 PhD Dissertation Proposal

Abstract

Virtual machine based distributed computing greatly simplifies and enhances adaptive/autonomic computing by lowering the level of abstraction, benefiting both resource providers and users. We are developing Virtuoso, a middleware system for virtual machine shared-resource computing (e.g. grids) that provides numerous advantages and overcomes many obstacles a user faces in using shared resources for deploying distributed applications. A major hurdle for distributed applications to function in such an environment is locating, reserving/scheduling and dynamically adapting to the appropriate communication and computational resources so as to meet the applications’ demands, limited by cost constraints. Resources can be very heterogeneous, especially in wide area or shared infrastructures, and their availability is also highly dynamic.

To achieve such automated adaptation, one must first learn about the various demands and properties of the distributed application running inside the VMs. My thesis is that it is feasible to infer the applications’ demands and behavior, to a significant degree; I will investigate and describe what we can learn about the application and how to automatically infer it. In addition, my thesis will also give limited evidence and point to other work that shows that this inferred information can actually be used to benefit the application, without having any knowledge of the application/OS itself. I am exploring a black box approach. The results will be applicable to existing, ​​unmodified applications and operating systems and thus has the potential for very high impact.

Ashish Gupta

Adviser: Prof. Peter Dinda

Committee: Prof. Fabian Bustamante and Prof. Yan Chen, Dongyan Xu, Purdue University

* In Greek mythology, he is the supreme ruler of the gods and lord of the sky. The son of Kronos and Rheia, Zeus made his domain the mountaintops and clouds, where he could survey and vitalize all creation.

I Background: Virtuoso – A Middleware System for Virtual Machine Adaptive Computing

Virtual machines (VMs) can greatly simplify distributed computing by lowering the level of abstraction from traditional units of work, such as jobs, processes, or RPC calls to that of a raw machine. This abstraction makes resource management easier from the perspective of resource providers and results in lower complexity and greater flexibility for resource users [1].

A major impediment for resource providers in supplying resources as well as for users in utilizing these resources for distributed computing is the heterogeneity of the underlying hardware resources, operating systems and middleware that may be different for each resource provider. Dealing with portability issues in such an environment is very difficult. A virtual machine image that includes preinstalled versions of the correct operating system, libraries, middleware and applications can make the deployment of new software far simpler. The goal here is that the user can then use and configure a VM as he likes and just make multiple copies to provide a distributed computing environment that fits his requirements.

We have an ongoing project Virtuoso that explores middleware system for virtual machine adaptive computing with these goals. Along with using virtual machines, an important concept in Virtuoso is VM-level virtual overlay networking (VNET)[2] that can project a VM running on a remote network on to the user’s local LAN. Thus the end result is that user feels as if he has access to a complete raw machine attached to his local network. The virtual machine monitor deals with any computational resource related hurdles which users face whereas the VM-level virtual networking alleviates communication issues that are common in wide area distributed applications. For example, different policies, administration, proxies and firewall rules at different sites can make matters complicated for the application programmer. Virtuoso hides these details, presenting a simple abstraction of purchasing a new wholly owned machine connected to the user’s network. Simplifying distributed computation over the wide area to such a level can make autonomic distributed computing over shared infrastructure very attractive for a wide range of users, ranging from scientific computational apps like CFD applications (NAS benchmarks [52,53]) , enterprise IT applications to even deploying virtual web services over a Grid [9]. For a classification of certain applications that can be leveraged, I refer the reader to my colleague Ananth Sundararaj’s dissertation [55].

I briefly discuss some important components of Virtuoso and related systems that have been developed. I will leverage these components to the extent possible for my dissertation:

VNET [2]: VNET is a simple data link layer virtual network tool. Using VNET, virtual machines have no network presence at all on a remote site. Instead, VNET provides a mechanism to project their virtual network cards onto another network, which also moves the network management problem from one network to another. For example, all of a user’s virtual machines can be made to appear to be connected to the user’s own network, where the user can use his existing mechanisms to assure that they have appropriate network presence. Because the virtual network is at the data link layer, a machine can be migrated from site to site without changing its presence— it always keeps the same IP address, routes, etc. Vnet supports arbitrary network topology exactly. This can assist in adapting distributed/parallel applications if we can infer their communication topology. We discuss more about this in a later section (Section II.c.)

WREN (developed by Zangrilli et al [56]): Watching Resources from the Edge of the Network (Wren) is designed to passively monitor applications network traffic and use those observations to determine the available bandwidth along the network paths used by the application. The key observation behind Wren is that even when the application is not saturating the network it is sending bursts of traffic that can be used to measure the available bandwidth of the network

VADAPT [6]: The adaptation control algorithms are implemented in the VADAPT component of Virtuoso. For a formalization of the adaptation control problem, please see the dissertation of my colleague Ananth Sundararaj [55]. The full control problem, informally stated in English, is “Given the network traffic load matrix of the application and its computational intensity in each VM, the topology of the network and the load on its links, routers, and hosts, what is the mapping of VMs to hosts, the overlay topology connecting the hosts, and the forwarding rules on that topology that maximizes the application throughput?” This component greatly overlaps with my thesis and dissertation and forms an important part of it.

VTTIF [4]: The Virtual Topology and Traffic Inference Framework integrates with VNET to automatically infer the dynamic topology and traffic load of applications running inside the VMs in the Virtuoso system. In our earlier work [14], we demonstrated that it is possible to successfully infer the behavior of a BSP application by observing the low level traffic sent and received by each VM in which it is running. Further in [6] we showed how to smooth VTTIF’s reactions so that adaptation decisions made on its output cannot lead to oscillation. This component is an essential and initial part of my dissertation’s theme and problem statement.

VRESERVE [57]: VRESERVE automatically and dynamically creates network reservation requests based on the inferred network demands of running distributed and/or parallel applications with no modification to the application or operating system, and no input from the user or developer.

VSCHED [58]: Virtuoso must be able to mix batch and interactive VMs on the same physical hardware, while satisfying constraints on responsiveness and compute rates for each workload. VSched is the component of Virtuoso that provides this capability. VSched is an entirely user-level tool that interacts with the stock Linux kernel running below any type-II virtual machine monitor to schedule all VMs (indeed, any process) using a periodic real-time scheduling model. This abstraction allows compute rate and responsiveness constraints to be straightforwardly described using a period and a slice within the period, and it allows for fast and simple admission control.

User feedback based adaptation [59]: The optimization problems associated with adaptive and autonomic computing systems are often difficult to pose well and solve efficiently. A key challenge is that for many applications, particularly interactive applications, the user or developer is unlikely or unable to provide either the objective function f, or constraints. It is a key problem encountered broadly in adaptive and autonomic computing.

This part uses Virtuoso context to explore two core ideas. In human-driven specification, it explores how to use direct human input from users to pose specific optimization problems, namely to determine the objective function f and expose hidden constraints. Once there is a well-specified problem, there is a need to search for a solution in a very large solution space. In human –driven search, it explore how to use direct human input to guide the search for a good solution, a valid configuration x that optimizes f (x).

II Thesis and Problem Introduction

A major hurdle for distributed applications is locating, reserving/scheduling and dynamically adapting to the appropriate communication and computational resources so as to meet the applications’ demands, limited by cost constraints. Resources can be heterogeneous over a wide area and if shared, their availability is also highly dynamic. Thus, proper automatic placement and scheduling of application’s computation and communication satisfying performance and cost constraints, is an important challenge. If distributed computing is to become popular over shared resources spread over the wide area, these difficult tasks must not be an operation which the user himself has to deal with. At the same time, performance provided by Virtuoso must be decent, so that users are motivated to use the wide area resources for their applications. Their goals are all geared towards making distributed computing an autonomic experience for the end users. To achieve this, there must be a understanding of what the distributed application wants, in order to adapt it and improve its performance.

My thesis is that it is feasible to infer the demands and behavior of an application running inside a collection of VMs to a significant degree using a black box model. To evaluate this thesis, I will enumerate and define the various demands and types of behavior that can be inferred, and also design, implement and evaluate ideas and approaches towards inferring these. I will also give some evidence of how automatic black box and even gray-box inference can assist in adapting the application and its resource usage resulting in improved performance.

If I am successful, I will demonstrate that it is possible to create middleware, techniques and algorithms that automatically understand an application’s needs and bottlenecks without any external input from the user or application. To a limited degree I will give evidence and describe how we can automatically meet these demands by employing various mechanisms provided by a Virtuoso-like infrastructure, such as VM migration, modifications to the VNET overlay topology and forwarding rules, and use of resource reservation mechanisms in the underlying network.

My work has the following threads:

1. Application Inference

Here the objective is to understand the various demands of the application like computational load, communication behavior, application topology (e.g. in BSP-style parallel applications), and synchronization behavior. One of our main ambitions for performance adaptation in Virtuoso is that it should be fully automated i.e. without any intervention from the user or the developer. This can be achieved if Virtuoso can automatically infer these requirements. The fundamental research question is whether and to what extent we can infer the application’s demands and the environment’s resources using only these passive observations. Our initial work suggests that such inference is feasible [4,5,6].

For performance adaptation, we also need to do system inference i.e. infer the configuration and availability of the underlying physical resources that include computational and network resources. I have also worked with my colleague Ananth Sundararaj on this aspect.

2. Benefit for autonomic adaptation from inference

An interesting challenge in adaptation control algorithms will be dynamic adaptation. Adaptation only begins with the initial placement of the application in Virtuoso. With time, the application’s demands may change and the resource availability is also dynamic. Therefore, it is also important to support dynamic adaptation of application to prevent and performance degradation and boost it when possible. This involves dynamic inference and adaptation i.e. keeping an updated view of the application and underlying resources and adapting it midway if the performance requirements specified by the user are threatened in the existing scenario. We have shown some initial examples of this dynamic inference and some interesting challenges that come up, like oscillations [3,6]. To a limited degree, I will demonstrate dynamic adaptation based on inference, which can boost on-the-fly performance of these distributed applications.

However it is important to note that the adaptation being an endless subject, the main goal of my thesis is application inference, with adaptation as a user to give an idea of how such inference can be used to benefit the application in a dynamic fashion without any knowledge of application itself. Apart from adaptation, other forms of management and problem detection can also benefit from inference.

Difference between Back Box and Gray Box techniques

To clarify here I discuss the working definitions of black box vs grey box techniques for this proposal and dissertation. Black box techniques do not assume any inside knowledge of the system or the object they attempt to understand. Gray box techniques can use information internal to the system. For example, in a multi-tier web application, using the application logs or request information available inside the VM would qualify as gray box techniques. A further subtle distinction is that even if inside signals are not used, but knowledge of how the system or the object functions is used to assist inference, this also qualifies as a gray box system. This is well elaborated in the work by Arpaci-Dusseau et al [48]. For example the TCP congestion control algorithm uses timeouts to infer network congestion – this assumes this relationship of congestion to timeouts, which may not be true in other domains such as wireless networks, where other causes may contribute to timeouts. Therefore, the TCP congestion control mechanisms are more aptly gray box than black box.

II.a. Formalization

The following formalization is for the Virtuoso Adaptation problem and has been defined by my colleague Ananth Sundararaj. My work will impact the inference part of the problem.

[image: image1.png]Problem 1 (Generic Adaptation Problem In Virtual Execution Environments (GAPVEE))

INPUT:

Adirected graph G = (H,E)

A function bw : £ R
Afunction lat: £ R

A function compute : # - R
Afunction size - H R

Asset, VM = (vimy, vy ...vm,), n € N
A Tanction vin_gompute - VM = T
A function vim_size : VM = R

A function vm_time : VM R

'A function migrate - (VA H, H) R
A function nw_reserve : £ — {0, 1}

A function cpureserve : H — {0, 1}
A'set of ordered d-tuples A { (siydl, birk) | 5ndi € VM, by € R,
A ser o ordered 3-uples O = { (Vi i, 3;) [vin € VNG T €

The above problem statement specifies many input requirements. For a complete definition of the terminology, I refer the reader to the problem formulation in Chapter 4 of Ananth Sundararaj’s dissertation [55].

The main categories are resource availability, VM/application demands and user-imposed constraints like VM to host mapping etc. Some of the inference aspects in this problem statement are highlighted in rectangles as shown above. These correspond to the compute demands, the size of VMs, time of execution remaining and the bandwidth/latency demands for all communicating VMs. The user or the application developer does not know these input values in advance. They can depend on the particular execution environment, resource availability, input data etc. Therefore these must be inferred dynamically at runtime to serve as input to the adaptation problem

The goal of the adaptation problem is to output the following:

[image: image2.png]OUTPUT: vmap: VM — H and R: A — P such that

© Sumap(sn)= (Ym-compute(vm)) < compute(h), ¥ € H Make sure computation needed is less than
available

[image: image3.png]. 2\”_‘1(\“) (vmosize(vm)) < size(k), ¥ h € H Make sure the VMs fit space-wise
o Iy =vmap(vm) VM, = (vm,h) € M ify, =1 This VM to host mapping is allowed
et >0Vee £ There is bw capacity remaining on all edges
o (Seerqaylat) <l Vec E The latency demands are met

« For some functions f,g, i, k and / the function

f(g(migrate), h{lat), k(rc.)), /(vm _time_after) is optimized Stuff which we need to optimize

The output is annotated to give an idea of what requirement or goal is being met with each line of the output statement. It contains inference relevant objectives like: VM must fit space-wise on each physical host. There must be bandwidth capacity remaining on each edge, after the application’s demands are met. Moreover there is an unspecified objective function whose goal is to maximize certain parameters like residual capacity remaining, application execution time etc. However to reach this objective one must first know the details about the VMs and the application running inside it, apart from resource availability themselves. My goal is to recover as much information as possible from the VMs and the application using black box techniques.

II.b. More application properties/demands that can be inferred

The above formalization is specific to the problem statement described in Ananth Sundararaj’s dissertation. However the inference aspect can go beyond the above input and the adaptation problem itself. Inference can benefit other applications like resource management, problem detection and intrusion detection. My work will investigate the following inference aspects also:

A list of demands and behaviors which could be inferred (some optional)

Application Behavior

i) Traffic topology for BSP-style distributed applications – work done in my initial VTTIF paper

ii) Dynamic CPU, network, disk and memory behavior and demands across all VMs.

iii) Compute/communication ratios

iv) Synchronization behavior and whether a particular VM is blocked. Ultimately we would like to generate a graph of which VM is blocked on what and if possible, why?

v) Its user interactivity level if any - OPTIONAL

vi) Power requirements of the application - OPTIONAL

vii) Reliability needs of the application - OPTIONAL

For further details please refer to section V (methodology) which lists and further elaborates on inference and possible approaches.

II.c. Tie in with previous Virtuoso components:

VNET [2]: Since VNET monitors all inter-VM communication; it’s the ideal place for network related black box monitoring. For example the VTTIF project developed by me is implemented within VNET to monitor all packets and deduce the application topology.

WREN (developed by Zangrilli et al [56): By combining information from WREN about resource availability with the inferred application demands, we can complete the puzzle about the right fit of the application to the available resources, dynamically.

VADAPT [6]: As shown above, inference of application properties and demands is integral part of the adaptation problem. Without knowing what the application needs, adaptation does not make sense. All of my work will generally be useful to make wiser adaptation decisions.

VTTIF [4]: VTTIF already infers the communication topology of a distributed application. Further progress on inference will extend this for more powerful capabilities.

VRESERVE [57]: VRESERVE automatically and dynamically creates network reservation requests based on the inferred network demands of running distributed and/or parallel applications with no modification to the application or operating system, and no input from the user or developer.

VSCHED [58]: By inferring CPU demands of an application, Vsched can decide the right slice and period for CPU scheduling.

III Impact

Automated understanding of a distributed application’s behavior, properties and demands can further the goal of autonomic computing extensively. If we can figure out the needs without modifying the application or operating system, then a huge set of applications can be transferred to the autonomic framework of Virtuoso and thus adaptation methods can be leveraged to boost performance or adapt to resources. Overall, this work can help in drastically lowering the entry costs for distributed and parallel computing. It will allow those who are not willing or able to pay the price to write distributed applications in new shared resource or dynamic environments to deploy these applications with confidence and convenience.

Impact outside Virtuoso

Most of our techniques will not be tied to a particular implementation of a virtual machine, applications or operating systems. Hence this work can be used in any other virtual environment (e.g. softUDC [63] and XenoServer [64]) towards the goal of learning more about the distributed application, and adapting the application to the resources or vice versa. These techniques and the need for them is not just applicable to Virtuoso. It’s equally applicable to other adaptive/autonomic systems that strive to adapt applications automatically. For example, the SODA [11] and the VIOLIN system [12], developed at Purdue University create virtual environments for creating and executing on demand applications. They allow custom configuration and adaptation of applications and resources. An understanding of the application’s resource requirements can aid in this process and also help in resource mapping and allocation for future instances of the same application. Similarly in the context of Grid Computing, the In-VIGO [37] system, developed at University of Florida provides a distributed environment where multiple application instances can coexist in virtual or physical resources, such that clients are unaware of the complexities inherent to grid computing. The resource management functionality in In-VIGO [37] is responsible for creating/reserving resources to run the job based on current available resources. For this it needs to determine the resource specification for the job(s). Application inference can automate this process instead of relying on intimate knowledge of the application or input from the user. Moreover, this process is dynamic, i.e. the resource requirements will be updated as the application demands change, which is more flexible than taking up static requirements upfront.
The VioCluster [51] project at Purdue University creates a computational resource sharing platform based on borrowing and lending policies amongst different physical domains. These policies are greatly affected by the nature of the application itself. A tightly coupled application may not be worthwhile to be spread across multiple physical domains. Thus application inference forms an integral part of making any decision towards creating autonomic resource sharing platforms.

Apart from autonomic adaptation motivated above, black box inference techniques can also be used for application and resource management, dynamic problem detection at runtime and intrusion detection.

For example, detecting blocked states of some processes in a distributed application can lead to discovery of some serious problems in the infrastructure or the application itself, that can aid in debugging. Unusual network activity or demands could be tied to intrusion detection if they deviate from the expectations from the particular distributed application.

IV Current Progress

Over the 2-3 years or so, I have made progress on some of the ideas described above and published techniques and results that demonstrate the impact of automated inference and adaptation for autonomic distributed computing. Specifically I have:

1. Developed VTTIF [4] (Virtual Topology and Traffic Inference Framework). I have shown that it is possible to completely recover the application topology of BSP-style applications running inside VMs, just by monitoring the Layer-2 traffic being emitted by the VM virtual adapters in an online fashion. I used synthetic and application benchmarks like the popular NAS benchmarks [52,53] to evaluate my algorithms and could completely recover application topology information without any knowledge of the application, operating system or its presence/execution on the network. (VTTIF Paper)

2. Worked on dynamic inference mechanisms and the benefits of adaptation mechanisms with web transactional benchmarks like TPC-W [3,6]. I demonstrated interesting issues like oscillation with applications that have changing behavior and how to overcome that. We then demonstrated the benefits we can obtain using VNET overlay adaptation and VM migration for BSP-style applications and non-parallel services like multi-tier websites. (HPDC and LCR papers)

3. Worked on utilizing both application and system’s inferred properties like bandwidth and latency requirements along with available bandwidth in the network (part of the WREN framework developed by me colleague Marcia at Williams and Mary College) to adapt the distributed application using simulated annealing algorithms and other heuristics [36]. (Wren paper). This work solves a relatively complex and NP-hard problem of adapting the VMs running the distributed application according to its demands and resource availability to demonstrate improved application performance. The heuristics used were shown to be quite effective in adapting a distributed application.

V Methodology (plan of action)

In this section I will describe the various components and milestones to be achieved towards fulfilling this thesis. This includes an enumeration of interesting application demands, properties and behavior. I will then outline the approaches that need to be taken to achieve these.

a. Application Properties and demands

We look at the problem of inference via an application class/property matrix. For different application classes, inference techniques can be different. Therefore the matrix acts as a checklist of milestones to be achieved. We will then further elaborate on the milestones, discussing the problem, methodology, validation

Inference Matrix

	Scientific distributed/parallel applications

	CPU behavior and demands

	Disk behavior and demands

	Memory behavior and demands

	Network behavior and demands at the host

	CPU/Communication ratio

	Collective network behavior and demands (the network)

	Collective blocking behavior and blocking graph

	Power demands inference – Optional

	Reliability needs inference - Optional

	User interactivity levels - Optional

The above matrix states classes of applications on the top row and various useful properties, behaviors and demands that we intend to infer using black box or sometimes even gray-box techniques. For my thesis I will be focusing in scientific distributed/parallel applications. Apart from inferring these, I will also provide arguments and possible evidence to show the benefit they can provide in making decisions for application adaptation over heterogeneous resource types and availability, problem detection and other applications. Since no application or OS modification is suggested, this type of inference is particularly powerful as it is easily applicable to all application/OS combinations falling under the particular class.

b. Inferring true application demands or the success metric for black box inference

An important issue in black box inference is evaluating the accuracy of inference. Questions that arise are: How do we characterize the accuracy of black box inference? What is the success metric?

To evaluate black box inference, we need to have an idea about the true demands or the ground truth of a distributed application. My goal in black box inference is to come as close as possible to the true demands. But how do we know the ground truth? Is there a way to know exactly what the application wants?

Manufacturing ground truth: Understanding ground truth by inference alone is begging the question itself. Our goal is to develop accurate inference methods but these cannot be relied upon to give us the ground truth for comparison themselves. However there is another method: Instead of trying to figure out the true demands of an arbitrary distributed application instance, we can create our own reality and then compare this reality with the inferred reality. For the scientific applications specified in the above matrix, we can actually construct and execute carefully parameterized applications whose demands are known in advance. For example, for scientific apps, we have benchmarks (both custom developed and standard benchmarks) that can be carefully tuned to place known demands on various resources.

Patterns

I have developed a custom benchmark called Patterns which is a synthetic workload generator built on PVM (Parallel Virtual Machine) [54]. It can execute many different kinds of topologies common in BSP parallel programs.

Patterns does message exchanges according to a topology provided at the command line. Patterns emulates a BSP program with alternating dummy compute phases and communication phases according to the chosen topology. It can take the following arguments to fine tune its resource usage:

 – pattern: The particular topology to be used for communication.

 – numprocs: The number of processors to use. The processors are determined by a

 special hostfile.

 – messagesize: The size of the message to exchange.

 – numiters: The number of compute and communicate phases

 – flopsperelement: The number of multiply-add steps

 – readsperelement: The number of main memory reads

 – writesperelement: The number of main memory writes

Patterns generates a deadlock free and efficient communication schedule at startup time for the given topology and number of processors to be used. The following topologies are supported:

 – n-dimensional mesh, neighbor communication pattern

 – n-dimensional torus, neighbor communication pattern

 – n-dimensional hypercube, neighbor communication pattern

 – Binary reduction tree

 – All-to-all communication

NAS benchmarks

The NAS Parallel Benchmarks (NPB) [52,53] are a small set of programs designed to help evaluate the performance of parallel supercomputers. The benchmarks, which are derived from computational fluid dynamics (CFD) applications, consist of five kernels and three pseudo-applications. These will be used to generate realistic parallel application workloads and create a custom ground truth.
c. Steps and Approaches to inferring the properties mentioned

This section explains some possible approaches to infer the above properties and behaviors.

1. What can we learn by observing the communication traffic of the VMs for a BSP –style application? An initial goal is to output the communication topology used by such an application. We will also look at the performance overhead of such a inference system. We will also investigate if such information can be used dynamically to better adapt a VM-based distributed application according to its demands and thus improve its performance.

This part has been already done [4].

2. Computational demands and Compute/Communication ratio: Extend VTTIF to include dynamic inference mechanisms for application communication and inference of computational demands of the application. Another important metric to infer for BSP-style applications is the computational/communication ratio, which can be vital for scheduling these applications.

We can monitor the CPU usage of the VMs at each host and output a CPU demand map. With the communication knowledge at each host, we can also compute the Compute/Communication ratio, which can assist us in understanding whether the distributed application is communication or compute intensive.

3. Disk Usage: Can we infer the disk usage patterns of the distributed application? Its bandwidth usage? Are heavy disk usage patterns different from disk swapping due to low memory? Can we infer the disk space requirements of the application?

4. Memory Usage: Black box inference for memory demands can be a challenge. How much can we infer about the memory usage of applications running inside a VM? Can we prevent disk swapping before it occurs? Further, can we infer memory access related properties as enumerated in disk usage above, like the memory space used/demanded, memory bandwidth, memory access patterns etc.

5. Learning from process correlation: In a distributed application, especially a parallel application, the behavior, function and resource requirements of many VMS are similar or co-related in some way temporally. An interesting question I will investigate is that can we infer this correlation and then leverage this to infer resource requirements for certain processes which may be running on a saturated host or blocked due to some reason? Correlation can be both temporal and spatial. Spatial correlation indicates that two different VMs exhibit the same behavior over time. It may be possible to partition a VM set into subsets where VMs within each subset are spatially correlated. This can help minimize monitoring overhead or construct richer information from sparse data. What else can we leverage these two types of correlation for?

6. Blocking behavior: In distributed applications, blocking of VMs is common behavior and it can adversely affect performance. Common blocking reasons could be blocking on another VM, network congestion, etc. This part of my work will investigate how much we can infer about block states, whether we can output a graph of the distributed application showing blocked status and dependencies of all the processes. This graph can directly help optimization of the application and removal of a possible root cause to speedup the entire application.

Some possible techniques for recognizing blocks are a. using ptrace b. using getrusage c. looking at the sharing of underlying resource usage and recognizing any bottlenecks (e.g. 100% processor usage may indicate CPU-intensive VM)

7. Inferring power requirements: A very intriguing and increasingly important issue in distributed applications especially those running in one or adjacent clusters, is of their power consumption. This is important because of the important of balancing power requirements across a set of physical hosts to balance heat distribution. It could also result in more effective use of power.

The correlation between variable resource needs and power consumption is already established [60]. Can we exploit this correlation information with the resource inference mentioned above to also infer the power requirements of a distributed application?

Input:

i) Correlation between the resource consumption and power consumption for various hosts

ii) Application to host mapping

iii) If available, physical proximity or co-ordinates of hosts.

Output:

i) Power consumption of the distributed application

ii) Power distribution amongst the hosts

Another question that I will investigate: How will the power consumption of an application change if processes are migrated or reconfigured amongst the physical hosts in a specific way? This can help us understand the tradeoff between performance and power consumption. Sometimes it may be preferable to trade less performance for lower power consumption and distribution for power and heating related reasons.

8. Reliability Inference: An upcoming and interesting problem faced for massively parallel applications running on a multiple node cluster is that of its reliability needs. For a system consisting of many independent parts, e.g. a thousand-node cluster, the mean time between failures can be very low. Moreover, this reliability can even depend on the power usage of the hardware. I will investigate whether it is possible to infer the reliability needs of a distributed application and recommend any necessary action?

This issue is still very new and needs a more precise study to understand the real issues and answers sought. I will investigate more in this direction to come up with a satisfactory problem statement and its resolution.

9. User interactivity: Can we say anything about the interactive nature of an application just by observing it from outside? We would like to know the degree to which the user is using an application in an interactive fashion? Examples include distributed games and remote shell access. Interactive applications often have different resource requirements, especially in regard to latency. This knowledge can help better adapt and serve the applications’ and users’ needs.

One strategy I will investigate is studying the burstiness/intermittence of network packets being sent to the VM and if it can be correlated to generic user interactivity behavior. Is there a way to model interactivity via network or resource behavior alone?

10. Additional VMM assistance: Optionally I will look into whether we can greatly enhance black box inference if we can get some extra information from the VMM beyond what we can get currently. What is the ideal data that we can get to infer useful properties about the application, while still remaining application and/or OS agnostic?

11. Evidence of Adaptation: I will dedicate a part of my dissertation to showing some evidence of how automated inference of distributed applications can be leveraged to boost their performance using VM adaptation techniques. How can be combine information inferred from the application and the underlying infrastructure to benefit the application itself?

I have already dedicated significant effort to this part and have shown significant evidence for adaptation for a particular level of inference. See [3,6, 36].

12. Useful statistical processing and inference: Apart from the raw metrics themselves, they can be analyzed in detail to glean very useful properties about the application. Compute/Communication ratio is a simple example used to make effective adaptation decisions. Apart from that some other important properties are:

1. Peak/mean ratio of the load

2. Load autocorrelation

3. Correlation amongst different processes if a parallel application can be leveraged to identify different classes of processes.

Using statistical correlations, I will also try to answer an interesting question: Can we distinguish and separate different distributed applications running together in a shared environment by monitoring correlations amongst different processes?

13. Some more optional ideas for Collective Inference:

Here I list some more optional and interesting ideas that lie in the domain of collective inference.

i) Can we control the application/processes in simple ways as part of inference to assist the application ?

ii) Inter-application inference and assistance – Ensuring conflict free communication for multiple parallel applications -
Can we sync applications so that there is no overlapping communication ?

iii) Temporal Topology Inference: If the combined topology is very complex and may pose difficulty in reservation in optical networks, can we break it up into multiple simpler topologies, based on temporal differences? For example a more complex topology may actually be composed of two simpler topologies alternating after one another in succession.

iv) Black box inference suffers from a reactive approach instead of pro-active. Can we predict application behavior by matching its behavior to past behavior stored in a central repository? We can build a database of behaviors that tries to match applications based on a variety of attributes and then if a match is confirmed, it can attempt to predict future behavior based on current.

v) Inferring the communication schedule of an application, not just the topology.

d. Black box and gray box techniques

Primarily my dissertation will be focused on Black box inference. Black box inference has its advantages that make it highly portable and usable across a wide variety of applications and OS environments. Gray box requires some manual intervention inside the VM to record extra information from the application or the OS. This can be sometimes very application specific, and thus make it less widely applicable. And after some point it may become a case of diminishing returns over the benefits of black box inference.

In my dissertation, I will discuss wherever possible, if and by what degree can gray box inference help. However I may not investigate gray box approaches comprehensively in my work, due to issues mentioned above.

VI Timeline

	Steps
	Time required

	Collective Inference – Dynamic Inference of Topology in Parallel and Distributed Applications

	4.5 months

	Demonstration of Adaptation Benefits – Using VM migration and Overlay network adaptation to boost performance based on Topology inference and Compute/communication ratio

	4 months

	Demonstration of Adaptation Benefits – Heuristics for Adaptation based on Available bandwidth/latency information + Topology information. Simulated Annealing and other heuristic techniques for adaptation.

Preliminary Generic Problem Formulation

	5 months

	Proposal Presentation/preparation

	1.5 months - March 2007

	Non-collective aspects – individual VM inference aspects

CPU

Network

Disk

Memory

User interactivity inference

	2 months – May 2007

	Collective Aspects –

Exploiting correlation amongst processes to enhance inference

Blocking graph of the VMs

Exploiting Correlation

	2-3 months – July/August 2007

	Statistical Aspects of inference

	1 month – September 2007

	Complete integration and Evaluation with VNET/VTTIF

	1 month - October 2007

	Dissertation Writing (also being done in parallel with above)

	2 months - December 2007

* Italics indicates steps completed

* If time permits, the optional milestones mentioned previously may also be undertaken.

VII Dissertation Outline

In this section I give a brief preliminary outline for my dissertation. This may change to some extent depending on results.

Executive Summary

Chapter 1 – Background, Problem Statement and Applications

Chapter 2 – Black box inference for Virtual Machines – Non-collective Aspects

Chapter 3 – Collective Inference Aspects – Inferring Application Topology for Parallel/Distributed Applications in Dynamic environments

Chapter 4 – Adaptation Using Topology Inference – Overlay network adaptation and VM migration

Chapter 5 – Adaptation leveraging network bandwidth/latency information and topology/CPU inference – Problem Formulation and Heuristics

Chapter 6 – Collective Inference Aspects – Blocking Graph of a Parallel Application

Chapter 7 - Collective Inference Aspects – Leveraging the power of VM correlation for parallel applications

Chapter 8 – An outline of inference techniques covered.

Appendix – User Comfort Studies and its application to user based adaptation for performance/cost tradeoffs

VIII Conclusion

The goal of Virtuoso project is to develop techniques for an effective Virtual Machine-based autonomic distributed computing framework, which users can use with the ease of using a local cluster in their own LAN, without worrying about the networking, scheduling and performance aspects of it. Virtualization removes many operational hurdles, which users face today. In this context, automated inference and performance adaptation for such applications is important for it to be an attractive target for users deploying their distributed applications in shared/wide area resources. My thesis will focus on how to achieve automated inference of various demands and behaviors of applications. This will form the major part of the work. It will also show and point to evidence of how this can be gainfully utilized to adapt the distributed application to improve its performance. In the end we will have middleware, techniques and algorithms that automatically understand an application’s needs and bottlenecks without any external input from the user or application.

IX Related Work

Virtual Distributed Computing: The Stanford Collective is seeking to create a compute utility in which “virtual appliances” (VMs with task-specialized operating systems and applications that are intended to be easy to maintain) can be run in a trusted environment [7, 8]. They also support the creation of “virtual appliance networks” (VANs), which tie a group of virtual appliances to an Ethernet VLAN. Our work is similar in that we also, in effect, tie a group of VMs together in an overlay network that behaves, from the VM perspective, as a LAN. At this level, we differ in the nature of the applications we seek to support (parallel and distributed scientific applications) and the nature of the environments we target. At a higher level, our proposed work differs significantly in that we will use the virtual network as the central player for measurement and adaptation for high performance computing, which is entirely new. The Xenoserver Project [9, 10] has somewhat similar goals to Virtuoso, but they are not focused on networking and require that OS kernels be ported to their system. Purdue’s SODA project aims to build a service-on-demand grid infrastructure based on virtual server technology [11] and virtual networking [12]. Similar to VANs in the Collective, the SODA virtual network, VIOLIN, allows for the dynamic setup of an arbitrary private layer 2 and layer 3 virtual network among virtual servers. Again, the key contrast is that we are proposing to use the virtual network as the central player for measurement and adaptation to support scientific applications. The Internet Suspend/Resume project at Intel and CMU is developing a system in which a user’s personal VM can migrate to his current location [13]. They have developed fast VM migration approaches based on distributed file systems [14]. The Stanford Collective has also developed very effective techniques for fast VM migration [15] using the same motivation, personal VMs. Although we are exploring our own approach to VM migration based on a versioning file system [16], it is important to point out that there is considerable evidence from multiple groups that suggests that a fundamental primitive we assume, fast VM migration (2.5-30 seconds for a 4 GB Windows XP VM in the case of Internet Suspend/Resume), is possible.
Adaptation:

Adaptation in distributed systems has a long history. The most influential work has been on load balancing of parallel applications [17, 18, 19] and load sharing in real-time [20, 21, 22] and non-realtime systems [23, 24, 25, 26]. The mechanism of control in these systems is either function and process migration [27, 28, 29], which is lighter-weight although considerably more complex than VM migration, or application-specific mechanisms such as redistributing parallel arrays. For media applications in mobile computing, modulating quality has been a basic approach both commercially and in the research environment [30]. There have been efforts to factor adaptation methods and policy out of applications and into distributed object frameworks [31]. Overlay networks, as described above, are also adaptive entities.

Inference Aspects:

Inference related Research in the past has focused on different reasons to learn about the application or the operating system. Primary reasons have been

i) to learn the properties of an operating system or its processes and to even control its behavior [48,42]

ii) to classify applications in different resource demand based categories [49]

iii) to dynamically adapt applications according to changing workload and application behavior [50,40]

iv) for future static configuration of applications after one-time inference of applications [47,46]

v) Inference for distributed systems [61,62]

However not all work has focused on black box inference. In fact the only work we are aware of currently is by Wood et al. [50]. In this work, they focus on how black box and gray box strategies can be used to improve performance of a set of standalone applications running inside Xen VMs my dynamically migrating the VMs. In black-box monitoring, no knowledge of OS or application is assumed and only externally visible parameters like CPU load, disk swapping activity and network usage are used.

This work does very elementary black box inference for stand alone applications. In the area of standalone applications, I will attempt to push the limits and extract more varied and detailed information about disk activity, memory, CPU load patterns etc. Moreover, my main focus is on collective black monitoring where the goal is to infer a collective picture of the distributed application as a whole. VTTIF developed by me is an example of this. I may also focus on other goals like power and reliability related inference goals.

Category I - To learn the properties of an operating system or its processes and to even control its behavior:
The very influential work by Arpaci-Dusseau at al [48] shows how by leveraging some information about how the OS functions and then monitoring its various signals and correlating this information, one can learn a lot about OS behavior, for example file cache activity detector or a file layout detector. They further show that it’s even possible to control OS behavior by doing careful proxy activity on behalf of the application. For example by pre-fetching certain portions of the file based on past trends, one can reduce cache misses for an application.

They also give an enumeration of useful inference levers that can be used to extract information. Examples include knowledge of internal algorithms used by the OS or the module, monitoring its output and signals, inserting probes, using pre-generated micro benchmark information for the system and correlating it with probes to extract useful behavior information about the OS. They also show how its very useful to extract certain statistical properties like correlation, eliminating outliers etc. I will use this insight to provide meaningful statistical properties especially in the context of a distributed application and even show how this information may be used to make interesting inferences about the system. For example in a multi application scenario for BSP applications, it may be possible to segregate different applications solely on the base of their execution patterns and then correlating them.
The Geiger project by Jones et al [42] shows how a VMM (Xen in this case) can be modified to yield useful information about a guest operating system’s unified buffer cache and virtual memory system. They then leverage this capability to implement a novel working set size estimator, which allows the VMM to make more informed memory allocation decisions. They conclude that after adding such passive inference capabilities to VMMs, a whole new class VMM-level functionality can be enabled that is agnostic of the OS or the applications running inside.

Category II - to classify applications in different resource demand based categories:

The work by Zhang et al [49] shows how one can use dimensionality reduction and pattern recognition techniques over a certain chosen set of metrics to classify applications into broad categories like CPU, IO or Memory intensive. The main focus of the work is how to simplify decisions about application scheduling and costs when faced with a multitude of metrics to observe. They also demonstrate a application resource consumption composite, that can be used to derive the cost of executing the application. They do not focus on black box monitoring but use the Ganglia Grid monitoring framework to monitor certain readily available metrics like CPU load, network traffic etc across the distributed system and then aggregate it.

Category III - to dynamically adapt applications according to changing workload and application behavior:

The work discussed above [50] is an example of this. Work by Ranjan et al [40] does CPU load inference and uses it to adapt services by migrating them to appropriate servers. A particularly interesting point in this work is the impact of statistical parameters of the workload like peak/mean load ratio and auto-correlation of the load time series on the adaptive algorithm’s effectiveness. They show that higher peak/mean ratio applications can benefit more from their adaptive algorithm and that poor auto-correlation can make migration decisions harder. They also a useful categorization of autonomic utility computing work: “Each offers a notion of utility computing where resources can be acquired and released when/where they are needed. Such architectures can be classified as employing shared server utility or full server utility models. With the shared server utility model, many services share a server at the same time, whereas with the full server utility model, each server offers one service at a time.”
Their work only applies to full server utility model.

Category IV - for future static configuration of applications after one-time inference of applications:

The ECO project by Lowekamp at al [47] contains programs that analyze the network for a parallel application to understand their collective communication behavior and then establishing efficient communication patterns, which the work claims is more powerful than simply treating the network as collections of point-to-point connections.

Work by Dinda et al [46] is a study on network traffic patterns exhibited by compiler-parallelized applications and it shows that the traffic is significantly different from conventional media traffic. For example, unlike media traffic, there is no intrinsic periodicity due to a frame rate. Instead, application parameters and the network itself determine the periodicity.

Category V - distributed inference:

In the work done by Aguilera et al [61], the inference focus is on distributed systems with a black box approach. The goal is to assist in detecting the points/components that contribute to high latency amongst critical/frequent message paths. This can aid in debugging such distributed systems where its not obvious where the delay is coming from. Their focus is on offline analysis of message traces for asynchronous distributed systems. They present two approaches: a RPC nesting based approach and other is a correlation-based approach that is not dependent on the RPC protocol. Its not clear how these techniques will translate to parallel applications, especially since the communication is cyclic and there is no starting or ending point. However some of their ideas may be applicable or modifiable to present a latency profile of various nodes in the system. Another issue is that the delay per node may not be constant but may actually depend on the message size. foThis will make the auto-correlation approach a failure as no clear correlation may be found for a long duration trace. I will explore this area and investigate if and how the correlation approach can be modified to work on such scenarios for parallel applications.

This work also outlines a comprehensive evaluation methodology and metrics, which I think will also be useful in evaluating my own work in this particular area.

In a follow-up paper [62], some aspects for inference for wide area distributed systems are discussed. The focus again is to find the “delay” culprits or processing/communication hotspots by creating a message flow graph. Wide area introduces extra challenges not covered in their earlier paper [61], like significant network latency (almost ignored in their first paper), node unreliability, higher degree parallel programming (more overlapping cause-effect message relationships) etc. They currently do not provide any modeling for barriers etc, common mechanisms in parallel/scientific applications. Their work seems to be more geared towards DHT like distributed systems. Some of the challenges they deal are:

i) Path aggregation – how to group similar path instances into one path pattern even if the instances span different nodes because of load balancing or other reasons.

ii) Dealing with High parallelism – this blurs the causal relationships amongst incoming and outgoing messages at a node.

One of their primary contributions is a “Message Linking Algorithm” that attempts to create a parent-child tree to show the message flow, along with annotated delays. It deals with the above challenges and presents a probabilistic modeling of the application’s message flow.

They also develop a novel trace collection tool called LibSockCap that collects process-level messages, thus changing the granularity of both the src and dest nodes as well as the message semantics (packets vs a message). This is more useful and convenient in their message analysis.

For the purpose of delay analysis of a parallel application, some of their ideas can be applicable. Some challenges are how to deal with the cyclic nature of communications in a parallel app, dealing with synchronization mechanisms like barriers and locks, many to one causal relationships (their model only assumes one to one relationship amongst message receipt and generation) etc.

X List of expected contributions

i) An understanding of what properties/behaviors can we learn about the applications running inside VMs and VMs themselves by observing them from outside (Black box approach). I will also attempt to justify the importance of these metrics in relation to various applications like adaptation, power/reliability or application control.

ii) I will focus on a particular class of distributed applications: Scientific distributed/parallel applications. Some properties that I have currently identified to be useful and important to infer are:

Inference Matrix

	Scientific distributed/parallel applications

	CPU behavior and demands

	Disk behavior and demands

	Memory behavior and demands

	Network behavior and demands at the host

	CPU/Communication ratio

	Collective network behavior and demands (the network)

	Collective Blocking behavior and blocking graph

	Power demands inference – Optional

	Reliability needs inference - Optional

	User interactivity levels - Optional

More elaboration for each of these properties and demands is discussed in the milestones section.

ii) An investigation into approaches and techniques to infer these properties and behavior. I will analyze, design, implement and evaluate techniques for inferring these properties and demands. Apart from individual VM properties, I will especially focus on the “collective” aspect of inference, which looks at the distributed application as a whole instead of a single process or a VM. An example of this is the VTTIF work that infers the communication topology of a set of processes.

iii) Techniques to exploit this collectiveness and any correlation amongst different VMs to better infer the collective properties. For example in BSP applications, multiple processes may behave in a similar fashion. Exploiting this correlation can help us understand properties and demands of the application even with gaps in inference due to blockage etc and with lesser overhead.

It could also help us distinguish amongst multiple parallel applications without any previous knowledge.

iv) An understanding into the limitations of black box inference for various kinds of inference, especially the collective behaviors of a distributed application. Wherever possible, I will compare possible improvements using gray box approaches. This will give a map of properties/demands in this application domain that can be inferred using black box techniques and the degree to which this can be done.

v) Adaptation: An initial understanding, implementation, evaluation and demonstration of how can we leverage this information to improve the performance of the distributed application, without any user input or knowledge of the application itself. I have already worked significantly on this part where I show how leveraging communication related information about distributed applications helps in various ways to adapt the underlying resources and improve performance at runtime [4,6,36].

vi) The design, implementation and evaluation of software that achieves the above. This software will be application agnostic and will be mainly dependent on the VMs and not on the knowledge of whatss running inside them.

References (Underlined references have the candidate, Ashish Gupta as an author)

[1] FIGUEIREDO, R., DINDA, P. A., AND FORTES, J. A case for grid computing on virtual machines. In Proceedings of the 23rd IEEE Conference on Distributed Computing (ICDCS 2003 (May 2003),pp. 550–559.

[2] SUNDARARAJ, A., AND DINDA, P. Towards virtual networks for virtual machine grid computing. In Proceedings of the 3rd USENIX Virtual Machine Research And Technology Symposium (VM 2004)(May 2004).

[3] A. Sundararaj, A. Gupta, P. Dinda, Dynamic Topology Adaptation of Virtual Networks of Virtual Machines, Proceedings of the Seventh Workshop on Languages, Compilers and Run-time Support for Scalable Systems (LCR 2004)

[4] GUPTA, A., AND DINDA, P. A. Inferring the topology and traffic load of parallel programs running

in a virtual machine environment. In Proceedings of the 10th Workshop on Job Scheduling Strategies

for Parallel Processing (JSPPS 2004 (June 2004).
[5] GUPTA, A., LIN, B., AND DINDA, P. A. Measuring and understanding user comfort with resource borrowing. In Proceedings of the 13th IEEE International Symposium on High Performance Distributed Computing (HPDC 2004) (June 2004).

[6] A. Sundararaj, A. Gupta, P. Dinda, Increasing Distributed Application Performance in Virtual Environments through Run-time Inference and Adaptation, In Proceedings of the 14th IEEE International Symposium on High Performance Distributed Computing (HPDC 2005)

[7] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M., AND BONEH, D. Terra: A virtual machine-based platform for trusted computing. In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP 2003) (October 2003).

[8] SAPUNTZAKIS, C., BRUMLEY, D., CHANDRA, R., ZELDOVICH, N., CHOW, J., LAM, M. S., AND ROSENBLUM, M. Virtual appliances for deploying and maintaining software. In Proceedings of the 17th Large Installation Systems Administration Conference (LISA 2003) (October 2003).

[9] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and the art of virtualization. In ACM Symposium on Operating Systems Principles (SOSP) (2003), pp. 164–177.

[10] HAND, S., HARRIS, T., KOTSOVINOS, E., AND PRATT, I. Controlling the Xenoserver open platform. In Proceedings of the 6th IEEE Conference on Open Architectures and Network Programming (IEEE OPENARCH’03) (2002).

[11] JIANG, X., AND XU, D. Soda: A service-on-demand architecture for application service hosting plat-forms. In Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing (HPDC 2003) (June 2003), pp. 174–183.

[12] JIANG, X., AND XU, D. Violin: Virtual internetworking on overlay infrastructure. Tech. Rep. CSD TR 03-027, Department of Computer Sciences, Purdue University, July 2003.

[13] KOZUCH, M., AND SATYANARAYANAN, M. Internet suspend/resume. In Proceedings of the 4th Workshop on Mobile Computing Systems and Applications (June 2002).

[14] KOZUCH, M., SATYANARAYANAN, M., BRESSOUD, T., AND KE, Y. Efficient state transfer for internet suspend/resume. Tech. Rep. IRP-TR-02-03, Intel Research Laboratory at Pittsburgh, May 2002.

[15] SAPUNTZAKIS, C. P., CHANDRA, R., PFAFF, B., CHOW, J., LAM, M. S., AND ROSENBLUM:, M. Optimizing the migration of virtual computers. In Proceedings of the 5th Symposium on Operating Systems Design and Implementation (OSDI 2002) (December 2002).

[16] CORNELL, B., DINDA, P., AND BUSTAMANTE, F. Wayback: A user-level versioning file system for Linux. In Proceedings of USENIX 2004 (Freenix Track) (July 2004). To Appear.

[17] CYBENKO, G. Dynamic load balancing for distributed memory multiprocessors. Journal of Parallel and Distributed Computing 7 (1989), 279–301.

[18] SIEGELL, B., AND STEENKISTE, P. Automatic generation of parallel programs with dynamic load balancing. In Proceedings of the Third International Symposium on High-Performance Distributed Computing (August 1994), pp. 166–175.

[19] WILLEBEEK, M., AND REEVES, A. Strategies for dynamic load balancing on highly parallel computers. IEEE Transactions on Parallel and Distributed Systems 4, 9 (1993).

[20] BESTAVROS, A. Load profiling: A methodology for scheduling real-time tasks in a distributed system. In Proceedings of ICDCS ’97 (May 1997).

[21] HAILPERIN, M. Load Balancing using Time Series Analysis For Soft Real-Time Systems with Statistically Periodic Loads. PhD thesis, Stanford University, December 1993.

[22] KUROSE, J. F., AND CHIPALKATTI, R. Load sharing in soft real-time distributed computer systems. IEEE Transactions on Computers C-36, 8 (August 1987), 993–1000.

[23] EAGER, D. L., LAZOWSKA, E. D., AND ZAHORJAN, J. Adaptive load sharing in homogeneous distributed systems. IEEE Transactions on Software Engineering SE-12, 5 (May 1986), 662–675.

[24] EAGER, D. L., LAZOWSKA, E. D., AND ZAHORJAN, J. The limited performance benefits of migrating active processes for load sharing. In SIGMETRICS ’88 (May 1988), pp. 63–72.

[25] HARCHOL-BALTER, M., AND DOWNEY, A. B. Exploiting process lifetime distributions for dynamic load balancing. In Proceedings of ACM SIGMETRICS ’96 (May 1996), pp. 13–24.

[26] LELAND, W. E., AND OTT, T. J. Load-balancing heuristics and process behavior. In Proceedings of Performance and ACM SIGMETRICS (1986), vol. 14, pp. 54–69.

[27] BUSTAMANTE, F. E., EISENHAUER, G., WIDENER, P., AND PU, C. Active streams: An approach to adaptive distributed systems. In Proc. of 8th Workshop on Hot Topics in Operating Systems (May 2001).

[28] MILOJICIC, D., DOUGLIS, F., PAINDAVEINE, Y., WHEELER, R., AND ZHOU, S. Process migration. ACM Computing Surveys 32, 3 (September 2000), 241–299.

[29] STEENSGAARD, B., AND JUL, E. Object and native code process mobility among heterogeneous computers. In Proceedings of the 15th ACM Symposium on Operating Systems Principles (December 1995), ACM.

[30] NOBLE, B. D., SATYANARAYANAN, M., NARAYANAN, D., TILTON, J. E., FLINN, J., AND WALKER, K. R. Agile application-aware adaptation for mobility. In Proceedings of the 16th ACM Symposium on Operating Systems Principles (1997).

[31] ZINKY, J. A., BAKKEN, D. E., AND SCHANTZ, R. E. Architectural support for quality of service for CORBA objects. Theory and Practice of Object Systems 3, 1 (April 1997), 55–73

[32] A. Shoykhet, J. Lange, and P. Dinda, Virtuoso: A System For Virtual Machine Marketplaces, Technical Report NWU-CS-04-39, July, 2004

[33] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, Robert Morris, Resilient Overlay Networks, Proc. 18th ACM SOSP, Banff, Canada, October 2001

[34] Lili Qiu (Microsoft), Yang Richard Yang (Yale), Yin Zhang (AT&T), Scott Shenker (ICSI), On Selfish Routing in Internet-Like Environment , In Proceedings of ACM SIGCOMM 2003

[35] http://www.incogen.com

[36] Ashish Gupta, Ananth Sundararaj, Marcia Zangrilli, Peter Dinda, Bruce B. Lowekamp, Free Network Measurement For Adaptive Virtualized Distributed Computing, In Proceedings of 20th IEEE International Parallel & Distributed Processing Symposium, 2006.
[37] ADABALA, SUMALATHA , CHADHA, VINEET; CHAWLA, PUNEET; FIGUEIREDO, RENATO; FORTES, JOSE; KRSUL, IVAN; MATSUNAGA, ANDREA; TSUGAWA, MAURICIO; ZHANG, JIAN; ZHAO, MING; ZHU, LIPING; ZHU, XIAOMIN 'From Virtualized Resources to Virtual Computing Grids: The In-VIGO System'. In Future Generation Computer Systems (in press), 04/2004

[38] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic provisioning for multi-tier internet applications. In Proc. ICAC ’05, June 2005.

[39] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen. Autonomic Live Adaptation of Virtual Computational Environments in a Multi-Domain Infrastructure. In Proc. IEEE ICAC ’06.

[40] S. Ranjan, J. Rolia, H. Fu, and E. Knightly. QoS-driven server migration for internet data centers. In Proc. IWQoS 2002.

[41] D. Menasce and M. Bennani. Autonomic Virtualized Environments. In IEEE ICAS 06.

[42] S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. Geiger: Monitoring the buffer cache in a virtual machine environment. In Proc. ASPLOS’06, pages 13–23, October 2006.

[43] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase. Virtual Machine Hosting for Networked Clusters: Building the Foundations for Autonomic Orchestration. In Proc. VTDC ’06.

[44] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing energy and server resources in hosting centers. In Proc. SOSP ’01.

[45] K. Appleby, S. Fakhouri, L. Fong, M. Goldszmidt, S. Krishnakumar, D. Pazel, J. Pershing, and B. Rochwerger. Oceano – SLA based management of a computing utility. In Proc. IFIP/IEEE Symposium on Integrated Management, May 2001.

[46] DINDA, P. A., GARCIA, B., AND LEUNG, K. S. The measured network traffic of compiler parallelized programs. In Proceedings of the 30th International Conference on Parallel Processing (ICPP 2001) (September 2001), pp. 175–184.

[47] LOWEKAMP, B., AND BEGUELIN, A. ECO: Efficient collective operations for communication on heterogeneous networks. In Proceedings of the International Parallel Processing Symposium (IPPS 1996) (1996), pp. 399–405.

[48] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and control in gray-box systems. In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP ’01), pages 43–59, October 2001.

[49] J. Zhang and R. J. FIGUEIREDO, Application Classification through Monitoring and Learning of Resource Consumption Patterns, Proc. IEEE International Parallel & Distributed Processing Symposium (20th IPDPS'06), IEEE Computer Society, April 2006.

[50] TIMOTHY WOOD, PRASHANT SHENOY, ARUN VENKATARAMANI, AND MAZIN YOUSIF, Black-box and Gray-box Strategies for Virtual Machine Migration, In Proceedings of NSDI 2007

[51] P. RUTH, P. MCGACHEY, AND D. XU. VioCluster: Virtualization for Dynamic Computational Domains. In IEEE CLUSTER, 2005.

[52] WHITE, S., ALUND, A., AND SUNDERAM, V. S. Performance of the NAS parallel benchmarks on PVM-Based networks. Journal of Parallel and Distributed Computing 26, 1 (1995), 61–71.

[53] BAILEY, D. H., BARSZCZ, E., BARTON, J. T., BROWNING, D. S., CARTER, R. L., DAGUM, D., FATOOHI, R. A., FREDERICKSON, P. O., LASINSKI, T. A., SCHREIBER, R. S., SIMON, H. D., VENKATAKRISHNAN, V., AND WEERATUNGA, S. K. The NAS Parallel Benchmarks. The International Journal of Supercomputer Applications 5, 3 (Fall 1991), 63–73.

[54] GEIST, A., BEGUELIN, A., DONGARRA, J., WEICHENG, J., MANCHECK, R., AND SUNDERAM, V. PVM: Parallel Virtual Machine. MIT Press, Cambridge, Massachusetts, 1994.

[55] Ananth Sundaraj, Automatic, Run-time and Dynamic Adaptation of Distributed Applications Executing in Virtual Environments, PhD Dissertation, Northwestern University, Nov 2006

[56] ZANGRILLI, M., AND LOWEKAMP, B. Using passive traces of application traffic in a network monitoring system. In of the Thirteenth IEEE International Symposium on High Performance Distributed Computing (HPDC 13) (June 2004).

[57] LANGE, J. R., SUNDARARAJ, A. I., AND DINDA, P. A. Automatic dynamic run-time optical network reservations. In Proceedings of the 14th IEEE International Symposium on High-Performance Distributed Computing (HPDC) (July 2005). In this volume.

[58] B. Lin and P. A. Dinda. Vsched: Mixing batch and interactive virtual machines using periodic real-time scheduling. In Proceedings of ACM/IEEE SC 2005 (Supercomputing), 2005.

[59] Bin Lin and Peter A. Dinda, Towards Scheduling Virtual Machines Based On Direct User Input, Proceedings of the 1st International Workshop on Virtualization Technology in Distributed Computing (VTDC’06), in conjunction with Supercomputing’06, to appear.
[60] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat, and Ronald P. Doyle. Managing Energy and Server Resources in Hosting Centers. In Proceedings of the I8th ACM Symposium on Operating System Principles (SOSP), October 2001.

[61] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS, P., AND MUTHITACHAROEN, A. Performance Debugging for Distributed Systems of Black Boxes. In SOSP (2003).

[62] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and A. Vahdat. WAP5: Black-box performance debugging for wide-area systems. In WWW’06, May 2006.
[63] M. Kallahalla, M. Uysal, R. Swaminathan, D. Lowell, M. Wray, T. Christian, N. Edwards, C. Dalton, F. Gittler. SoftUDC: A Software based data center for utility computing. IEEE Computer, Special issue on Internet Data Centers, pp. 46-54, November, 2004.

[64] K. A. Fraser, S. M. Hand, T. L. Harris, I. M. Leslie, and I. A. Pratt. The Xenoserver computing infrastructure. Technical Report UCAM-CL-TR-552, University of Cambridge, Computer Laboratory, Jan. 2003.

Revised Timeline

Directions:

1. Focus more on collective

2. Assume whatever non-collective info you need.

3. Pick few and do it well

4. Focus on research more than on deployable implementations of everything

Things I will focus on in collective:

1. Deriving temporal and spatial correlation of parallel application

2. Leveraging it to learn more about these applications

3. Blocking diagram of a parallel application

I will need some non-collective data to make sense of collective inference.

Blocking Diagram approach

1. Question: Can we figure out if a machine is blocked/slowed down? And the reason behind it?

We also want to figure out the slowest part of the process set? The bottleneck process.

XenMon work (It is able to extract some vital information from XenTrace about the Guest machine’s CPU and IO behavior. It is included with Xen 3.0. Some of the metrics are it deduces from Xentrace are:

a. Processor time

b. Wait time (waiting on the runnable queue)

c. Blocked time (waiting for IO to happen)

d. Number of executions per second (shows number of context switches)

e. Number of page switches between dom0 and guests (indicates I/O operations being executed by guest OS)

By watching these metrics we can figure out different bottlenecks in different processes (If one machine spends more time on I/O, there might be some problem there.

I will watch these metrics, aggregate them centrally and deduce the correlation between these various metrics. If the process is still running and its blocking time % is high, we can deduce if it’s waiting for some IO. Or if the processor is saturated, the Wait time will be high. So these figures can help us deduce any possible blocking and causes.

Question: Can we distinguish between a running blocked process and a terminated process? Should this information be exported from the Guest OS to domain0 for the blocking inference to work?

One important question in Xen: The CPU allocated to domain0 determines the performance of the application. For high I/O application, more CPU to domain0 is more useful to a certain extent. There is a sweet spot for CPU allocation to domain0. The question is how much CPU needs to be allocated to dom0 depending on the parallel application characteristics? This depends on inference and adjusting the CPU to dom0 until we hit the sweet spot for maximum number of iterations per second.

Another idea: We can run some dummy computation benchmark on domain0 to compute time for a certain loop. Then we can deduce the CPU load based on its computation time later. (something like the user comfort client). This along with the Processor time for the guest machine can give us an idea about if the guest machine is CPU starved.

Similar for I/O.

We can also have b/w benchmarks amongst the inference deamons to see if the network is congested amongst particular machines and that’s the reason for blocking of the processes.

2. Correlation amongst processes? (Processes that are closely tied to each other belong to a strong dependency subset. Can we predict performance of other processes by watching just one process for a correlated set?

3. How do we figure out the dependencies amongst processes? (Schedule. Correlation amongst network messages. (assuming constant delay per process)

By trying to see the communication patterns and their correlation, I will attempt to derive the schedule of the processes.

What is the bottleneck?

Bottleneck for a single machine – Which I/O is the bottleneck?

Asymptotic analysis of queuing networks (Read about it. It’s a way of finding clear obvious bottlenecks.

Amdahl’s law analysis to figure out which resource can be improved for the greatest advantage to the process.

There is always a bottleneck !!! (We have to figure out what is the current bottleneck.

About figuring out the current blocking factor for a single machine
1. We want to know what’s affecting the current machine---the current health of a VM.

Is it blocking on send? That’s a question we want to answer !!

Blocking on send could be because of network congestion or because of poor receives on the other side.

But how do we know if the thing is really blocking? What is the threshold?

1. Can we detect if the IO is networking IO or disk IO for a program?

2. Can we detect waiting time and/or serving time for network as well as the disk ?

For this we need to trace the right events.

If the events do not exist, we need to insert them in the Xen source code.

This is mostly non-collective so

PAGE
1

