
i

Portable Touch Screen PC-Based Basketball
Scoreboard Synchronizer via Zigbee

By

Mervyn Siegfred R. Barroquillo
Edward John Simoun B. Binalla

Romnick C. Chua

A Design Report Submitted to the School of Electrical Engineering,
Electronics Engineering, and Computer Engineering in Partial

Fulfilment of the Requirements for the Degree

Bachelor of Science in Computer Engineering

Mapua Institute of Technology

April 2012

ii

iii

Acknowledgement

We are indeed grateful to the people who advised, gave comments, gave

assistance and encouraged us to make this design report possible.

A special thanks to our adviser, Engr. Michael Calizo Pacis, for his

continued enthusiasm and dedication that he showed to ensure the completion

of this paper. We thank him for the guidance and patience throughout the

course of this study and for giving us the opportunity to pursue such a rewarding

experience.

To Engr. Lilibeth Mendoza, for guiding and keeping us from straying away

from our goal, thank you.

We would also like to thank the panel members who agreed to examine

and certify our oral presentation and made this design report a success.

We would like to express our gratitude to our parents for generously

providing us moral and financial support; and to our friends who also supported

us on our endeavors as we finish this report.

For this achievement, we give back all the glory and praises to the

omnipotent Father Almighty for giving us strength, wisdom, patience, and

guidance in completing this design report. Again thank you.

iv

 Table of Contents

TITLE PAGE i

APPROVAL SHEET ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

ABSTRACT ix

Chapter 1: DESIGN BACKGROUND AND INFORMATION 1

 Background 1

 Statement of the Problem 3

 Objectives of the Design 4

 Impact of the Design 4

 Design Constraints 5

 Definition of Terms 6

Chapter 2: REVIEW OF RELATED LITERATURE AND STUDIES 9

 Introduction to ZigBee 9

 ZigBee Characteristics 10

 Introduction to Touchscreen 13

 Related Studies 14

v

Chapter 3: DESIGN PROCEDURES 23

 Initial Planning and Data Gathering 24

 Assembly of Hardware and Software 24

 Bill of Materials 26

 Hardware Development 27

Software Development 34

System Flowchart 35

Use Case Diagram 37

Activity Diagram 38

Interfacing the Device to PC 39

Prototype Development 42

Chapter 4: TESTING, PRESENTATION, AND INTERPRETATION OF DATA 46

 Data Precision Test 46

 Range Test with Respect to Time 50

 User Interface Program Execution Test 53

 Discussion of Results 58

Chapter 5: CONCLUSION AND RECOMMENDATION 59

 Conclusion 59

 Recommendation 61

vi

BIBLIOGRAPHY 62

APPENDIX 63

Operation Manual 64

Pictures of Prototype 66

Program Listing 69

Data Sheet 85

vii

List of Tables

Table 3.1: Bill of Materials 27

Table 4.1: Data Accuracy Test Trial 1 Results 48

Table 4.2: Data Accuracy Test Trial 2 Results 49

Table 4.3: ZigBee Range 4th Floor Test results 51

Table 4.4: ZigBee Range 3rd Floor Test results 52

Table 4.5a Game Options Event Screen Test Case 54

Table 4.5b PC Scoreboard Screen Test Case 57

viii

List of Figures

Figure 2.1: ZigBee Stack Block Diagram 11

Figure 3.1: Design Procedure Flow Chart 23

Figure 3.2: Conceptual Diagram 28

Figure 3.3: Block Diagram of Scoreboard Controller and Scoreboard 31

Figure 3.4: Touch Screen Circuit 32

Figure 3.5: Zigbee Shield Transmitter Circuit 33

Figure 3.6: Arduino Zigbee Shield Receiver Circuit 33

Figure 3.7: Arduino Mega 2560 Receiver Circuit 34

Figure 3.8: System Flowchart 37

Figure 3.9: Use-Case Diagram 38

Figure 3.10: Activity Diagram 39

Figure 3.11: Scoreboard Application Main Page 41

Figure 3.12: Scoreboard Application Options Page 42

Figure 3.13: Scoreboard Application Change Time Page 43

Figure 6.1: Full Prototype 66

Figure 6.2: Touchscreen Controller 67

Figure 6.3: Touchscreen Set 68

ix

ABSTRACT

ZigBee is a wireless technology developed to be simpler and cheaper than other
wireless personal area network. It is designed for radio-frequency applications
that require low data rate, long battery life, and secure networking. A score

board is a large board that contains related information on a particular sport. It
usually displays the current scores and time of a game. Scoreboards are usually
connected by cables and wires to its controller but with our project the need for

wires is eliminated. We constructed a prototype scoreboard and created a
software application using C# that runs on a Windows based laptop. The

scoreboard is connected wirelessly to the laptop using Zigbee technology. A
touchscreen kit is attached to the laptop for ease of use. The laptop sends the
data through a transceiver and received by the scoreboard receiver. There are

negligible delays that won’t be noticed by a human, the range of the signal
reaches up to 100 meters, and is not delayed by obstacles. The prototype can be
used on street or barangay league basketball games. The software is

programmed for basketball but with slight modification it can be used on other
sports as well.

Keywords: Zigbee, Touch screen, Scoreboard

1

Chapter 1

DESIGN BACKGROUND AND INTRODUCTION

In this chapter, the common statements about the design are offered.

These include informative background of the study, what the main problem is, its

objectives, significance, impact, scope and delimitation. Also, terms associated

with the project are defined.

Background

All basketball games cannot be played without a basketball scoreboard.

Most scoreboards for amateur basketball leagues like in parks or communities

must have a scoreboard that can show all the considered necessary display. The

main purpose of the scoreboard is for viewers and players to keep track of the

game. Like in other amateur leagues, most of the time, experiences setting up

the scoreboard with hand-held controller takes too long.

 During the emergence of basketball, it had been a popular sport amongst

the people. At those times, people used scorecards or makeshift scoreboard to

relay information. Through the development of technology, there are now

microcontroller based scoreboards that have the capability to provide more

features and uses. It uses buttons on controllers to initiate a change in behavior

of its system. A scoreboard is one of the most looked at objects in a basketball

2

match. It is the clear messenger that tells the spectators of how the game is

going apart from the action that they see from the players. The minimum

required display of the score of both teams that are competing, team fouls,

remaining timeout of each team, and timer for the shot clock and every quarter

are being shown by today’s scoreboard designs. There are still, however, some

flaws in the designs today.

 With the use of the design project, it will be easier to setup the

scoreboard in any basketball game. It would also take less effort since the

design project would only be a USB accessory to your computer. The software

constructs an easy direct synchronization for the scoreboard and the computer.

The GUI (graphical user interface) fits all of the required information needed to

be shown to everyone.

 The device included in its hardware are the following: (1) a simple

wireless communication module to pair up or establish a connection; and (2) the

touch screen provides an effortless way of using the GUI software; (3) The

device is powered by the USB port of a computer. The software has the

following functions: (1) it can be configured to be used with different rules and

regulations of basketball; (2) it has an easy to understand user interface design;

(3) easier edit of human errors; (4) it provides the needed data to be transmitted

to the Zigbee; and (5) it is designed with buttons that has specific task to

perform and generate appropriate bytes to be sent.

3

 The system is comprised of both hardware and software. The software is

the main tool for controlling the entire system where the user provides the

necessary input to change the content of the display. It also sends data to the

USB port that the zigbee will pass on to its paired up zigbee. The software is

developed with the use of Visual C#.NET. The hardware is composed of a

simple module for wireless communication. When using the module together

with a zigbee, it can be configured to function as a wireless point to point

communication with the other zigbee. After the zigbee transmit the data, its pair

will pass the data received to the microcontroller that will decode the data. The

module can also be integrated to a touch screen monitor for easy application.

Statement of the Problem

Generally, a scoreboard is connected by means of wires and uses its

controller to activate an event to trigger an update to the specific information

without delay. Setting up this kind of scoreboard limits the flexibility of strategic

location for better visualization and its portability whenever used for another

venue. The time in the clock of the scoreboard should be synchronized with the

time in the clock of the controller as well as the scores and the other details of

the game such as fouls and timeouts in any given distance without setting up

messy wires. The scoreboard controller should send information to the

scoreboard with a minimal delay that it can’t be noticed by the naked eye and

4

should be easily updated by the user without getting confused with buttons and

with an assurance that the sent information is received accurately.

Objectives of the Design

General objectives

 The design aims to create a wireless basketball scoreboard controller with

the use of a laptop computer, thus, eliminating the limits of a wired connection

and adding mobility.

Specific objectives

1. To create a user-friendly GUI program using Visual C#.NET language that

communicates and sends data via Zigbee wireless point to point

communication technology;

2. To synchronize the information in the software to the actual scoreboard;

and

3. To offer portability and flexibility for a basketball scoreboard.

Impact of the Design

 The study of Portable Touch Screen PC-Based Basketball Scoreboard

Synchronizer via Zigbee can be a way to eliminate the limits of where a

basketball scoreboard can be placed regardless of the distance between the

controller and the scoreboard. This can be a small contribution to the sports of

5

basketball by constructing an innovative design of a scoreboard controller. It is

especially designed for communities that hold amateur basketball tournaments,

since basketball is one of the most popular if not the most popular sport in the

Philippines. The design’s goal is to promote a new type of scoreboard to

basketball leagues everywhere, which is a way to interactively operate it using a

laptop computer. Also, with this study/design, the coordinators of the

tournaments will not have a problem with it being mobile and worry about its

location since it can be positioned at most 100 meters away from the

scoreboard.

 The design’s components can be straightforwardly manufactured,

although the important components cannot be bought as parts and are only

available through online shops. They can be bought by bulk to lessen the price

when manufacturing. Also, in an economic point of view, it will cost less than

the regular wireless non-pc-based scoreboard controller. This contributes in a

social aspect through basketball itself. Seeing, as before, a scoreboard is not

capable of being too distant to the operator, thus, restricting it to be sited at low

elevation, and thus, less people are able to notice it. Using a laptop computer to

control a scoreboard significantly reduces human errors in a match.

Design Constraints

 There are, however, limitations to be considered with this design. First is

that the vital components to manufacture the hardware are not readily available

6

here in the Philippines. The parts are still to be purchased and transported for it

to be assembled. The second consideration is the cost of the products to be

bought, also included in this regard is the availability of the stock.

Definition of Terms

This part defines the technical terms cited in the design document.

1. Microcontroller – an integrated chip that is often part of an embedded

system. The microcontroller includes a CPU, RAM, ROM, I/O ports, and

timers like a standard computer, but because they are designed to

execute only a single specific task to control a single system, they are

much smaller and simplified so that they can include all the functions

required on a single chip.

2. Zigbee – a specification for a suite of high level communication protocols

using small, low-power digital radios based on the IEEE 802.15.4-2003

standard for Low-Rate Wireless Personal Area Networks (LR-WPANs), such

as wireless light switches with lamps, electrical meters with in-home-

displays, and consumer electronics equipment via short-range radio

needing low rates of data transfer.

3. Wireless technology – a method of transmission that does not use wires

or cables to connect both ends that transform data from human-

intelligible to transportable and back.

4. Scoreboard – a board for displaying the score of a game or match.

7

5. .NET FRAMEWORK – a software framework that runs primarily

on Microsoft Windows. It includes a large library and supports

several programming languages which allows language interoperability,

each language can use code written in other languages.

6. C# – a multi-paradigm programming language encompassing strong

typing, imperative, declarative, functional, generic, object-oriented (class-

based), and component-oriented programming disciplines.

7. Graphical User Interface (GUI) – a type of user interface that allows users

to interact with electronic devices with images rather than text

commands. GUIs can be used in computers, hand-held devices such as

MP3 players, portable media players or gaming devices, household

appliances and office equipment. A GUI represents the information and

actions available to a user through graphical icons and visual indicators

such as secondary notation, as opposed to text-based interfaces, typed

command labels or text navigation. The actions are usually performed

through direct manipulation of the graphical elements.

8. Software – a collection of programs written to bring the hardware of a

computer system into operation.

9. IEEE – the world’s largest professional association dedicated to advancing

technological innovation and excellence for the benefit of humanity. IEEE

and its members inspire a global community through IEEE's highly cited

8

publications, conferences, technology standards, and professional and

educational activities.

10. IEEE 802.15.4 – a standard which specifies the physical layer and media

access control for low-rate wireless personal area networks (LR-WPANs).

It is maintained by the IEEE 802.15 working group.

11. Touch Screen – an electronic visual display that can detect the presence

and location of a touch within the display area. The term generally refers

to touching the display of the device with a finger or hand.

12. Flexibility – the device can adapt to where it is place in the court and will

still function and perform its job

13. Mobility – can be easily moved from its current location to other place in

the basketball court

14. Portability – can be easily carried to other venue and easily set up

9

CHAPTER 2

 REVIEW OF RELATED DESIGN LITERATURES AND STUDIES

Introduction to Zigbee

ZigBee is a low-cost, low-power, wireless mesh network standard. Due to

its low-cost, it can be extensively distributed in wireless control and monitoring

applications. Thanks to its low-power consumption, it can use smaller batteries

and still last for months or even years. Mesh networking results a high reliability

and greater range. It is cheaper and simpler than other WPAN (wireless personal

area network) like Bluetooth. Zigbee chips Vendors usually sell integrated radios

and microcontrollers with between 60 KB and 256 KB flash memory. The ZigBee

Alliance is a group of companies working together to enable reliable, cost-

effective, low-power, wirelessly networked, monitoring and control products

based on an open global standard. Their goal is to provide the consumer with

ultimate flexibility, mobility, and ease of use by building wireless intelligence and

capabilities into every day devices. ZigBee technology will be embedded in a

wide range of products and applications for the needs of remote monitoring and

control applications, including simplicity, reliability, low-cost and low-power. With

acceptance and implementation of ZigBee, interoperability will be enabled in

multi-purpose, self-organizing mesh networks.

10

ZIGBEE CHARACTERISTIC

 ZigBee standard include the features of low power consumption, needed

for only two major modes (Tx/Rx or Sleep), high density of nodes per network,

low costs and simple implementation.

These are enabled by the following:

o 2.4GHz and 868/915 MHz dual PHY modes

o Low power consumption, with battery life ranging from months to years.

o Maximum data rates allowed for each of these frequency bands are fixed

as 250 kbps @2.4 GHz, 40 kbps @ 915 MHz, and 20 kbps @868 MHz.

o High throughput and low latency for low duty-cycle applications (<0.1%)

o Channel access using Carrier Sense Multiple Access with Collision

Avoidance (CSMA - CA)

o Addressing space of up to 64 bit IEEE address devices, 65,535 networks

o 50m typical range

o Fully reliable “hand-shaked” data transfer protocol.

o Different topologies as star, peer-to-peer and mesh

11

Fig. 2.1: Zigbee Stack Block Diagram

ZigBee is simpler than many protocol stacks and need less software codes. The

IEEE 802.15.4 standard defines the MAC and PHY Layers. The ZigBee Alliance

defines the NHK and application layers and the equipment designer supplies the

application codes.

The MAC and PHY Layers defined by the IEEE standard:

o Channel access is via CSMA with collision avoidance and optional time

slotting

o Three bands, 27 channels specified

 2.4 GHz: 16 channels, 250 kbps

12

 868.3 MHz : 1 channel, 20 kbps

 902-928 MHz: 10 channels, 40 kbps

o Message acknowledgment and an optional beacon structure

o Multi-level security

o Works well for selectable latency for controllers, sensors, remote

monitoring and portable electronics

o Configured for maximum battery life

There are three types of Zigbee device configurations:

o Coordinator

 Forms the root of the network tree and able to bridge to

other network

 Only one coordinator allowed per network

 Most capable device

o Router

 Passes data from other devices

o End Devices

 Can only talk to parent node

 Consume the least amount of power

 Requires the least amount of memory

 Cheapest to manufacture

13

Introduction to Touch Screen

 A touch screen is an electronic visual display that can detect the proximity

of a touch inside of the display area. The touch can be from a finger, hand or

other objects such as a stylus. Touch screen can be found on most handheld

devices like smartphones, tablets and personal digital assistant (PDA).

Two main attribute of a touch screen:

o Directly interact on what is displayed

o Doesn’t need any other device to interact with the screen

Varieties of Touch Screen Technology

o Resistive

 Composed of two flexible sheets coated with a resistive material

and separated by an air gap or microdots.

 it is extremely cost-effective

 it is vulnerable of being damaged by sharp objects

 works well with a stylus like object

o Surface acoustic wave

 uses ultrasonic waves that pass over the touchscreen panel

 can be damaged by outside elements

 dirt or other contaminants can interfere the functionality

14

o Capacitive

 consists of an insulator such as glass, coated with a transparent

conductor such as indium tin oxide

 touching the surface of the screen results in a distortion of the

screen's electrostatic field, measurable as a change in capacitance.

 Need to use the tips of the finger to work properly

o Infrared

 uses an array of X-Y infrared LED and photodetector pairs around

the edges of the screen to detect a disruption in the pattern of LED

beams

 can detect essentially any input including a finger, gloved finger,

stylus or pen

Our design uses a Resistive Touch Screen and that is way it felt a bit slow

if the user uses only his finger. A stylus like object must be use to

properly operate our prototype.

15

RELATED STUDIES

There had been several previous studies written that delved on the use of

wireless technology especially using the ZigBee controller and the use of touch

screen devices. It is in this regard that the authors had those studies reviewed

to check on how it is related to the present study and how it will guide them.

Going over these past projects have given the authors a wider understanding of

what information is already available with regard the topic.

From the Department of Electronics, Computer & Mechanical Engineering

Technology, Indiana State University at Terre Haute, USA Xiaolong Li Munigala

and S. Qing-An Zeng was able to develop the project entitled “Design and

Implementation of a Wireless Programmable Logic Controller System” in 2010.

Technological advancements has marked briskly over the past years and it has

become part of every individual’s everyday life as it has become an inevitable

need, making lives easier and more comfortable. Through time, these

technologies have evolved into even more sophisticated models with the aim of

improving life further. This is true with the wireless technology which had

undergone significant development that has enabled people to connect devices

with conveniences. This study had made an effort to utilize one of the wireless

technologies ZigBee to programmable logic controller (PLC) so that the remote

field devices can be controlled without the need to connect wires in between the

devices involved just like what the present study is aiming to develop.

16

Meanwhile, Yao Li of Christchurch Polytechnic Institute of Technology in

2011 authored the study Implementing ZigBee Protocol as Assignments in

Teaching Embedded Systems, a study was postulated in response to producing a

technology that would turn to benefit people in the real setting. In one of the

courses in the Bachelor of Engineering Technology programme offered at

Christchurch Polytechnic Institute of Technology, a feasible project has always

been used as assignment for teaching and assessment. Recently, included in

those assignments was to implement the ZigBee protocol in the in-house

developed micro controller training kit. It involved emerging technologies of the

wireless sensor control network in the assignment has stimulated students’

interest, not only in embedded systems but also in other areas such as wireless

communications. This proves the expanding use of wireless technology in the

techno-world.

It has been known that information transmission is apparent for the user

in the ZigBee wireless sensors network, a technology that lacks interactivity and

self-limit. A friendly interface cannot view the information in the ZigBee wireless

sensors network in a real time by a friendly interface. In this aspect, Modbus

protocol is embedded into ZigBee stack so that an interaction can be well applied

and the information can be viewed in a friendly interface. This paper, Research

on ZigBee Wireless Sensors Network Based on ModBus Protocol, delved on the

17

measures to embed the Modbus protocol into the ZigBee stack which the

Chipcon Company provided. It contains address bound mechanism, information

centralized storage, and flexible monitoring, by which the real time information

from the ZigBee wireless network can be monitored and some instructions can

be used to control the remote device in a friendly interface. Such can be used

well in the middle and small ZigBee monitoring wireless sensors network. This

has been implemented in the plant physiological ecology monitoring system.

This study was developed by Liu Yanfei, Wang Cheng, Yu Chengbo, Qiao Xiaojun

of Chengdu, China in 2009.

Indeed, wireless technology has been in demand, responding to the needs

of the continuously developing sophistication of the techno-world. According to

the needs of technology and market of new kind of smart transducer, this study,

which is based on the technology of ZigBee, the international standard

IEEE1451, and the technology of intelligent transducer, proposed a new wireless

transducer/controller Z-WPAN-ST and described its architecture and implement

technology. The hardware structure and software components of Z-WPAN-ST

which plays as a node in a WPAN are presented in detail. Several problems

relevant with the application of the new Z-WPAN-ST in supervision and control

system for gas station were also included in the discussion herein. This study,

ZigBee Based Wireless Networked Smart Transducer and Its Application in

Supervision and Control System for Natural Gas Gate Station, was postulated in

18

2009 by Meng Xiangyin, Xiao Shide, Xiong Ying and Huang Huiping of

Chengdu, China.

From The Engineering Of Optical And Electronic College of ChongQing

University, Y W Zhu, X X Zhong and J F Shi in 2006 developed the project

entitled, The Design of Wireless Sensor Network System Based on ZigBee

Technology for Greenhouse. The Wireless Sensor Network, which is new in the

research field, can be used at times for signal collection, processing and

transmitting. Zigbee is one of the new Wireless sensor network technologies

that have a characteristic of less distance and low speed with a wireless network

protocol stack of IEEE 802.15.4. Traditional system to collect parameters for

Greenhouse has been widely used in agriculture recently. This traditional system

adopts wired-way wiring, which makes it complex and expensive. Normally,

modern Greenhouse has hundreds of square meters and they may plant variety

of plants depending on different seasons. With this, there is a need to adjust the

sensors which collect parameters for Greenhouse to a better place to work

efficiently. To take up a wireless-way wiring for such system is convenient and

economical. It is in this regard that this paper was developed to design a

wireless sensor network system based on ZigBee technology for greenhouse.

This technology offers flexibility and mobility to save cost and energy spent on

wiring. Also included in the discussion here were the framework hardware and

software structure related programming. To compare this system which uses

19

ZigBee technology with traditional wired network system for greenhouse, it has

advantage of low cost, low power and wider coverage. In addition, it complies

with IEEE802.15.4 protocol, making it convenient to communicate with other

products that comply with the protocol as well.

Bergmann, N.W., Wallace, M. and Calia, E. from the School of ITEE,

University of Queensland in St. Lucia, Queensland, Australia were able to

develop, meanwhile, the study “Low Cost Prototyping System for Sensor

Networks” in 2010. System designs for modern wireless sensor systems are

based on low capability microprocessors and limited range radios since such

designs have small physical size and limited energy budgets. But given the fact

that these sensor nodes are based on low-cost components, development

supplies for wireless sensor network are somewhat expensive, just like the

sensor nodes. Instead of making the cost a few dollars less, these “low cost”

systems usually cost above a hundred dollars each. Such cost of the system is

affected by the wide variety of sensor nodes available, and the limited market

size for any one node. The said concern prompted the researchers to develop

this study which aims to develop a low-cost prototyping platform that is based,

as much as possible, on existing open-source PCB designs and software

environments. This project used Arduino low-cost microprocessor platform, XBEE

low-cost Zigbee networking modules, and open-source TinyOS software system.

20

 From the Department of Electrical & Computer Engineering in Alabama

University, USA, Cox, D., Jovanov, E. and Milenkovic, A. developed the “Time

Synchronization for Zigbee Networks” in the year 2005. Time synchronization,

indeed, is important for most network applications. This is true particularly in a

wireless sensor network (WSN) as a way to correlate diverse measurements from

a set of distributed sensor elements and synchronize clocks for shared channel

communication protocols. These wireless sensors are normally designed with

very strict constraints for size, cost and, more importantly, power consumption.

The flooding time synchronization protocol (FTSP) was explicitly developed for

time synchronization of mesh-connected wireless sensor networks. ZigBee,

however, can also accommodate master-slave networks that can be more power-

efficient. This study optimized the FTSP for master-slave WSNs and

implemented it using TinyOS 1.1.8 and ZigBee-compliant hardware. This

approach aimed to allow not just better synchronization but as well reduced

power consumption of wireless nodes.

 In 2004, Arai, F., Iwata, N. and Fukuda T. of the Department of Micro-

Nano System Engineering of Nagoya University in Japan proposes the

“Transparent Tactile Feeling Device for Touch-Screen Interface”. The device will

give a feeling of actual pressing of the keys in the screen without interrupting

the touch screen function. This device doesn’t use force sensor or actuator

21

instead uses a specific shape of the conventional switch and haptic device to give

a feeling of clicking the touch screen display.

 The “Optical Touch Screen with Virtual Force” in 2009 by Hong Zhang of

the Department of Mechanical Engineering of Rowan University uses stereovision

or pseudo-stereovision to produce a touch screen experience. Cameras are

installed at the corner of the monitor and an algorithm will compute for the

location of the pointer when it is near the screen. The paper proposes that

virtual force would be produced in the active space of the touch screen by the

positions, velocities and accelerations of the pointer. There will be an

improvement in the user interface by using the methods discussed and

presented in the paper.

 Mapuans also designed their own touch screen based devices. The “Nurse

Touch Screen Device: Touch Screen Interfaced Inpatient Treatment Record

System by Marife S. Cruz, Erick Brylle T. Reyes and Michael Jeremy R. Vicedo in

the year 2010 is one of these devices. Conventional hospital inpatient records are

usually done using pen and paper, it works but as more patients come and go it

become difficult to manage, but with this device, an alternative can be found. By

digitizing the records and each device can remotely access the database; it will

22

be a lot easier. Touch screen was used because of the “touch/tap” approach in

accessing the objects and files.

 Another innovation done by Mapuans dealing with touch screen is the “On

Screen Mouse Add on Frame Utilizing Array of Lasers with PS/2 Computer

Interface” by Divine Grace F. Balang and Anselie D. Magsino in 2010. Their

design is an upgrade of a regular computer mouse. It can do everything that a

regular mouse can do – like left lick, double click, right click and drag function,

but is controlled by pointing gestures like a touch screen. The device is like an

add on panel that can fit on 14.1 inches LCD screens. By using this device,

regular LCDs screen turns into touch screen with mouse button functions. It is

done by using grids of X and Y lasers. By disrupting the laser, the coordinate of

the mouse pointer is located in the screen. A microcontroller unit process all the

necessary operations - from creation of coordinates to the management of the

mouse circuit in the design.

23

CHAPTER 3

DESIGN PROCEDURES

 This chapter gives the overview on how the step-by-step process used in

the assembly and development of the design prototype. This includes the

hardware and the required software. This section will briefly discuss the

components and materials used.

Start

Data Gathering and Research
(Related Literature/Studies/

Articles)

Did The Data
Prove Useful?

NO

Plan And Create
Possible System

Designs From Data

YES

Evaluate The Circuit
Diagram of the System

Designs

Does The System
Design Satisfies
the Condition?

NO
A

YES

A

Assembly of Hardware
and Software

Testing Of The
Prototype

Check For
Errors In The

System?

Is The
Objective

Met?

YES

Modify And
Troubleshoot The

Prototype

NO

NO

Formulate
Recommendation and

Conclusion

YES

END

Figure 3.1: Design Procedure Flow Chart

24

Initial Planning and Data Gathering

 The group first made a flow of procedures to follow before initiating to

work on the actual prototype. The group created a flowchart in which it will be

used as our step by step guide on the different stages of the prototype design

illustrated in figure 3.1. The first and one of the most important step is the data

gathering procedure, this was done by consulting and seeking information

coming from a variety of resources such as journals, books, related studies and

articles that are helpful for making the system design. After data gathering, the

group sorted out the selection so that only the significant information will be left.

All the necessary information from the gathered data will provide solutions on

solving the problems of the design. These problems include the individual parts

and essential components for the structure of the Scoreboard Controller

prototype. Then the group builds the main concept of how the design prototype

will operate and produce the required output and what may possibly the major

parts. Figure 3.2 shows the whole idea that the group devise to use in creation

of the design prototype and Figure 3.3 represents the nature of the data flow of

the system.

Assembly of Hardware and Software

 This section refers how the actual design construction of the prototype.

The group constructed the systems block diagram and flowchart as the basis

using these in consideration when creating the design. The individual

25

components are decided for construction of the schematic diagram as shown in

figures 3.4, 3.5, 3.6, 3.7 these provides as the circuit used in the prototype. After

verifying the integral parts to be utilized, the group search and canvassed for all

the materials’ prices. Table 3.1 reveals the various devices used for the prototype

and their amount when they were acquired. The datasheets of each major item

that was used are gathered in the appendix section of the document for

reference in the future. The figures mentioned illustrate the different circuit

designs in the different parts are used as the finalized circuit that composed the

designs hardware. The circuit includes how the interfaces will connect the device

or modules used to the computer. The prototype is then amassed for the final

testing. Figure 6.1 (Touch Screen Basketball Scoreboard Controller Device) of the

appendix showcase the fully assembled prototype design.

Testing of the Prototype

Testing includes various tests conducted to meet the specific objectives of

the design. To determine the efficiency and reliability of the design prototype,

several testing procedures must be done. Three major tests should be conducted

during the Testing Phase; these are the Data Accuracy Test, Range Test with

Respect to Time, and the User Interface Program Execution Test. These tests

measure the responsiveness of the prototype in accordance to the several

scenarios set. The test also determines the design efficiency in synchronization

by a given distance with various interferences, such as human bodies and

26

concretes, and the effectiveness of the design for users based on the user

interface. The purpose of Data Accuracy Test is to determine if the design

software is accurately executing the program and precisely sending the data by

verifying if the received data in the scoreboard is the same with the data in the

software and also to determine the accuracy of touch screen input device

whenever a button is pressed. The second test which is the Range Test intends

to determine the maximum distance wherein the devices can wirelessly transmit

and receive data and still be synchronized.

Formulating Conclusion and Recommendations

 The conclusion and recommendations are planned after the final

examination and painstaking investigation and analysis of the system. Conclusion

responds to the designs objective were met, it also addresses if the problem was

given a solution to its problems by the developed prototype. The groups

presented recommendations that are not included in the design prototype

because of constraints such at time and money. The recommendations can be

use to further improve the system and can be utilize a reference for future study

in the field related to it. The conclusion and recommendations stated in the

document was derived from the final design prototype.

27

BILL OF MATERIALS

 The table below shows all the materials used in the development of the

design with its costing without shipping cost since it depends on location.

COMPONENTS

QUANTITY
PRICE PER

PIECE
TOTAL

15” Touch Screen Kit 1 2,500.00 2,500.00

XBee-PRO® 802.15.4 2 1,700.00 3,400.00

XBee USB Adapter Board 1 2,000.00 2,000.00

Arduino Mega 2560 1 2,400.00 2,400.00

Arduino XBee Shield 1 1,000.00 1,000.00

74LS48 Decoder 17 30.00 510.00

7 Segment Display 17 20.00 340.00

1 Feet of Copper Wire 100 1.50 150.00

Total 12,300

Table 3.1: Bill of Materials

28

Hardware Development

Conceptual Diagram

LAPTOP

USER

TOUCHSCREEN
GUI

INTERFACE

SCOREBOARD WITH HORN

Choose a
Command

Execute The
Command

ARDUINO
MICROCONTROLLER

ZIGBEE TX

XBEE USB
ADAPTER

Free Space

ZIGBEE RX

XBEE
SHIELD

Use
Amplifier

(UNL2003A)

Figure 3.2: Conceptual Diagram

29

The Design’s Conceptual Diagram, as illustrated in figure 3.2 shows the

prototype’s behavior and flow from beginning to end. The user can, choose a

command and execute the event from the software running in the computer. The

touch screen takes advantage of the GUI (Graphical User Interface) of the

software to provide the user ease of use. The Scoreboard Application will serve

as the interface between the computer and the external scoreboard. After the

user executes a command from the program, then it will send a corresponding

data to the microcontroller. The computer will first pass it to the wireless

communication device to transmit the information; this device is the Xbee

Adapter with the Zigbee mounted on it. The Zigbee Module only purpose is the

synchronization of the scoreboard software with the external scoreboard display,

it is responsible for accurate and fast wireless data transmission. The Arduino

Mega 2560 with the Arduino XBee Shield concern is that of receiving and

executing the commands that corresponds to the sent data. The next diagram

Figure 3.3 (Block Diagram) will show how each of the parts interact with one

another when integrated as one into the system and the flow of data in the

components on the system.

Block Diagram

 The block diagram of the design prototype is made up of two main parts

that can be separated into five major components specifically the Touch Screen,

the Computer, the Transmitter, The Receiver and the Data Output. The touch

30

screen device provides the screen coordinates to be sent as data to the

computer when the user taps the screen. The computer side is comprised of 2

ports used to connect with the Figure 3.X (Touch Screen) and Figure 3.4 Zigbee

Transmitter Circuit. The transmitter contains a FT232RL integrated circuit and

the Zigbee. The FT232RL IC is made to convert the signals entering from a serial

port to TTL (Transistor-Transistor Logic) so that the Zigbee Transmitter can

understand the data passed to it. The Zigbee Transmitter sends the signal to its

paired Zigbee Receiver. The receiver block firstly involves the Zigbee RX that

receives the TTL signal coming from the Zigbee TX and then it transfers it to the

MCU (Microcontroller Unit) Arduino Mega 2560. The MCU then performs the

necessary data processing before it output in a 7-segment decoder. The output

component contains the 7-segment decoder that interprets the data from the

MCU to be displayed in the external scoreboard composing of 7-segment

displays.

31

Scoreboard Controller

Transmitter

Computer

USB Port FT232RL Zigbee TX
User
Input

Convert
Signal

USB Port
Touch
Screen

User Input

Scoreboard

Receiver

Arduino
2560

Zigbee RXProcess
TTL Signal

Data Output

7
Segment
Decoder

Amplified
OutputAmplifier

Signal

7
Segment
Display

7 Segment
Output

Horn

S
ig

n
a
ls

T
X
/R

X

Figure 3.3: Block Diagram of Scoreboard Controller and Scoreboard

32

Schematic Diagram

Figure 3.4: Touch Screen Circuit

33

Figure 3.5: Zigbee Shield Transmitter Circuit

Figure 3.6: Arduino Zigbee Shield Receiver Circuit

34

Figure 3.7: Arduino Mega 2560 Receiver Circuit

35

The design prototype’s parts can be partitioned into four modules; the

touch screen, transmitter, receiver, and the output of the device.

 The touch screen module consists of a clear touchscreen panel you will

install in front of your LCD monitor screen, a Zilog z8F042A microcontroller, 110-

220VAC and/or 7VDC power supply adapter, and a serial cable. This would be

connected to the PC COM port using a serial cable. If the Laptop does not have a

COM port, a USB to RS-232 cable may be used to connect it to an available USB

port. The PL2303 driver must be installed along with the touch screen calibration

program.

The transmitter generally make up of FT232RL, and the XBee-PRO®

802.15.4 module. The FT232RL converts signals coming from a serial port and

change it to a TTL. The XBee-PRO® 802.15.4 module is used to communicate

and deliver the signal from the computer to the receiver.

The receiver consists of the XBee-PRO® 802.15.4 module, the Arduino

Zigbee Shield, and the Arduno Mega 2560. The XBee-PRO® 802.15.4 module

receives the signal from the transmitter and passes it to the microcontroller. The

Arduino Zigbee Shield is the passage way for the signal to travel from the Zigbee

Module to the Arduino Mega 2560. The Arduino Mega 2560 is the microcontroller

that performs decoding of data transmitted to a functional form by the 7

segment driver. The output of the device comprises of the 7-Segment Drivers

and 7 Segment displays.

36

Software Development

 Our group’s main focus in software development is to create a software

program which will act as the backbone of the entire system. There are 2 main

task of the program, the first is that it should enable the user to operate the

program easily and it must behave similarly to a standard basketball scoreboard;

secondly it is going to be used to synchronized the data from the software to be

displayed in the portable scoreboard using the interface of the Zigbee module for

data transmission. Visual C# 2010 is an object oriented program combined with

.NET FRAMEWORK 4.0 will create a rich user interface that will provide ease of

use. Also with using these tools to construct software it can interact with a USB

port of a computer since it can reference a variety of objects for the design

implementation. For the flow of the system figure 3.6 will illustrate the nature of

the design prototype. With incorporating different software engineering

documentation methodologies as shown in figure 3.7 for the Scoreboard

Controller Software, as well as providing an interface to the application software

as demonstrated in figure 3.8 to 3.10.

SYSTEM FLOWCHART

 The software event executions of the design prototype are shown in figure

3.6 System Flowchart. It displays the concise flow of the program and its

relations. Starting the program will then initiate the Scoreboard software loading

it to memory, where all the operations can be carried out.

37

LOAD
DEFAULT
SETTINGS

SHOW
GAME

OPTIONS
WINDOW

ARE
SETTINGS

VALID

NO

SAVE
OPTIONS

YES

LOAD
GAME
TIME

SHOW
CHANGE

TIME
WINDOW

CHANGE
GAME TIME

IS THE
CHANGE
VALID?

NO

SAVE
CHANGES TO
GAME TIME

YES

C

TRANSMIT
DATA VIA

ZIGBEE

UPDATE
EXTERNAL

SCOREBOARD

B

TRANSMIT
DATA VIA

ZIGBEE

UPDATE
EXTERNAL

SCOREBOARD

LOAD CHANGE
GAME TIME IN
SCOREBOARD

WINDOW

A

LOAD SAVED
OPTION IN

SCOREBOARD

B

B

PLAY
BUTTON
CLICK?

SHOT CLOCK
AND GAME

TIMER START

YES

NO

STOP
BUTTON
CLICK?

SHOT CLOCK
AND GAME
TIMER STOP

YES

HOME
CONTROL
BUTTONS

CLICK?

B

TRANSMIT
DATA VIA

ZIGBEE

UPDATE
EXTERNAL

SCOREBOARD

NO

EXECUTE
BUTTON

CONTROL
EVENT

YES

AWAY
CONTROL
BUTTONS

CLICK?

EXECUTE
BUTTON

CONTROL
EVENT

NO

YES

TIMER
BUTTONS

CLICK?

NO

YES

OPTIONS
BUTTONS

CLICK?

NO

A
YES

RESET
SHOT
CLOCK

BUTTON
CLICK?

END
NO

NO

C
SHOT CLOCK
AND GAME
TIMER STOP

SHOT CLOCK
AND GAME
TIMER STOP

TRANSMIT
DATA VIA

ZIGBEE

UPDATE
EXTERNAL

SCOREBOARD
B

CLOSE
PROGRAM?

YES

B

NO

BEGIN

LOAD
PROGRAM

SHOW
SCOREBOARD

CHOOSE
OPTIONS

Figure 3.8: System Flowchart

38

USE CASE DIAGRAM

SCOREBOARD

User

Add/Remove Score Events

Add/Remove Foul Events

Add/Remove Timeout Events

Change Game Setting Event

Change Time Event

Play/Stop Time Event

Reset Shot Clock Event

Figure 3.9: Use-Case Diagram

 In figure 3.7 presents the direct relationship of what the user can execute

during the usage of the software program, the use case diagram for the

prototype – the user is given access to all of the features available within the

Scoreboard application that was created using Microsoft Visual C# and .NET

FRAMEWORK 4.0. The Use-Case illustrates the different actions (add/remove

score, fouls and timeouts, change scoreboard settings and game time, play/stop

game time, and reset shot clock) the User will be able to do. All actions will lead

to synchronizing with the external scoreboard via Zigbee’s data transmission. The

Add/Remove Score Events allows the user to add or remove from the score of

any team corresponding to the text seen on the button that handles the event.

The Add/Remove Foul Events allows the user to add or remove from the foul of

any team. The Add/Remove Timeout Events allows the user to add or remove

39

from the timeout of any team. The Change Game Setting Event gives the user

freedom to choose the combination of options on how the game will behave. The

Change Time Event permits manipulation of time when the user needs to adjust

the time of the game. The Play/Stop Time Event enables or disables the timer of

the game. And lastly the reset shot clock event provides an option to the user to

reset the shot clock while the timer is running. All this was in consideration in

making an program resembling a standard scoreboard.

ACTIVITY DIAGRAM

Open
Scoreboard

User

Add/Remove
Any Team Score

Add/Remove
Any Team Fouls

Add/Remove
Any Team
Timeouts

Change
Scoreboard

Settings

Change Game
Time

Play/Stop Game
Time

Reset Shot Clock

Figure 3.10: Activity Diagram

 For figure 3.8 it shows the different task that the user can perform in the

Scoreboard Application Software. The user can add scores (+1, +2, +3, or -1)

40

using an event to the teams, It also includes the ability to increase or decrease

the value by 1 of foul and/or timeout events even if the game time is ticking.

Every time the data changes on the scoreboard program, it will be reflected on

to the external scoreboard because they are synchronized. And also change the

status of the timer to play or to stop events and it is able to reset the shot clock

in anytime of the game. The game time is accurate to a hundredth of a

millisecond making it accurate enough for being a basketball scoreboard.

 The software can also change the setting of the game, this feature

enables the user to set the total number of minutes in a quarter, how many

periods in a game, maximum number of team fouls and timeouts in a quarter,

and the shot clock timer. Another aspect of the program is that it can change the

game time (minutes, seconds, and milliseconds), the period and shot clock.

INTERFACING THE DESIGN TO THE PC

 The design prototype’s hardware and software parts are joined together

with the use of the computers USB (Universal Serial Bus) port. When connection

is established between the two, then the system is ready for testing.

41

Figure 3.11: Scoreboard Application Main Page

 Figure 3.9 showcase the Main page of the Scoreboard Application for the

design. This window displays is where the user will focus almost all the time. The

page contains the different status of the game in the view of a scoreboard, such

event are playing or stopping the game, reset the shot clock accordingly. The

user is able to increase or decrease the scores, fouls and timeouts of the teams.

It is also the way to start or stop the game. The user can also access the Change

Time Page and Options Page.

42

Figure 3.12: Scoreboard Application Options Page

 Figure 3.10 shows the Option Page of the design. This is the part of the

Scoreboard Application that allows the user to choose different combinations of

setting for the in game regulations like the minutes in a quarter, the number

period, limits of number of fouls and timeouts, and shot clock. The most

important part to be selected is the COM port selection wherein the user needs

to correctly choose the right port to allow data transmission.

43

Figure 3.13: Scoreboard Application Change Time Page

 Figure 3.11 shows the Change Time Page of the design. This part of the

software permits the adjustment of the game timer (minutes, seconds and

milliseconds), period of the game, and shot clock. When the page loads, it gets

the information on the current time, period and shot clock.

PROTOTYPE DEVELOPMENT

 In the design, doing the hardware part was undemanding of time than

that of its software counterpart. The main reason for this is that the hardware

44

part only focused on receiving the data transmitted for synchronization of the

display of the external hardware from the program. The hardware was interfaced

to the computer by the use of a USB port for both the Touch Screen interface

and the Zigbee component.

With the schematic diagrams from the previous sections of this chapter,

since two modules were bought for the scoreboard controller, one of which is the

Parallax Xbee USB Adapter Board module and the e-Gizmo 15” Touch Screen

Set. As for the external scoreboard prepared for demonstration, it was made up

of the Arduino Mega 2560 Board containing the ATmega2560 microcontroller,

Arduino Xbee Shield for holding the Zigbee. For the software part, the Arduino

Mega 2560 was programmed using the Arduino IDE. It is a high level

programming language akin to C++ programming language and is specifically for

Arduino Boards. After the program had been constructed, it was uploaded into

the Arduino Mega 2560 Board using the same program.

The touch screen module uses PL2303 driver that must be installed along

with the touch screen calibration program. This would be connected to the PC

COM port using a serial cable. A USB to RS-232 cable is used to connect it to an

available USB port. Calibration is done after this setup.

 The transmitter generally make up of FT232RL which converts signals

coming from a serial port and change it to a TTL, and the XBee-PRO® 802.15.4

module which communicates and delivers the signal from the computer to the

45

receiver. This is installed and connected to the PC via USB port and is controlled

by the program.

The receiver on the other hand which is the XBee-PRO® 802.15.4

module, the Arduino Zigbee Shield, and the Arduno Mega 2560 receives the

signal from the transmitter and passes it to the microcontroller. The Arduino

Zigbee Shield is the passage way for the signal to travel from the Zigbee Module

to the Arduino Mega 2560. The Arduino Mega 2560 performs decoding of data

transmitted to a functional form by the 7 segment driver. The output of the

device comprises of the 7-Segment Drivers and 7 Segment displays which is

powered by an at least 6V power source.

46

CHAPTER 4

TESTING, PRESENTATION, AND INTERPRETATION OF DATA

This chapter shows the various tests conducted to meet the specific

objectives of the design. To determine the efficiency and reliability of the design

prototype, several testing procedures must be done. Three major tests were

conducted during the Testing Phase; these are the Data Accuracy Test, Range

Test, and the User Interface Program Execution Test. These tests measure the

responsiveness of the prototype in accordance to the several scenarios set. The

test also determines the design efficiency in synchronization by a given distance

with various interferences, such as people and concretes, and the effectiveness

of the design for users based on the user interface.

A. Data Precision Test

Purpose

To determine if the design software is accurately executing the program

and precisely sending the data by verifying if the received data in the scoreboard

is the same with the data in the software and also to determine the accuracy of

touch screen input device whenever a button is pressed.

47

Assumptions

The scoreboard should show the score and other information as controlled

by the computer software. Whenever the user changes or edits any part in the

software application using the touch screen device the corresponding change

should occur on the scoreboard regardless of time synchronization and distance.

There would be two trials to test each button, the first trial will come after

opening the software application and the second is after the first trial wherein

the previous data are still stored.

Procedure:

1. Connect the Touch screen device and adjust its settings;

2. Connect the Zigbee receiver and transceiver to the scoreboard and to the

computer respectively;

3. Open the Scoreboard application software;

4. Choose the COM setting of the Zigbee for the computer;

5. Click one button for trial testing;

6. Record the result;

7. Repeat procedure 5 and 6 for another button; and

8. Repeat procedure 5 to 7 for the another trial.

48

Table 4.1: Data Accuracy Test Trial 1 Results

The first trial tests if the data from initial state of the software application

will change when a button is pressed and will have the same output on the

scoreboard.

Button Name
Remarks

GUI Scoreboard

HomeScorePlus1_btn Correct Correct

HomeScorePlus2_btn Correct Correct

HomeScorePlus3_btn Correct Correct

HomeScoreMinus1_btn Correct Correct

HomeFoulsPlus1_btn Correct Correct

HomeFoulsMinus1_btn Correct Correct

HomeTimeoutPlus1_btn Correct Correct

HomeTimeoutMinus1_btn Correct Correct

AwayScorePlus1_btn Correct Correct

AwayScorePlus2_btn Correct Correct

AwayScorePlus3_btn Correct Correct

AwayScoreMinus1_btn Correct Correct

AwayFoulsPlus1_btn Correct Correct

AwayFoulsMinus1_btn Correct Correct

AwayTimeoutPlus1_btn Correct Correct

AwayTimeoutMinus1_btn Correct Correct

Play_btn Correct Correct

Stop_btn Correct Correct

ResetClock_btn Correct Correct

49

Table 4.2: Data Accuracy Test Trial 2 Results

The second trial tests if the data from the previous state of the software

application will change correspondingly when a button is pressed.

Data Interpretation and Analysis

Table 4.1 shows that all the software application buttons are executing as

programmed and are sending the data accurately as shown on the remarks as

Button Name
Remarks

GUI Scoreboard

HomeScorePlus1_btn Correct Correct

HomeScorePlus2_btn Correct Correct

HomeScorePlus3_btn Correct Correct

HomeScoreMinus1_btn Correct Correct

HomeFoulsPlus1_btn Correct Correct

HomeFoulsMinus1_btn Correct Correct

HomeTimeoutPlus1_btn Correct Correct

HomeTimeoutMinus1_btn Correct Correct

AwayScorePlus1_btn Correct Correct

AwayScorePlus2_btn Correct Correct

AwayScorePlus3_btn Correct Correct

AwayScoreMinus1_btn Correct Correct

AwayFoulsPlus1_btn Correct Correct

AwayFoulsMinus1_btn Correct Correct

AwayTimeoutPlus1_btn Correct Correct

AwayTimeoutMinus1_btn Correct Correct

Play_btn Correct Correct

Stop_btn Correct Correct

ResetClock_btn Correct Correct

50

“Correct.” This is the first trial which started from zero scores, zero fouls and 6

timeouts each team. Table 4.2 now shows the second trial which shows that the

scores, fouls and timeouts can be controlled by either adding or subtracting. The

results in tables 4.1 and 4.2 illustrate that the data are accurately sent and

received. This also gives a significant outcome to the testing of the touch screen

as input device, which means that all the buttons are working through touch

screen.

B. Range Test

Purpose

To determine the maximum distance wherein the devices can wirelessly

transmit and receive data and still be synchronized.

Assumptions

The Zigbee module is a technology meant for wireless communication of

two different components. As with the design, the prototype can be divided into

two major components, a transmitter and receiver.

The tests will undergo three trials, first trial is for a straight and

unobstructed hallway, second trial is for a randomly obstructed hallway (with

people, walls and other things), and third trial is for elevated transmission (with

walls and ceilings). The results shall be coming from the Range Tester

51

application from the Zigbee manufacturer and shall give a result in percent of

efficiency of transmission which also denotes efficiency of synchronization.

Procedure:

1. Define the distances where the ZigBee will be tested;

2. Connect the Touch screen device and adjust its settings;

3. Connect the Zigbee receiver and transceiver to the scoreboard and to the

computer respectively;

4. Open the Scoreboard application software;

5. Choose the COM setting of the Zigbee for the computer;

6. Position the scoreboard to the distance defined on the first procedure;

7. Press the buttons for trial testing;

8. Check to see if the clocks have been synchronized;

9. Record the result; and

10. Repeat the procedures 7-9 for another distance.

Table 4.3: ZigBee Range 4th Floor Test results

Range Test 4th Floor

Range Trial 1 Trial 2 Trial 3 Interference

30.87 m 100% 100% 100% None

45.37 m 100% 100% 100% None

72.77 m 100% 100% 100% None

83.04 m 100% 100% 100% None

52

Table 4.4: ZigBee Range 3rd Floor Test results

Data Interpretation and Analysis

The test results tabulated in Table 4.3 shows that the Zigbee

specifications from the datasheet are consistent wherein it can transmit

information without significant delay within line of sight without obstruction. As

shown in Table 4.4, the data were all transmitted during the testing but a

significant decrease on percent of reliability occurred as compared from those in

Table 4.3.

This means that the interference due to random number of people even at

83 meters would not affect the synchronization of transmission between the

controller and the scoreboard.

Range Test 3rd Floor

Range Trial 1 Trial 2 Trial 3 Interference

31.09 m 100% 100% 100% People

45.52 m 99% 98% 99% People

72.86 m 97% 98% 98% People

83.12 m 98% 96% 97% People

53

C. USER INTERFACE PROGRAM EXECUTION TEST

 The program execution test is the test case analysis for the programs of

the Visual C# application of the software application. The test aims to check the

correctness of the execution of the program and discover if there are any

unwanted errors or bugs between the expected output and the actual output of

the programs.

 The Program Execution test was done by following the possible test case

conditions. The steps are as follows:

1. Do the specified condition presented in the test case table;

2. If the test results to an expected output, mark the record as passed;

else mark it as failed with the date on which it had failed;

3. The results were then listed side by side with the expected output and

judge if it is acceptable for the proposed application or not;

4. After testing all of the program’s test case conditions, do the necessary

debugging;

5. Re-do the routine to check if the other part of the program had an

effect to the modification; and

6. End the tests if all of the conditions have been finally met.

The test case, like any programming tests, is a trial and error procedure.

This is for the sake of ensuring that no bugs will be left behind and that the

54

debugging done on one part of the screen doesn’t have any negative effect to

the other – and if it does then re-do another debugging.

TEST CASE ANALYSIS

Screen
Test
Case

Condition
Expected

output
Actual
Output

Result

Game

Options
Event
Screen

Game

Time
Test

Modify the
Selected

Event Time

From the
Numerical
Drop Down

List

Modified

Game
Time

Game

Time
Modify

Correct

Game
Options
Event

Screen

Game
Period

Test

Modify the

Selected
Game Period

From the

Numerical
Drop Down

List

Modified
Game

Period

Game
Period

Modify

Correct

Game

Options
Event
Screen

Game

Fouls
Test

Modify the
Selected

Game Fouls

From the
Numerical

Drop Down
List

Modified

Game
Fouls

Game

Fouls
Modify

Correct

Game
Options

Event
Screen

Game
Timeouts

Test

Modify the

Selected
Game

Timeouts From

the Numerical
Drop Down

List

Modified
Game

Timeouts

Game
Timeouts

Modify

Correct

Game

Options
Event
Screen

Game

Shot
Clock
Test

Modify the
Selected

Game Shot
Clock From the

Numerical

Drop Down
List

Modified

Game
Shot
Clock

Game

Shot
Clock
Modify

Correct

55

Game

Options
Event
Screen

COM
Port Test

Modify the
Selected COM

Port From the
Numerical
Drop Down

List

Selected
COM Port

COM
Port

Select
Correct

Game

Options
Event
Screen

SAVE
Test

Click SAVE
button

Selected
Save

Options
Save

Correct

Table 4.5a Game Options Event Screen Test Case

Screen
Test

Case
Condition

Expected

output

Actual

Output
Result

PC

Scoreboard
Screen

Home

Score

Plus 1

Test

Click Home

Score Plus 1

Add Home
Score to

Output
Screen

Home

Score
Plus 1

Correct

PC
Scoreboard

Screen

Home

Score

Plus 2

Test

Click Home

Score Plus 2

Add Home
Score to
Output

Screen

Home
Score

Plus 2

Correct

PC
Scoreboard

Screen

Home

Score

Plus 3

Test

Click Home

Score Plus 3

Add Home

Score to
Output

Screen

Home
Score
Plus 3

Correct

PC
Scoreboard

Screen

Home

Score

Minus 1

Test

Click Home

Score Minus 1

Subtract
Home

Score
from

Output

Screen

Home
Score

Minus 1
Correct

56

PC

Scoreboard
Screen

Home

Fouls

Plus 1

Test

Click Home

Fouls Plus 1

Add Home

Fouls to
Output
Screen

Home

Fouls
Plus 1

Correct

PC
Scoreboard

Screen

Home

Fouls

Minus 1

Test

Click Home

Fouls Minus 1

Subtract
Home

Fouls from

Output
Screen

Home
Fouls

Minus 1

Correct

PC
Scoreboard

Screen

Home

Timeout

Plus 1

Test

Click Home

Timeout

 Plus 1

Add Home
Fouls to
Output

Screen

Home
Timeout

Plus 1

Correct

PC
Scoreboard

Screen

Home

Timeout

Minus 1

Test

Click Home

Timeout

Minus 1

Subtract

Home
Fouls from

Output

Screen

Home
Timeout
Minus 1

Correct

PC

Scoreboard
Screen

Away

Score

Plus 1

Test

Click Away

Score Plus 1

Add Away

Score to
Output
Screen

Away

Score
Plus 1

Correct

PC
Scoreboard

Screen

Away

Score

Plus 2

Test

Click Away

Score Plus 2

Add Away
Score to

Output
Screen

Away
Score

Plus 2

Correct

PC
Scoreboard

Screen

Away

Score

Plus 3

Test

Click Away

Score Plus 3

Add Away
Score to
Output

Screen

Away
Score

Plus 3

Correct

PC
Scoreboard

Screen

Away

Score

Minus 1

Test

Click Away

Score Minus 1

Subtract

Away
Score
from

Output
Screen

Away
Score

Minus 1
Correct

PC
Scoreboard

Screen

Away

Fouls

Plus 1

Test

Click Away

Fouls Plus 1

Add Home
Fouls to
Output

Screen

Home
Fouls
Plus 1

Correct

57

PC

Scoreboard
Screen

Away

Fouls

Minus 1

Test

Click Away

Fouls Minus 1

Subtract
Away

Fouls from
Output
Screen

Away

Fouls
Minus 1

Correct

PC

Scoreboard
Screen

Away

Timeout

Plus 1

Test

Click Away

Timeout

Plus 1

Add Away
Fouls to

Output
Screen

Away

Timeout
Plus 1

Correct

PC
Scoreboard

Screen

Away

Timeout

Minus 1

Test

Click Away

Timeout

Minus 1

Subtract
Away

Fouls from

Output
Screen

Away
Timeout

Minus 1

Correct

PC
Scoreboard

Screen

Play Test Click Play

Time

Plays in
Output

Screen

Time
Plays

Correct

PC
Scoreboard

Screen

Stop Test Click Stop

Time
Stops in

Output
Screen

Time

Stops
Correct

PC
Scoreboard

Screen

Reset

Clock

Test

Click Reset

Clock

Time

Resets in
Output
Sceen

Time
Reset

Correct

Table 4.5b PC Scoreboard Screen Test Case

58

DISCUSSION OF RESULTS

Although the program was debugged during the programming phase, a

test case was made to provide documentation and an additional test as well. The

application was tested in all possible output in every possible input to prevent

unexpected error and loss of data. Base on the judgment we can say that the

program does satisfy the criteria to be able to provide signal for synchronization

and a database for event manager Bookmark error free and bug free.

59

Chapter 5

CONCLUSION AND RECOMMENDATION

This chapter presents the overall conclusion of the design by

answering the objectives of the design problem. The results of the various

testing procedures are summarized and theoretical analyses are clearly

defined. This chapter also includes the statements that suggest the need for

further studies with reference to the delimitations of the design. The

recommendation cites what else can be done for the improvement of the

design.

CONCLUSION

 The designers were able to create a wireless basketball scoreboard

synchronizer that can be easily controlled using a user-friendly graphical user-

interface program and a touch screen input in which the information from the

software are sent to the scoreboard without significant delay, thus adds

portability and mobility for the users and eliminates setting up messy wires.

Accurate data transmission from the software to the actual scoreboard

was achieved according to the results of the testing. The laptop computer was

able to communicate using the Zigbee to the program written in the Arduino

which controls the scoreboard. The device can transmit data without delay within

80m to 100m if there is no physical obstruction or interference. However, if there

60

are minor interference and obstruction such as human bodies and walls, the

range of transmission is lessen with a 1.67% difference compare to the latter.

The design also develops software that will allow easy control using the

computer to communicate with the ZigBee module. The Visual C#.NET is the

programming tool that was used. Visual C#.NET provides a well-organized

approach to writing programs that are clearer, easier to test, debug and can be

easily modified. The software testing results shows that the program created in

Visual C#.NET was able to successfully control and make a link for the device

and the PC. The program application is a vital part of the design wherein the

user is able to visually see how to update the scoreboard with an assurance that

the information is also shown to the actual scoreboard.

RECOMMENDATION

 The software could be improved if it would be interoperable to other

operating systems other that Windows. The system requirements for the

software are also strict which could be more flexible if the program could be

modified to work on lower versions of Windows. The GUI could also be improved

by lessening the buttons and adding more automation to the program

61

The touch screen can also be improved to a more sensitive touch screen

module. Since the touch screen is only fixed to 15-inch monitors, it must be

replaced if the laptop monitor is smaller or bigger than the touch screen. Touch

screen technology is also subject to further studies since tablets and I-pod are

emerging nowadays.

The Zigbee module operates up to 100 meters urban areas or indoors and

1500 meters in line of sight or outdoors. It can only be in synchronizing with one

scoreboard. Another design could be one-to-many Zigbee transmission. This

would require more Zigbee and a different type of data transmission such as

broadcast transmission.

 The design could have a security features and database to improve the

automation and control of the basketball games. This would need a back-end

database and a security code. This improvement will help basketball committees

to easily record the scores and other information of the game.

62

REFERENCES

Arai, F.; Iwata, N.; Fukuda, T. (2004) Transparent Tactile Feeling Device for

Touch-Screen Interface. IEEE Research Paper.

Balang, D. G. T., Magsino, A. D. (2010) On Screen Mouse Add On Frame Utilizing

Array of Lasers with PS/2 Computer Interface. Mapua Design Paper

Bergmann, N.W. Wallace, M. Calia, E. (2010). Low cost prototyping system for

sensor networks. IEEE Research Paper.

Cox, D., Jovanov, E., Milenkovic, A. (2005) Time synchronization for ZigBee

networks. IEEE Research Paper.

Cruz, M. S., Reyes, E. B. T., Vicedo, M. J. R. (2010) Nurse Touch Screen Device:

Touch Screen Interfaced Inpatient Treatment Record System. Mapua Design

Paper

Li, X., Munigala, S., Zeng Q. (2010) Design and Implementation of a Wireless

Programmable Logic Controller System. IEEE Research Paper

Li, Y. (2011) ZigBee Protocol as Assignments in Teaching Embedded Systems.

IEEE Research Paper

Xiangyin, M., Shide, X., Ying, X., Huiping, H. (2009) ZigBee-Based Wireless

Networked Smart Transducer and its Application in Supervision and Control

System for Natural Gas Gate Station. IEEE Research Paper

63

Yanfei, L., Cheng, W., Chengbo, Y., Xiaojun, Q. (2009) Research on ZigBee

Wireless Sensors Network Based on ModBus Protocol. International Forum on

Information Technology and Applications , Volume 1, pages 487-490.

Zhang, H. (2009) Optical Touch Screen with Virtual Force. IEEE Research Paper

Zhu, Y.W., Zhong, X. X. and Shi, J. F. (2006) The Design of Wireless Sensor

Network System Based on ZigBee Technology for Greenhouse. Journal of

Physics: Conference Series, Volume 48, pages 1195-1199.

http://iopscience.iop.org/1742-6596/48/1/223
http://iopscience.iop.org/1742-6596/48/1/223

64

APPENDICES

65

Appendix A

OPERATIONS MANUAL

1. System Requirement

o Pentium 4 processor 1.6GHz or equivalent

o 512MB RAM or higher

o Microsoft Windows XP or higher

2. Installation Procedure

o Attach the Zigbee Transceiver to the laptop.

o Attach the Zigbee Receiver to the scoreboard.

o Attach the Touch Screen module to the laptop.

o Turn on the Scoreboard.

o Run the scoreboard application on the laptop.

3. User’s Manual

o Run Scoreboard.exe

66

o Touch Option

o Enter desired Game Options

o Choose the right COM PORT

o Touch Save

o Start the scoreboard by touching Play

o Touch Stop to stop the game

o Touch Time to adjust Time settings

o Touch Home +1,+2,+3 to add to Home score

o Touch Away +1,+2,+3 to add to Away score

o Touch Home Foul +1,-1 to change Foul

o Touch Away Foul +1,-1 to change Foul

o Touch Home Timeout +1,-1 to change Timeout

o Touch Home Timeout +1,-1 to change Timeout

o Touch Reset Clock to reset shotclock

4. Troubleshooting

a. Scoreboard digits are all zeros

o Choose the right COM Port when starting the application

5. Error Definition

a. Check COM Port Settings – Error in com port setting.

67

Appendix B

Pictures of Prototype

Figure 6.1: Full Prototype

 The figure above shows the full prototype connected to a laptop
computer.

68

Figure 6.2: Touchscreen Controller

 The figure above shows the control board of the touchscreen. It’s from e-
Gizmo.

69

Figure 6.3: Touchscreen Set

 The entire Touchscreen set kit from e-Gizmo.

70

Appendix C
PROGRAM LISTING

C# Program

From Scoreboard.cs
using System;
using System.Collections.Generic;

using System.ComponentModel;
using System.Data;
using System.Drawing;

using System.Linq;
using System.Text;
using System.Windows.Forms;

using System.Threading;

namespace ScoreBoard

{
 public partial class frmScoreboard : Form
 {

 #region Global_Data_Declaration

 bool booltmrPause = false;
 Int32 intQuarterTimerMin,

 intQuarterTimerSec,
 intQuarterMiliSecond,
 intShotClockTime,

 intShotClockMili = 9,
 intCurrentPeriod,
 intMaxPeriod;

 string strMaxPeriod,
 strMaxFouls,

 strShotClock,
 strQuarterTime,
 strMaxTimeout;

 #endregion

 #region Initailize_Components
 public frmScoreboard()

 {
 InitializeComponent();

71

 }
 #endregion

 #region Load Form

 private void frmScoreboard_Load(object sender, EventArgs e)
 {

 MessageBox.Show("Make sure to change the settings first before " +

 "starting the game.\nPress Alt + O to open Options Menu" +
 "\nAlways Select The Right COM port in Options Menu",
 "Attention!", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

 }

 #endregion

 #region QuarterTimer & ShotClock

 private void timer1_Tick(object sender, EventArgs e)
 {
 //Code For The Shot Clock

 if (intQuarterTimerMin == 0 && intQuarterTimerSec == 0 &&
intQuarterMiliSecond == 0)
 {

 goto QUARTERTIMER;
 }
 else if (intShotClockTime > 0)

 {
 if (intShotClockMili > 0)

 {
 intShotClockMili--;
 }

 else
 {
 intShotClockMili = 9;

 lblTimerSC.Text = Convert.ToString(intShotClockTime -
1).PadLeft(2, '0');
 intShotClockTime = Convert.ToInt32(lblTimerSC.Text);

 serialPort1.WriteLine("C " + lblTimerSC.Text);
 }
 }

 else //End Shot Clock
 {

72

 {
 tmrTime.Enabled = false;

 booltmrPause = false;
 ResetSC();
 }

 }
QUARTERTIMER:

 //Code For The Game Time
 if (intQuarterTimerMin > 0)

 {
 if (intQuarterMiliSecond > 0)
 {

 intQuarterMiliSecond--;
 lblMiliSeconds.Text = Convert.ToString(intQuarterMiliSecond);
 }

 else if (intQuarterTimerSec > 0)
 {
 intQuarterMiliSecond = 9;

 lblMiliSeconds.Text = Convert.ToString(intQuarterMiliSecond);
 lblTimerSeconds.Text = Convert.ToString(intQuarterTimerSec -
1).PadLeft(2, '0');

 intQuarterTimerSec = Convert.ToInt32(lblTimerSeconds.Text);
 serialPort1.WriteLine("S " + lblTimerSeconds.Text);
 }

 else if (intQuarterTimerSec == 0 && intQuarterTimerMin != 0)
 {
 intQuarterMiliSecond = 9;

 lblMiliSeconds.Text = Convert.ToString(intQuarterMiliSecond);
 lblTimerMinutes.Text = Convert.ToString(intQuarterTimerMin -

1).PadLeft(2, '0');
 intQuarterTimerMin--;
 lblTimerSeconds.Text = "59";

 intQuarterTimerSec = 59;
 serialPort1.WriteLine("M " + lblTimerMinutes.Text);
 Thread.Sleep(10);

 serialPort1.WriteLine("S " + lblTimerSeconds.Text);
 }
 }

 else if (intQuarterTimerMin == 0)
 {
 if (intQuarterMiliSecond > 0)

 {
 intQuarterMiliSecond--;

73

 lblMiliSeconds.Text =
Convert.ToString(intQuarterMiliSecond);//.PadRight(2, '0');

 serialPort1.WriteLine("S " + lblMiliSeconds.Text.PadLeft(2,'0'));
 }
 else if (intQuarterTimerSec > 0)

 {
 intQuarterMiliSecond = 9;
 lblMiliSeconds.Text = Convert.ToString(intQuarterMiliSecond);

 serialPort1.WriteLine("M " + lblTimerSeconds.Text);
 lblTimerSeconds.Text = Convert.ToString(intQuarterTimerSec -

1).PadLeft(2, '0');
 intQuarterTimerSec = Convert.ToInt32(lblTimerSeconds.Text);
 serialPort1.WriteLine("S " + lblMiliSeconds.Text.PadLeft(2,'0'));

 }
 else if (intQuarterTimerSec == 0 && intQuarterMiliSecond != 0)
 {

 intQuarterMiliSecond = 9;
 lblMiliSeconds.Text = Convert.ToString(intQuarterMiliSecond);
 serialPort1.WriteLine("S " + lblMiliSeconds.Text);

 lblTimerSeconds.Text = Convert.ToString(intQuarterTimerSec -
1).PadLeft(2, '0');
 serialPort1.WriteLine("M " + lblTimerSeconds.Text);

 }

 else if (intQuarterTimerSec == 0 && intQuarterTimerMin == 0 &&
intQuarterMiliSecond == 0)
 {

 intCurrentPeriod = Convert.ToInt32(lblPeriodNumber.Text) + 1;
 int HomeScore = Convert.ToInt32(lblHomeScore.Text),

 AwayScore = Convert.ToInt32(lblAwayScore.Text);
 if (intCurrentPeriod < intMaxPeriod && intCurrentPeriod > 0)
 {

 lblPeriodNumber.Text =
Convert.ToString(intCurrentPeriod).PadLeft(2, '0');
 serialPort1.WriteLine("P " + lblPeriodNumber.Text);

 lblTimerMinutes.Text = strQuarterTime;
 serialPort1.WriteLine("M " + lblTimerMinutes.Text);
 intQuarterTimerMin = Convert.ToInt32(strQuarterTime);

 booltmrPause = false;
 tmrTime.Enabled = false;
 ResetSC();

 }

74

 else if ((intCurrentPeriod > intMaxPeriod) && (HomeScore ==
AwayScore))

 {
 string strOverTime = "05";
 // add serialport for labels periodnumber,minutes,seconds

 // add into options overtime length and comport should be
selected
 lblPeriodNumber.Text = "00";

 serialPort1.WriteLine("P " + lblPeriodNumber.Text);
 lblTimerMinutes.Text = strOverTime;

 serialPort1.WriteLine("M " + lblTimerMinutes.Text);
 intQuarterTimerMin = Convert.ToInt32(strQuarterTime);

 booltmrPause = false;
 tmrTime.Enabled = false;
 ResetSC();

 MessageBox.Show("Over Time!");
 }
 else if ((intCurrentPeriod > intMaxPeriod) && (HomeScore !=

AwayScore))
 {
 booltmrPause = false;

 tmrTime.Enabled = false;
 MessageBox.Show("The Game is Finished");
 }

 }
 }

END: { }
 }

 #endregion

 #region Home Controls

 private void btnHomeAdd1_Click(object sender, EventArgs e)
 {
 lblHomeScore.Text =

Convert.ToString(Convert.ToInt32(lblHomeScore.Text) + 1);
 //this line add 1 point to the score of the Home Team
 serialPort1.WriteLine("H" + lblHomeScore.Text.PadLeft(3, '0'));

 //This statements for serial port transmission

 }

 private void btnHomeAdd2_Click(object sender, EventArgs e)

75

 {
 lblHomeScore.Text =

Convert.ToString(Convert.ToInt32(lblHomeScore.Text) + 2);
 //this line add 2 point to the score of the Home Team
 serialPort1.WriteLine("H" + lblHomeScore.Text.PadLeft(3, '0'));

 //This statements for serial port transmission
 ResetSC();
 }

 private void btnHomeAdd3_Click(object sender, EventArgs e)

 {
 lblHomeScore.Text =
Convert.ToString(Convert.ToInt32(lblHomeScore.Text) + 3);

 //this line add 3 point to the score of the Home Team
 serialPort1.WriteLine("H" + lblHomeScore.Text.PadLeft(3, '0'));
 //This statements for serial port transmission

 ResetSC();
 }

 private void btnHomeSub1_Click(object sender, EventArgs e)
 {
 if (lblAwayScore.Text != "0")

 {
 lblAwayScore.Text =
Convert.ToString(Convert.ToInt32(lblAwayScore.Text) - 1);

 //this line minus 1 point to the score of the Home Team
 serialPort1.WriteLine("H" + lblAwayScore.Text.PadLeft(3, '0'));
 //This statements for serial port transmission

 }

 }

 private void btnHomeFoulAdd_Click(object sender, EventArgs e)

 {
 if (lblHTFouls.Text != strMaxFouls)
 {

 lblHTFouls.Text = Convert.ToString(Convert.ToInt32(lblHTFouls.Text)
+ 1);
 //this line add 1 foul of the Home Team

 serialPort1.WriteLine("O " + lblHTFouls.Text);
 //This statements for serial port transmission
 tmrTime.Enabled = false;

 }
 }

76

 private void btnHomeFoulSub_Click(object sender, EventArgs e)

 {
 if (lblHTFouls.Text != "0")
 {

 lblHTFouls.Text = Convert.ToString(Convert.ToInt32(lblHTFouls.Text)
- 1);
 //this line minus 1 foul of the Home Team

 serialPort1.WriteLine("O " + lblHTFouls.Text);
 //This statements for serial port transmission

 }

 }

 private void btnHomeTimeoutAdd_Click(object sender, EventArgs e)
 {

 if (lblHTimeout.Text != strMaxTimeout)
 {
 lblHTimeout.Text =

Convert.ToString(Convert.ToInt32(lblHTimeout.Text) + 1);
 //this line add 1 timeout to the Home Team
 serialPort1.WriteLine("E " + lblHTimeout.Text);

 //This statements for serial port transmission
 }
 }

 private void btnHomeTimeoutSub_Click(object sender, EventArgs e)
 {

 if (lblHTimeout.Text != "0")
 {

 tmrTime.Enabled = false; //Stops The Timer
 booltmrPause = false; //Set the Timer of the Flag to False
 lblHTimeout.Text =

Convert.ToString(Convert.ToInt32(lblHTimeout.Text) - 1);
 serialPort1.WriteLine("E " + lblHTimeout.Text);
 //This statements for serial port transmission

 }

 }

 #endregion

 #region Away Controls

 private void btnAwayAdd1_Click(object sender, EventArgs e)
 {

77

 lblAwayScore.Text =
Convert.ToString(Convert.ToInt32(lblAwayScore.Text) + 1);

 //this line add 1 point to the score of the Home Team
 serialPort1.WriteLine("A" + lblAwayScore.Text.PadLeft(3, '0'));
 //This statements for serial port transmission

 }

 private void btnAwayAdd2_Click(object sender, EventArgs e)
 {

 lblAwayScore.Text =
Convert.ToString(Convert.ToInt32(lblAwayScore.Text) + 2);
 //this line add 2 point to the score of the Home Team

 serialPort1.WriteLine("A" + lblAwayScore.Text.PadLeft(3, '0'));
 //This statements for serial port transmission
 ResetSC();

 }

 private void btnAwayAdd3_Click(object sender, EventArgs e)

 {
 lblAwayScore.Text =
Convert.ToString(Convert.ToInt32(lblAwayScore.Text) + 3);

 //this line add 3 point to the score of the Home Team
 serialPort1.WriteLine("A" + lblAwayScore.Text.PadLeft(3, '0'));
 //This statements for serial port transmission

 ResetSC();
 }

 private void btnAwaySub1_Click(object sender, EventArgs e)
 {

 if (lblAwayScore.Text != "0")
 {
 lblAwayScore.Text =

Convert.ToString(Convert.ToInt32(lblAwayScore.Text) - 1);
 //this line add 1 point to the score of the Home Team
 serialPort1.WriteLine("A" + lblAwayScore.Text.PadLeft(3, '0'));

 //This statements for serial port transmission
 }
 }

 private void btnAwayFoulAdd_Click(object sender, EventArgs e)
 {

 if (lblATFouls.Text != strMaxFouls)
 {

78

 lblATFouls.Text = Convert.ToString(Convert.ToInt32(lblATFouls.Text)
+ 1);

 //this line add 1 foul of the Home Team
 serialPort1.WriteLine("W " + lblATFouls.Text);
 //This statements for serial port transmission

 tmrTime.Enabled = false;
 }
 }

 private void btnAwayFoulSub_Click(object sender, EventArgs e)

 {
 if (lblATFouls.Text != "0")
 {

 lblATFouls.Text = Convert.ToString(Convert.ToInt32(lblATFouls.Text)
- 1);
 //this line add 1 foul of the Home Team

 serialPort1.WriteLine("W " + lblATFouls.Text);
 //This statements for serial port transmission
 }

 }

 private void btnAwayTimeoutAdd_Click(object sender, EventArgs e)

 {
 if (lblATimeout.Text != strMaxTimeout)
 {

 lblATimeout.Text =
Convert.ToString(Convert.ToInt32(lblATimeout.Text) + 1);
 //this line add 1 timeout to the Home Team

 serialPort1.WriteLine("Y00" + lblATimeout.Text);
 //This statements for serial port transmission

 }
 }

 private void btnAwayTimeoutSub_Click(object sender, EventArgs e)
 {
 if (lblATimeout.Text != "0")

 {
 tmrTime.Enabled = false; //Stops The Timer
 booltmrPause = false; //Set the Timer of the Flag to False

 lblATimeout.Text =
Convert.ToString(Convert.ToInt32(lblATimeout.Text) - 1);
 //this line add 1 timeout to the Home Team

 serialPort1.WriteLine("Y00" + lblATimeout.Text);
 //This statements for serial port transmission

79

 }
 }

 #endregion

 #region Game Controls

 private void btnPlay_Click(object sender, EventArgs e)
 {
 booltmrPause = true;

 tmrTime.Enabled = true;
 }

 private void btnStop_Click(object sender, EventArgs e)
 {

 booltmrPause = false;
 tmrTime.Enabled = false;
 }

 private void btnResetShotClock_Click(object sender, EventArgs e)
 {

 ResetSC();

 }

 private void btnChangeTime_Click(object sender, EventArgs e)

 {
 serialPort1.Close();
 booltmrPause = false;

 tmrTime.Enabled = false;
 frmChangeTime openChangeTime = new frmChangeTime();

 for (int i = 0; i <= Convert.ToInt32(strMaxPeriod); i++)
 {

openChangeTime.cbPeriod.Items.Add(Convert.ToString(i).PadLeft(2,'0'));
 }
 for (int i = 0; i <= Convert.ToInt32(strQuarterTime); i++)

 {
 openChangeTime.cbMinutes.Items.Add(Convert.ToString(i).PadLeft(2,
'0'));

 }
 openChangeTime.cbPeriod.Text = lblPeriodNumber.Text;
 openChangeTime.cbMiliSeconds.Text = lblMiliSeconds.Text;

 openChangeTime.cbSeconds.Text = lblTimerSeconds.Text;
 openChangeTime.cbMinutes.Text = lblTimerMinutes.Text;

80

 openChangeTime.ShowDialog();

 serialPort1.Open();
 intQuarterTimerMin =
Convert.ToInt32(openChangeTime.cbMinutes.Text);

 intQuarterTimerSec =
Convert.ToInt32(openChangeTime.cbSeconds.Text);
 intQuarterMiliSecond =

Convert.ToInt32(openChangeTime.cbMiliSeconds.Text);
 lblTimerMinutes.Text = Convert.ToString(intQuarterTimerMin).PadLeft(2,

'0');
 serialPort1.WriteLine("M " + lblTimerMinutes.Text);
 Thread.Sleep(100);

 lblTimerSeconds.Text = Convert.ToString(intQuarterTimerSec).PadLeft(2,
'0');
 serialPort1.WriteLine("S " + lblTimerSeconds.Text);

 Thread.Sleep(100);
 lblMiliSeconds.Text = Convert.ToString(intQuarterMiliSecond);
 Thread.Sleep(100);

 lblPeriodNumber.Text = openChangeTime.cbPeriod.Text;
 serialPort1.WriteLine("P " + lblPeriodNumber.Text);
 Thread.Sleep(100);

 openChangeTime.Dispose();
 openChangeTime.Close();

 //add serial code for all changes

 }

 private void btnOptions_Click(object sender, EventArgs e)
 {
 booltmrPause = false;

 tmrTime.Enabled = false;

 if (serialPort1.IsOpen)

 {
 serialPort1.Close();
 }

 frmOptions openOptions = new frmOptions();
 openOptions.ShowDialog();

 serialPort1.PortName = openOptions.serialPort1.PortName;

81

 serialPort1.Open();
 lblTimerMinutes.Text = openOptions.cbTimerMins.Text;

 lblTimerSeconds.Text = "00";
 lblMiliSeconds.Text = "0";
 lblTimerSC.Text = openOptions.cbShotClock.Text;

 lblPeriodNumber.Text = "01";
 lblHTimeout.Text = openOptions.cbTimeouts.Text;
 serialPort1.WriteLine("E " + lblHTimeout.Text);

 lblATimeout.Text = openOptions.cbTimeouts.Text;
 serialPort1.WriteLine("Y " + lblATimeout.Text);

 strQuarterTime = openOptions.cbTimerMins.Text;
 strMaxPeriod = openOptions.cbPeriodNumber.Text;
 strMaxFouls = openOptions.cbFoulsAllowed.Text;

 strShotClock = openOptions.cbShotClock.Text;
 strMaxTimeout = openOptions.cbTimeouts.Text;
 intQuarterMiliSecond = 0;

 intQuarterTimerMin = Convert.ToInt32(lblTimerMinutes.Text);
 intQuarterTimerSec = Convert.ToInt32(lblTimerSeconds.Text);
 intShotClockTime = Convert.ToInt32(lblTimerSC.Text);

 intCurrentPeriod = 01;
 intMaxPeriod = Convert.ToInt32(strMaxPeriod);

 openOptions.Dispose();
 openOptions.Close();

 ButtonEnable();

 }

 private void ButtonEnable()

 {
 //Enable All Buttons
 btnHomeAdd1.Enabled = true;

 btnHomeAdd2.Enabled = true;
 btnHomeAdd3.Enabled = true;
 btnHomeSub1.Enabled = true;

 btnHomeFoulAdd.Enabled = true;
 btnHomeFoulSub.Enabled = true;
 btnHomeTimeoutAdd.Enabled = true;

 btnHomeTimeoutSub.Enabled = true;

 btnAwayAdd1.Enabled = true;

 btnAwayAdd2.Enabled = true;
 btnAwayAdd3.Enabled = true;

82

 btnAwaySub1.Enabled = true;
 btnAwayFoulAdd.Enabled = true;

 btnAwayFoulSub.Enabled = true;
 btnAwayTimeoutAdd.Enabled = true;
 btnAwayTimeoutSub.Enabled = true;

 btnResetShotClock.Enabled = true;
 btnPlay.Enabled = true;

 btnStop.Enabled = true;
 btnChangeTime.Enabled = true;

 }

 #endregion

 #region Menu Bar
 private void exitToolStripMenuItem_Click(object sender, EventArgs e)

 {
 serialPort1.Close();
 Application.Exit();

 }
 #endregion

 #region Method_ResetSC()

 private void ResetSC()

 {
 intShotClockMili = 9;
 lblTimerSC.Text = strShotClock;

 intShotClockTime = Convert.ToInt32(strShotClock);
 serialPort1.WriteLine("C " + lblTimerSC.Text);

 }

 #endregion

 #region KeyDownEvent

 #endregion

 #region Practice_BtnHome

 #endregion

 }
}

83

From Option.cs

using System;
using System.Collections.Generic;
using System.ComponentModel;

using System.Data;
using System.Drawing;
using System.Linq;

using System.Text;
using System.Windows.Forms;

using System.Threading;

namespace ScoreBoard

{
 public partial class frmOptions : Form
 {

 public frmOptions()
 {
 InitializeComponent();

 }

 private void frmOptions_Load(object sender, EventArgs e)
 {
 cbTimerMins.Text = "10";

 cbPeriodNumber.Text = "04";
 cbFoulsAllowed.Text = "6";
 cbTimeouts.Text = "6";

 cbShotClock.Text = "24";

 string[] portNames = System.IO.Ports.SerialPort.GetPortNames();

 foreach (string port in portNames)

 {

 cbCOMPort.Items.Add(port);

 }

 }

 private void cbCOMPort_SelectedIndexChanged(object sender, EventArgs e)
 {

 serialPort1.PortName = cbCOMPort.Text;

84

 try
 {

 serialPort1.Open();
 }
 catch (Exception ex)

 {
 MessageBox.Show(ex.Message);
 }

 finally
 {

 serialPort1.Close();
 }
 }

 private void button1_Click(object sender, EventArgs e)
 {

 DialogResult Dr = MessageBox.Show("Are You Sure",
 "Conformation", MessageBoxButtons.OKCancel,
MessageBoxIcon.Question);

 if (Dr == DialogResult.OK)
 {
 serialPort1.Open();

 serialPort1.WriteLine("M " + cbTimerMins.Text);
 Thread.Sleep(100);
 serialPort1.WriteLine("S 00");

 Thread.Sleep(100);
 serialPort1.WriteLine("C " + cbShotClock.Text);
 Thread.Sleep(100);

 serialPort1.WriteLine("P " + cbPeriodNumber.Text);
 Thread.Sleep(100);

 serialPort1.Close();
 Thread.Sleep(100);
 this.Close();

 }
 }
 }

}

From ChangeTime.cs
using System;
using System.Collections.Generic;

using System.ComponentModel;
using System.Data;

85

using System.Drawing;
using System.Linq;

using System.Text;
using System.Windows.Forms;

namespace ScoreBoard
{
 public partial class frmChangeTime : Form

 {
 public frmChangeTime()

 {
 InitializeComponent();
 }

 private void frmChangeTime_Load(object sender, EventArgs e)

 {

 cbMinutes.Focus();

 }

 private void btnChangeTime_Click(object sender, EventArgs e)

 {

 DialogResult Dr = MessageBox.Show("Are you alright with this time
setting?",
 "Conformation", MessageBoxButtons.OKCancel,

MessageBoxIcon.Question);
 if (Dr == DialogResult.OK)

 {
 cbMinutes.Text = cbMinutes.Text.TrimEnd();
 cbSeconds.Text = cbSeconds.Text.TrimEnd();

 this.Close();
 }

 END: { }
 }

86

Appendix D

Datasheet

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Arduino Mega 2560

Overview

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560

(datasheet). It has 54 digital input/output pins (of which 14 can be used as PWM
outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal
oscillator, a USB connection, a power jack, an ICSP header, and a reset button.

It contains everything needed to support the microcontroller; simply connect it to
a computer with a USB cable or power it with a AC-to-DC adapter or battery to

get started. The Mega is compatible with most shields designed for the Arduino
Duemilanove or Diecimila.

The Mega 2560 is an update to the Arduino Mega, which it replaces.

Schematic, Reference Design & Pin Mapping

EAGLE files: arduino.cc/en/uploads/Main/arduino-mega2560-reference-design.zip

Schematic: http://arduino.cc/en/uploads/Main/arduino-mega2560-schematic.pdf

Pin Mapping: http://arduino.cc/en/Hacking/PinMapping2560

103

Summary

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 54 (of which 14 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB of which 8 KB used by bootloader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

Power

The Arduino Mega can be powered via the USB connection or with an external
power supply. The power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart)
or battery. The adapter can be connected by plugging a 2.1mm center-positive

plug into the board's power jack. Leads from a battery can be inserted in the
Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with
less than 7V, however, the 5V pin may supply less than five volts and the board

may be unstable. If using more than 12V, the voltage regulator may overheat
and damage the board. The recommended range is 7 to 12 volts.

The Mega2560 differs from all preceding boards in that it does not use the FTDI
USB-to-serial driver chip. Instead, it features the ATmega16U2 (ATmega8U2 in

the revision 1 and revision 2 boards) programmed as a USB-to-serial converter.
Revision 2 of the Mega2560 board has a resistor pulling the 8U2 HWB line to

104

ground, making it easier to put into DFU mode.
Revision 3 of the board has the following new features:

 1.0 pinout: added SDA and SCL pins that are near to the AREF pin and

two other new pins placed near to the RESET pin, the IOREF that allow
the shields to adapt to the voltage provided from the board. In future,
shields will be compatible both with the board that use the AVR, which

operate with 5V and with the Arduino Due that operate with 3.3V. The
second one is a not connected pin, that is reserved for future purposes.

 Stronger RESET circuit.

 Atmega 16U2 replace the 8U2.

The power pins are as follows:

 VIN. The input voltage to the Arduino board when it's using an external

power source (as opposed to 5 volts from the USB connection or other
regulated power source). You can supply voltage through this pin, or, if
supplying voltage via the power jack, access it through this pin.

 5V. The regulated power supply used to power the microcontroller and

other components on the board. This can come either from VIN via an on-
board regulator, or be supplied by USB or another regulated 5V supply.

 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum
current draw is 50 mA.

 GND. Ground pins.

Memory

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is

used for the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read
and written with the EEPROM library).

Input and Output

Each of the 54 digital pins on the Mega can be used as an input or output, using
pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts.

Each pin can provide or receive a maximum of 40 mA and has an internal pull-up
resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have

specialized functions:

 Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX)
and 16 (TX); Serial 3: 15 (RX) and 14 (TX). Used to receive (RX) and
transmit (TX) TTL serial data. Pins 0 and 1 are also connected to the

corresponding pins of the ATmega16U2 USB-to-TTL Serial chip.

105

 External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19
(interrupt 4), 20 (interrupt 3), and 21 (interrupt 2). These pins can be

configured to trigger an interrupt on a low value, a rising or falling edge,
or a change in value. See the attachInterrupt() function for details.

 PWM: 0 to 13. Provide 8-bit PWM output with the analogWrite() function.

 SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI
communication using the SPI library. The SPI pins are also broken out on

the ICSP header, which is physically compatible with the Uno,
Duemilanove and Diecimila.

 LED: 13. There is a built-in LED connected to digital pin 13. When the pin

is HIGH value, the LED is on, when the pin is LOW, it's off.

 TWI: 20 (SDA) and 21 (SCL). Support TWI communication using the Wire
library. Note that these pins are not in the same location as the TWI pins
on the Duemilanove or Diecimila.

The Mega2560 has 16 analog inputs, each of which provide 10 bits of resolution

(i.e. 1024 different values). By default they measure from ground to 5 volts,
though is it possible to change the upper end of their range using the AREF pin
and analogReference() function.

There are a couple of other pins on the board:

 AREF. Reference voltage for the analog inputs. Used with analog

Reference().

 Reset. Bring this line LOW to reset the microcontroller. Typically used to
add a reset button to shields which block the one on the board.

Communication

The Arduino Mega2560 has a number of facilities for communicating with a
computer, another Arduino, or other microcontrollers. The ATmega2560 provides

four hardware UARTs for TTL (5V) serial communication. An ATmega16U2
(ATmega 8U2 on the revision 1 and revision 2 boards) on the board channels

one of these over USB and provides a virtual com port to software on the
computer (Windows machines will need a .inf file, but OSX and Linux machines
will recognize the board as a COM port automatically. The Arduino software

includes a serial monitor which allows simple textual data to be sent to and from
the board. The RX and TX LEDs on the board will flash when data is being
transmitted via the ATmega8U2/ATmega16U2 chip and USB connection to the

computer (but not for serial communication on pins 0 and 1).

106

A SoftwareSerial library allows for serial communication on any of the
Mega2560's digital pins.

The ATmega2560 also supports TWI and SPI communication. The Arduino

software includes a Wire library to simplify use of the TWI bus; see the
documentation for details. For SPI communication, use the SPI library.

Programming

The Arduino Mega can be programmed with the Arduino software
(arduino.cc/en/Main/Software). For details, see the reference and tutorials.

The ATmega2560 on the Arduino Mega comes preburned with a bootloader that

allows you to upload new code to it without the use of an external hardware
programmer. It communicates using the original STK500 protocol (reference, C

header files).

You can also bypass the bootloader and program the microcontroller through the
ICSP (In-Circuit Serial Programming) header; see these instructions for details.

The ATmega16U2 (or 8U2 in the rev1 and rev2 boards) firmware source code is
available in the Arduino repository. The ATmega16U2/8U2 is loaded with a DFU

bootloader, which can be activated by:

 On Rev1 boards: connecting the solder jumper on the back of the board
(near the map of Italy) and then resetting the 8U2.

 On Rev2 or later boards: there is a resistor that pulling the 8U2/16U2
HWB line to ground, making it easier to put into DFU mode. You can then

use Atmel's FLIP software (Windows) or the DFU programmer (Mac OS X
and Linux) to load a new firmware. Or you can use the ISP header with an
external programmer (overwriting the DFU bootloader). See this user-

contributed tutorial for more information.

Automatic (Software) Reset

Rather than requiring a physical press of the reset button before an upload, the
Arduino Mega2560 is designed in a way that allows it to be reset by software

running on a connected computer. One of the hardware flow control lines (DTR)
of the ATmega8U2 is connected to the reset line of the ATmega2560 via a 100
nanofarad capacitor. When this line is asserted (taken low), the reset line drops

long enough to reset the chip. The Arduino software uses this capability to allow
you to upload code by simply pressing the upload button in the Arduino
environment. This means that the bootloader can have a shorter timeout, as the

lowering of DTR can be well-coordinated with the start of the upload.

107

This setup has other implications. When the Mega2560 is connected to either a
computer running Mac OS X or Linux, it resets each time a connection is made to

it from software (via USB). For the following half-second or so, the bootloader is
running on the Mega2560. While it is programmed to ignore malformed data (i.e.
anything besides an upload of new code), it will intercept the first few bytes of

data sent to the board after a connection is opened. If a sketch running on the
board receives one-time configuration or other data when it first starts, make
sure that the software with which it communicates waits a second after opening

the connection and before sending this data.

The Mega2560 contains a trace that can be cut to disable the auto-reset. The
pads on either side of the trace can be soldered together to re-enable it. It's

labeled "RESET-EN". You may also be able to disable the auto-reset by
connecting a 110 ohm resistor from 5V to the reset line; see this forum thread
for details.

USB Overcurrent Protection

The Arduino Mega2560 has a resettable polyfuse that protects your computer's

USB ports from shorts and overcurrent. Although most computers provide their
own internal protection, the fuse provides an extra layer of protection. If more
than 500 mA is applied to the USB port, the fuse will automatically break the

connection until the short or overload is removed.

Physical Characteristics and Shield Compatibility

The maximum length and width of the Mega2560 PCB are 4 and 2.1 inches
respectively, with the USB connector and power jack extending beyond the
former dimension. Three screw holes allow the board to be attached to a surface

or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"),
not an even multiple of the 100 mil spacing of the other pins.

The Mega2560 is designed to be compatible with most shields designed for the
Uno, Diecimila or Duemilanove. Digital pins 0 to 13 (and the adjacent AREF and

GND pins), analog inputs 0 to 5, the power header, and ICSP header are all in
equivalent locations. Further the main UART (serial port) is located on the same

pins (0 and 1), as are external interrupts 0 and 1 (pins 2 and 3 respectively). SPI
is available through the ICSP header on both the Mega2560 and Duemilanove /
Diecimila. Please note that I2C is not located on the same pins on the Mega (20

and 21) as the Duemilanove / Diecimila (analog inputs 4 and 5).

108

Xbee Shield

Overview

The Xbee shield allows an Arduino board to communicate wirelessly using
Zigbee. It is based on the Xbee module from MaxStream. The module can
communicate up to 100 feet indoors or 300 feet outdoors (with line-of-sight). It

can be used as a serial/usb replacement or you can put it into a command mode
and configure it for a variety of broadcast and mesh networking options. The
shields breaks out each of the Xbee's pins to a through-hole solder pad. It also

provides female pin headers for use of digital pins 2 to 7 and the analog inputs,
which are covered by the shield (digital pins 8 to 13 are not obstructed by the
shield, so you can use the headers on the board itself).

The Xbee shield was created in collaboration with Libelium, who developed it for
use in their SquidBee motes (used for creating sensor networks).

Schematic

XbeeShieldSchematic.pdf (Eagle schematics and board layouts available from the
Libelium SquidBee wiki download page.)

109

Jumper Settings

The Xbee shield has two jumpers (the small removable plastic sleeves that each

fit onto two of the three pins labelled Xbee/USB). These determine how the
Xbee's serial communication connects to the serial communication between the
microcontroller (ATmega8 or ATmega168) and FTDI USB-to-serial chip on the

Arduino board.

With the jumpers in the Xbee position (i.e. on the two pins towards the interior
of the board), the DOUT pin of the Xbee module is connected to the RX pin of

the microcontroller; and DIN is connected to TX. Note that the RX and TX pins of
the microcontroller are still connected to the TX and RX pins (respectively) of the

FTDI chip - data sent from the microcontroller will be transmitted to the
computer via USB as well as being sent wirelessly by the Xbee module. The
microcontroller, however, will only be able to receive data from the Xbee

module, not over USB from the computer.

With the jumpers in the USB position (i.e. on the two pins nearest the edge of
the board), the DOUT pin the Xbee module is connected to the RX pin of the

FTDI chip, and DIN on the Xbee module is connected to the TX pin of the FTDI
chip. This means that the Xbee module can communicate directly with the
computer - however, this only works if the microcontroller has been removed

from the Arduino board. If the microcontroller is left in the Arduino board, it will
be able to talk to the computer normally via USB, but neither the computer nor
the microcontroller will be able to talk to the Xbee module.

Networking

The Arduino XBee shield can be used with different XBee modules. The
instructions below are for the XBee 802.15.4 modules (sometimes called "Series

1" to distinguish them from the Series 2 modules, although "Series 1" doesn't
appear in the official name or product description).

Addressing

There are multiple parameters that need to be configured correctly for two
modules to talk to each other (although with the default settings, all modules

should be able to talk to each other). They need to be on the same network, as
set by the ID parameter (see "Configuration" below for more details on the

110

parameters). The modules need to be on the same channel, as set by the CH
parameter. Finally, a module's destination address (DH and DL parameters)

determine which modules on its network and channel will receive the data it
transmits. This can happen in a few ways:

 If a module's DH is 0 and its DL is less than 0xFFFF (i.e. 16 bits), data

transmitted by that module will be received by any module whose 16-bit
address MY parameter equals DL.

 If DH is 0 and DL equals 0xFFFF, the module's transmissions will be

received by all modules.

 If DH is non-zero or DL is greater than 0xFFFF, the transmission will only

be received by the module whose serial number equals the transmitting
module's destination address (i.e. whose SH equals the transmitting
module's DH and whose SL equals its DL).

Again, this address matching will only happen between modules on the same
network and channel. If two modules are on different networks or channels, they
can't communicate regardless of their addresses.

Configuration

Here are some of the more useful parameters for configuring your Xbee module.
For step-by-step instructions on reading and writing them, see the guide to the

Xbee shield. Make sure to prepend AT to the parameter name when sending a
command to the module (e.g. to read the ID parameter, you should send the
command ATID).

Command Description Valid Values Default Value

ID The network ID of the Xbee module. 0 - 0xFFFF 3332

CH The channel of the Xbee module. 0x0B - 0x1A 0X0C

SH and The serial number of the Xbee module 0 - different for

111

SL (SH gives the high 32 bits, SL the low

32 bits). Read-only.

0xFFFFFFFF

(for both SH
and SL)

each module

MY The 16-bit address of the module. 0 - 0xFFFF 0

DH and
DL

The destination address for wireless
communication (DH is the high 32 bits,
DL the low 32).

0 -
0xFFFFFFFF
(for both DH

and DL)

0 (for both DH
and DL)

BD The baud rate used for serial
communication with the Arduino board
or computer.

0 (1200 bps)
1 (2400 bps)
2 (4800 bps)

3 (9600 bps)
4 (19200 bps)
5 (38400 bps)

6 (57600 bps)
7 (115200
bps)

3 (9600 baud)

Note: although the valid and default values in the table above are written with a
prefix of "0x" (to indicate that they are hexadecimal numbers), the module will

not include the "0x" when reporting the value of a parameter, and you should
omit it when setting values.

Here are a couple more useful commands for configuring the Xbee module (you'll
need to prepend AT to these too).

Command Description

RE Restore factory default settings (note

that like parameter changes, this is not
permanent unless followed by the WR
command).

112

WR Write newly configured parameter

values to non-volatile (long-term)
storage. Otherwise, they will only last
until the module loses power.

CN Exit command mode now. (If you don't

send any commands to the module for
a few seconds, command mode will
timeout and exit even without a CN

command.)

