DRAWING TOOLS


7. Pencil Eraser

8. Erasing Shield

## DRAWING TOOLS


9. Circle Template
10. Tissue paper

## DRAWING TOOLS


11. Sharpener
12. Clean paper


## Freehand Sketching

## Straight Line

1. Hold the pencil naturally.
2. Spot the beginning and end points.
3. Swing the pencil back and forth between the points, barely touching the paper until the direction is clearly established.
4. Draw the line firmly with a free and easy wrist-and-arm motion

## Horizontal line



Vertical line


## Nearly vertical inclined line



## Small Circle

## Method 1 : Starting with a square

1. Lightly sketching the square and marking the mid-points.
2. Draw light diagonals and mark the estimated radius.
3. Draw the circle through the eight points.

Step 1


Step 2


Step 3


## Small Circle

## Method 2 : Starting with center line

1. Lightly draw a center line.
2. Add light radial lines and mark the estimated radius.
3. Sketch the full circle.

Step 1


Step 2


Step 3


## Arc

Method 1 : Starting with a square



Method 2 : Starting with a center line




## Basic Strokes

## Straight




Curved


Examples: Application of basic stroke


## Upper-case letters \& Numerals




Curved line letters


Curved line letters \&


Numerals


## Lower-case letters



■ The text' $s$ body height is about $2 / 3$ the height of a capital letter.

## Example : Good and Poor Lettering

ESTIMATE GOOD
EstiMaTE
ESTIMATE
ESTIMATE
EST/MATE ESTIMATE

ESTIMATE
ESTIMATE
ESTMATE WITH THE DEMAND FOR IT

Area between letters not uniform.
Not uniform in style.

Not uniform in height.

Not uniformly vertical or inclined.

Not uniform in thickness of stroke.

Area between words not uniform.

## Sentence Composition

- Leave the space between words equal to the space requires for writing a letter " $O$ ".

Example



## Effectiveness of Graphics Language

1. Try to write a description of this object.
2. Test your written description by having someone attempt to make a sketch from your description.


You can easily understand that ...
The word languages are inadequate for describing the size, shape and features completely as well as concisely.

## Composition of Graphic Language

Graphic language use lines to represent the surfaces, edges and contours of objects.

The language is known as "drawing" or "drafting".

A drawing can be done using freehand, instruments or computer methods.

## Freehand drawing

The lines are sketched without using instruments other than pencils and erasers.

## Example



## Instrument drawing

Instruments are used to draw straight lines, circles, and curves concisely and accurately. Thus, the drawings are usually made to scale.

## Example



## Computer drawing

The drawings are usually made by commercial software such as AutoCAD, solid works etc.

## Example



## Architectural Graphics



## Elements

## Drawing comprises of graphics language

 and word language.
## Graphics language

Describe a shape (mainly).

## Word language

Describe size, location and specification of the object.


## Basic Knowledge for Drafting




## PROJECTION METHOD

## PROJECTION METHOD

Perspective

## Parallel



## PROJECTION THEORY

The projection theory is used to graphically represent 3-D objects on 2-D media (paper, computer screen).

The projection theory is based on two variables:

1) Line of sight
2) Plane of projection (image plane or picture plane)

Line of sight is an imaginary ray of light between an observer's eye and an object.

There are 2 types of LOS : parallel and converge

## Parallel projection

Line of sight


## Perspective projection

Line of sight


## Plane of projection is an imaginary flat plane which

 the image is created.The image is produced by connecting the points where the LOS pierce the projection plane.

## Parallel projection

Plane of projection


Perspective projection
Plane of projection


## Disadvantage of Perspective Projection

1) It is difficult to create.
2) It does not reveal exact shape and size.


## Orthographic Projection

## MEANING

Orthographic projection is a parallel projection technique in which the parallel lines of sight are perpendicular to the projection plane


## ORTHOGRAPHIC VIEW

Orthographic view depends on relative position of the object to the line of sight.

## Two dimensions of an object is shown.

More than one view is needed to represent the object.


## Multiview drawing

Three dimensions of an object is shown.

## Axonometric drawing

## ORTHOGRAPHIC VIEW

## NOTES

Orthographic projection technique can produce either

1. Multiview drawing
that each view show an object in two dimensions.
2. Axonometric drawing
that show all three dimensions of an object in one view.

Both drawing types are used in technical drawing for communication.

## Axonometric (Isometric) Drawing

Advantage
Disadvantage

Easy to understand
Shape and angle distortion

Example Distortions of shape and size in isometric drawing


## Types of Axonometrics


A.ISOMETRIC

2 Equal axes
O Equal axes
0 Equal angles

C.TRIMETRIC

## Multiview Drawing

Advantage It represents accurate shape and size.
Disadvantage Require practice in writing and reading.

Example Multiviews drawing (2-view drawing)


## The Glass Box Approach

THE GLASS-BOX APPROACH


## Orthographic Projection



## Opening the Box



## Final Views

```
The standard arrangement of
three orthographic views:
    Top View above the Front View
    R Side View right of the Front View
```



## Six Orthographic Views

## Laying Out All Six Views



## Three Primary Views



FRONT VIEW


## Construction of Views



## First and Third Angle Projections



- First Angle - International
- Third Angle - U.S.


## Basic Line Types

Name according to application

Visible line
Dimension line
Extension line
Leader line
— — — — - Hidden line

## Types of Lines

Dash thick line

Chain thin line
Appearance

Continuous thick line
Continuous thin line $\qquad$


Center line

## Meaning of Lines

Visible lines represent features that can be seen in the current view

Hidden lines represent features that can not be seen in the current view

Center line represents symmetry, path of motion, centers of circles, axis of axisymmetrical parts

Dimension and Extension lines indicate the sizes and location of features on a drawing

Example : Line conventions in engineering drawing


## Good practice



## Exercise

- Complete three orthographic views of the object shown on the next slide.
- Include visible, hidden, and center lines where appropriate.
- You will be given 7 minutes.


## Object for exercise



## Solution




## Drawing Standard



## Introduction

Standards are set of rules that govern how technical drawings are represented.

Drawing standards are used so that drawings convey the same meaning to everyone who reads them.

## Standard Code

Country Code ..... Full name

USA
Japan JIS Japanese Industrial Standard
UK
Australia
Germany
ANS

BS
AS
DIN
Deutsches Institut für Normung

International Standards Organization

## Partial List of Drawing Standards

## Code number

## Contents

JIS Z 8311
JIS Z 8312
JIS Z 8313
JIS Z 8314
JIS Z 8315
JIS Z 8316
JIS Z 8317

## Sizes and Format of Drawings

## Line Conventions

## Lettering

## Scales

Projection methods
Presentation of Views and Sections
Dimensioning

## Drawing Sheet

Trimmed paper of a size A0 ~ A4.

Standard sheet size (JIS)

| A4 | $210 \times 297$ |
| :--- | :--- |
| A3 | $297 \times 420$ |
| A2 | $420 \times 594$ |
| A1 | $594 \times 841$ |
| A0 | $841 \times 1189$ |

(Dimensions in millimeters)


## Orientation of drawing sheet

2. Type Y (A4 only)


Sheet size c (min) d (min)

| A4 | 10 | 25 |
| :--- | :--- | :--- |
| A3 | 10 | 25 |
| A2 | 10 | 25 |
| A1 | 20 | 25 |
| A0 | 20 | 25 |

## Drawing Scales

## Length, size

Scale is the ratio of the linear dimension of an element of an object shown in the drawing to the real linear dimension of the same element of the object.


## Drawing Scales

Designation of a scale consists of the word "SCALE" followed by the indication of its ratio, as follow

SCALE 1:1 for full size
SCALE X:1 for enlargement scales SCALE 1:X for reduction scales

